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Abstract: Ground surface settlement forecasting in the process of tunnel construction is one of the
most important techniques towards sustainable city development and preventing serious damages,
such as landscape collapse. It is evident that modern artificial intelligence (AI) models, such as
artificial neural network, extreme learning machine, and support vector regression, are capable of
providing reliable forecasting results for tunnel surface settlement. However, two limitations exist
for the current forecasting techniques. First, the data provided by the construction company are
usually univariate (i.e., containing only the settlement data). Second, the demand of tunnel surface
settlement is immediate after the construction process begins. The number of training data samples is
limited. Targeting at the above two limitations, in this study, a novel ensemble machine learning
model is proposed to forecast tunnel surface settlement using univariate short period of real-world
tunnel settlement data. The proposed Adaboost.RT framework fully utilizes existing data points with
three base machine learning models and iteratively updates hyperparameters using current surface
point locations. Experimental results show that compared with existing machine learning techniques
and algorithms, the proposed ensemble learning method provides a higher prediction accuracy with
acceptable computational efficiency.

Keywords: tunnel settlement; time series analysis; ensemble learning; Adaboost.RT algorithm

1. Introduction

Modern sustainable city development involves various tunnel constructions, such as subway rail
train tunnels, city underpass tunnels, and highway tunnels. Ground settlement in the process of tunnel
construction is inevitable. Tunnel settlement not only affects the development of urban rail transit,
it is also a great threat to the safety of the lives and property of urban area residents [1]. Data-driven
forecasting method of the tunnel ground surface settlement is helpful to prevent serious damages and
also useful for sustainable usage of the constructed tunnels [2–4].

Machine learning (ML), representing one of the hottest topics in data-driven methods, has achieved
great successes in recent research studies. Compared to model-based methods, which require expert
knowledge and experience to build physical or mathematical models, ML methods predict the future
tunnel surface settlement purely based on historical data [5]. The established ML models are usually
much more complex than the conventional mathematical model and can hardly be interpreted using
several mathematical equations. The advantages of ML methods are easy for implementation and direct
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for real-world application usage. Moreover, since the models are more complex, the forecasting accuracy
usually can achieve a relatively high level and outperform most of the existing model-based methods.

In 2019, Hu et al. [5] compared most existing ML techniques for ground surface settlement
prediction in real-world tunnel construction processes and pointed out that deep learning techniques,
such as convolutional neural networks (CNNs) and long short-term memory (LSTM) neural networks,
are not suitable for analyzing short sequence time series data, such as tunnel settlement data [6].
This study is a follow-up work of [5]. There are two main difficulties for tunnel settlement forecasting.
First, the lengths of the historical data of tunnel constructions are limited. Second, the data collected
are usually univariate. Deep learning methods usually are not suitable under the above-mentioned
situations [7]. In contrast, traditional ML techniques are more reliable prediction methods for tunnel
settlement in the short-term. In a study by Hu et al. [5], through a series of comparative study, three
machine learning techniques, namely, back-propagation neural network (BPNN) [8], extreme learning
machine (ELM) [9], and support vector regression (SVR) [10], were selected as best predicting the
tunnel settlement in the short-term for various cases. Following this study [5] and using the same
dataset, in this study, we show that there exists a complex nonlinear relationship between tunnel
settlement and many random uncertain factors; it is difficult to predict the tunnel settlements using
one single machine learning technique.

In this research, an ensemble learning approach that integrates multiple machine learning models
is proposed. To verify the performance of the method proposed, a real-world tunnel surface settlement
from a tunnel construction corporation is selected. The motivation of this study is searching for the
most suitable data-driven forecasting technique for short-term tunnel surface settlement. The study
makes the following contributions to the literature.

(1) Utilizing multiple machine learning models for improving the tunnel settlement prediction
accuracy: Based on the literature review conducted in Section 2, using one single model to predict the
tunnel settlement accurately is indeed challenging. In this study, multiple different types of models,
such as SVR, BPNN, and ELM, were integrated to construct a powerful ensemble learning framework
for tunnel settlement forecasting.

(2) A customized ensemble learning algorithm based on traditional Adaboost.RT algorithm: The
traditional Adaboost.RT algorithm was altered to best suit the short-term forecasting with a limited
number of training data samples from the ground sensors during the tunnel construction period.
The traditional Adaboost.RT algorithm usually integrates one type of prediction model for ensemble
learning. In this study, we reimplement the Adaboost.RT algorithm integrating three types of different
prediction models.

(3) Illustrating the prediction performance improvement through a comprehensive comparative
study: In the experimental section, results are illustrated to compare the proposed method with
existing works. First, we show that the ensemble learning framework outperforms individual base
classifiers. Next, more experiments were carried out to compare the proposed framework with
traditional ensemble learning approaches (i.e., the Adaboost.RT framework integrating a single type of
classifiers). The performance of the proposed ensemble learning framework is proven through a series
of comparative studies.

2. Related Works

Short-term time series data forecasting is a popular topic in the field of regression analysis,
machine learning, and intelligent computing. In general, those research methods can be divided into
two categories: model-based methods and data-driven methods [11,12]. The model-based methods
include numerical analysis method, numerical simulation method, semi-theoretical analytical method,
and stochastic theoretical model. For example, an empirical method based on the normal distribution
function was proposed by Fang et al. to estimate the magnitude of tunnel surface settlement [13].
An elastic-visco-plastic (EVP) constitutive model in triaxial space and general stress space, used mainly
for the study of isotropic clays, was proposed by Islam and Gnanendran [14]. They carried out many
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experimental studies on Kaolin clay, Hong Kong marine deposit clay, and Fukakusa clay, and all
experiments achieved good prediction results. Mei et al. [15] started with the relationship between time
and settlement, and mathematically proved that the settlement curve under the linear load applied to
construction and embankment engineering is an “S” shape. On this basis, a new settlement prediction
model called ‘Poison model’, provides an effective predictive study of building and surface settlement.

The data-driven methods mainly refer to ML methods. Recent study shows that ML-based
forecasting strategies usually provide extremely high prediction results for time series data forecasting
problems [3,16]. Ocak and Seker [17] compared artificial neural network (ANN), support vector machine
(SVM), and Gaussian processes (GPs) on surface settlement forecasting calculation caused by earth
pressure balance machines (EPBMs). The experiment results show that SVM has the best performance.
Azadi and Pourakbar [18] used the finite element method to study the settlement of buildings around
the tunnel, and then used neural network to analyze various settlements, and finally obtained the
prediction conclusion of tunnel settlement. Moghaddasi et al. [19] utilized an imperialist competitive
algorithm (ICA)-enhanced ANN algorithm to predict the tunnel settlement and achieved outstanding
prediction results.

Ensemble or hybrid machine learning techniques are important solutions to raise the prediction
accuracy of traditional machine learning techniques [20–24]. Tang et al. [25] proposed a hybrid ensemble
learning framework to forecast nuclear energy consumption patterns. The experimental results show
that the hybrid ensemble learning framework outperforms the single LSSVR learning method. Li et
al. [26] introduced a wavelet-based ensemble learning framework for the short-term load forecasting
problem. Wavelet transform was combined with multiple ELMs to boost the forecasting performance.
Wang et al. [27] combined wavelet transform with convolutional neural network to forecast wind power
data as time series data. The results showed that the volatility and irregularity of the wind power can be
adaptively learned by the proposed hybrid learning method. In the current context of machine learning
technology, the most popular ensemble learning algorithm is Adaboost and its extensions, including
Adaboost.M1, Adaboost.M2 [28], Adaboost.R, Adaboost.R2 [29], and Adaboost.RT [30] algorithms.

3. Materials and Methods

Different from traditional forecasting problems, tunnel surface settlement forecasting has the
challenges/properties of a short-period of time data available, univariate training data, and various
hidden factors that are missing in the dataset. Existing works, such as [5], have shown the instability
of prediction models while only single type models are used. To improve the robustness of the final
prediction model, an integration of multiple models using ensemble learning algorithms is desired.

3.1. Selection of Base Prediction Models

In order to get an ensemble learner with better generalization performance and high prediction
accuracy, the individual base prediction models have to be effective themselves and independent from
each other. Nevertheless, completely independent models are hard to fit in actual tasks. For traditional
Adaboost algorithms the same type of base classifiers is utilized. The base models differ from each
other following different sample distribution in the training process. In this study, the original
Adaboost.RT algorithm was altered by selecting different types of base learners to obtain the final
ensemble generalized learning framework. According to our previous study on this topic [5], three
base classifiers, namely, BPNN, ELM, and SVR were selected to build the ensemble learner.

Among the three base classifiers, SVR has strong generalization ability, which can easily solve
small sample, over-learning, high-dimensional, and local minimum problems. BPNN has strong
adaptive abilities, self-organizing, self-learning, and non-linear mapping characteristics. It overcomes
the shortcomings of traditional feedback methods and has been used more widely in recent years.
The ELM is a single-layer neural network, which has a fast convergence rate, high prediction accuracy,
and strong generalization properties.
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3.2. The Proposed Method

The proposed Adaboost.RT algorithm is an improved algorithm based on Adaboost.R2 by
Solomatine and Shrestha [18]. They introduced a threshold in the Adaboost algorithm and compared
the training error of every sample with the threshold, after that the training set was divided into two
categories, and the regression problem was translated into a simple two-class problem, which can be
dealt with by the traditional AdaBoost algorithm. In the process of converting a regression problem
into a binary classification problem, AdaBoost.RT employs the absolute relative error (ARE) as an error
metric to differentiate samples into true/false predictions; while the ARE value of one testing sample is
higher than the threshold φ, the last predictor is recognized as the unsuitable prediction model and
the tested sample will be tested again using other prediction models. The traditional Adaboost.RT
algorithm integrates multiple base predictors of the same type and the threshold value φ is pre-set and
manually adjusted.

In this study, we altered the traditional Adaboost.RT algorithm using three different types of
base prediction models, namely, SVR, BPNN, and ELM. The initial weight or distribution of each
data sample was equivalent. If there are m training data samples, the initial weight of each sample is
1/m. The distribution of each data sample was updated after evaluating the prediction result of SVM
using the threshold value φ. The distributions were updated two more times for BPNN and ELM.
The threshold value φ of Adaboost.RT was adaptively calculated instead of pre-setting using Zhang
and Yang’s method [31].

The customized Adaboost.RT algorithm is elaborated in Algorithm 1. The overall flowchart is
depicted in Figure 1.

Figure 1. Overall flowchart of the customized Adaboost.RT algorithm integrating multiple models.
Abbreviations: SVR, support vector regression; BPNN, back-propagation neural network; ELM, extreme
learning machine.
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Algorithm 1. A customized Adaboost.RT algorithm for tunnel settlement forecasting

Input: Training dataset M, weak learning algorithm (base learner) l, integer T specifying number of
iterations (machines), threshold φ for differentiating correct, and incorrect predictions.

Initialization: Error rate εt, sample distribution Dt(i) = 1/m, machine number or iteration t = 1.
Iteration: While t < T:
Step 1: Calling base learner, providing it with distribution Dt(i) = 1/m.
Step 2: Building a regression model:

ft(x)→ y

Step 3: Calculating absolute relative error for each training example as

AREt(i) =

∣∣∣∣∣∣ ft(xi) − yi

yi

∣∣∣∣∣∣
Step 4: Calculating the error rate:

ft(x) : εt =
∑

i:AREt(i)>φ
Dt(i)

Step 5: Setting βt = (εt)h, where h = 1, 2 or 3 (linear, square or cubic).
Step 6: Updating distribution Dt(i)

Dt+1(i) =
Dt(i)

Zt
×

{
βt, i f AREt(i) ≤ φ
1, otherwise

where Zt is a normalization factor chosen such that Dt+1 will be a distribution.
Step 7: Adjusting φ according to the algorithm proposed in [31].
Step 8: Setting t = t + 1
Output: Outputting the ensemble learner:

fensemble(x) =

T∑
t=1

log( 1
βt
) ft(x)

T∑
t=1

log( 1
βt
)

4. Results

A real-world dataset that was collected by a tunnel construction company located in Zhuhai City,
China in 2015 was used. The data was recorded in chronological order for each collection point of
the subway tunnel construction (attached as Supplementary File: Table S1). It is a single-dimension
time series dataset. The tunnel ground surface points are indexed from 180 to 250 (see Supplementary
Table S1). Among the 70 ground surface points, nine representative points are selected along the tunnel
medial axis. The selected points are indexed: 181, 182, 184, 188, 189, 190, 210, 225, and 235.

Since the sample data is a one-dimension time series, one problem is that the sample dimension
is too low. A suitable rolling window size was selected to expand the original single-dimensional
data into multi-dimension data [5]. According to the dataset scales and experience, the best rolling
window size is between 1 and 20. In the actual experiments, the rolling window size finally lied at 3.
Then the original single-dimension sample data were expanded into three-dimension sample data,
thereby solving the problem of too low dimension. In addition, for each tunnel ground surface point,
5/6 of the records was utilized as training dataset. The remaining 1/6 of the records was treated as
testing data for verification purposes.

The data of subway tunnel surface settlement records from Zhuhai rail transit were selected
for simulation, and the threshold value was adjusted by bisectional method using multiple training
processes to obtain the final results.
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To show the superiority of the performance of the proposed Adaboost.RT framework integrating
multiple models, SVR, BPNN, and ELM were also developed for predicting the tunnel surface
settlement. Figures 2–7 show the forecasting results for surface point numbers 181, 184, 188, 189, 201,
and 220. The testing results are enlarged in subfigures.

Figure 2. Prediction results of tunnel surface point number 181. The testing results are enlarged in
the subfigure.

Figure 3. Prediction results of tunnel surface point number 184.

Figure 4. Prediction results of tunnel surface point number 188.
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Figure 5. Prediction results of tunnel surface point number 189.

Figure 6. Prediction results of tunnel surface point number 201.

Figure 7. Prediction results of tunnel surface point number 220.
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The testing computer’s configuration consists of an Intel Core (TM) i7-8700K CPU @ 3.70 GHz,
NVIDIA GeForce GTX1080 graphics card, 16 GB RAM, and 8 GB graphical memory with Python
version 3.7 (64-bit) and Keras version 2.0.3. Since all tested methods are machine learning models each
test was finished within one minute.

All results are shown in different colors. The results of the proposed ensemble learning algorithm
are shown in red and the actual data points are shown in black. The prediction results of the rest of the
compared methods are shown in other colors. It can be clearly seen from the figures that the method of
integrating multiple models with Adaboost.RT has an obviously high prediction accuracy.

The performance of each method was evaluated by three error measurement metrics, namely, root
mean squared error (RMSE), mean absolute error (MAE), and mean absolute percentage error (MAPE).
The formulas of the three error metrics are listed in Equations (1)–(3):

RMSE =

√√
1
n

n∑
i=1

(yi − yi′)2 (1)

MAE =
1
n

n∑
i=1

∣∣∣yi
′
− yi

∣∣∣ (2)

MAPE =
1
n

n∑
i=1

∣∣∣∣∣ yi
′
− yi

yi

∣∣∣∣∣× 100% (3)

where y’ is the predicted value and y is the actual value. The results of the three errors metrics (RMSE,
MAE, and MAPE) of different methods for tunnel surface settlement are listed in Table 1. For all cases,
the Adaboost.RT integrating multiple models had the best RMSE, MAE, and MAPE values according
to Table 1.

In this research, to further validate the performance and robustness of the proposed method,
a comparative experiment with traditional Adaboost.RT models integrating one type (SVR, BP or
ELM) of classifier was conducted (Table 2). For example, the Adaboost.RT + SVR classifier is built by
integrating three SVRs in the Adaboost.RT framework. In Table 2, the compared methods were also
trained using the same sets of data to get the final ensemble learner. The results show that the proposed
extended Adaboost.RT algorithm outperforms the traditional Adaboost.RT models integrating one
type of classifier.

From Tables 1 and 2, it is evident that the Adaboost.RT integrating multiple models method has
better performance compared with the rest of the compared methods. The reason for this is because
there exists a nonlinear relationship between time and tunnel settlement data, which can hardly be
captured by one single machine learning technique. In summary, the proposed Adaboost.RT algorithm
is a more appropriate method for tunnel surface settlement forecasting in the short-term compared to
traditional predictive models.



Sustainability 2020, 12, 232 9 of 11

Table 1. Prediction results of all tunnel surface point settlements by different methods.

Point
Proposed SVR BPNN ELM

RMSE MAE MAPE
(%) RMSE MAE MAPE

(%) RMSE MAE MAPE
(%) RMSE MAE MAPE

(%)

181 0.2641 0.2041 0.5488 0.4158 0.3684 0.9950 1.7444 1.6349 4.4094 2.1531 2.0166 5.4360
182 0.2945 0.2470 1.2853 0.3675 0.3113 1.6157 0.3807 0.3168 1.6391 0.3067 0.2548 1.3304
184 0.2001 0.1587 0.4796 0.3960 0.3653 1.1017 0.4342 0.4027 1.2115 0.5547 0.5169 1.5559
188 0.1953 0.1370 0.7826 0.3773 0.3071 1.6968 0.4038 0.3261 1.7950 0.2463 0.1985 1.1090
189 0.1597 0.1325 0.5083 0.1702 0.1484 0.5587 0.4949 0.4084 1.5241 0.3200 0.2825 1.0639
190 0.1375 0.0867 0.3058 0.1610 0.1075 0.3793 0.1455 0.0973 0.3448 0.1650 0.1166 0.4132
210 0.1530 0.1239 0.4873 0.3358 0.2157 0.8560 0.2274 0.1741 0.6898 0.2254 0.1786 0.7066
225 0.1821 0.1473 0.3585 0.1986 0.1587 0.3862 0.2822 0.2132 0.5193 0.2624 0.1974 0.4808
235 0.2619 0.1979 0.9103 0.3779 0.3272 1.4988 0.5462 0.4614 2.1122 0.2867 0.2498 1.1457

Abbreviations: RMSE, root mean squared error; MAE, mean absolute error; MAPE, mean absolute percentage error.

Table 2. Prediction results of all tunnel surface point settlements by different Adaboost.RT algorithms.

Point
Number

Proposed Adaboost.RT + SVR Adaboost.RT + BPNN Adaboost.RT + ELM

RMSE MAE MAPE
(%) RMSE MAE MAPE

(%) RMSE MAE MAPE
(%) RMSE MAE MAPE

(%)

181 0.2641 0.2041 0.5488 0.3901 0.3395 0.9179 0.4201 0.3616 0.9723 1.2479 1.1167 3.0138
182 0.2945 0.2470 1.2853 0.3082 0.2645 1.3765 0.3019 0.2629 1.3661 0.3305 0.2862 1.4857
184 0.2001 0.1587 0.4796 0.1943 0.1618 0.4901 0.2392 0.1847 0.5615 0.4215 0.3913 1.1773
188 0.1953 0.1370 0.7826 0.2193 0.1569 0.8887 0.2981 0.2406 1.3338 0.1976 0.1475 0.8324
189 0.1597 0.1325 0.5083 0.2609 0.2131 0.8072 0.3616 0.2963 1.1064 0.3674 0.3031 1.1320
190 0.1375 0.0867 0.3058 0.1700 0.1168 0.4126 0.1569 0.1190 0.4271 0.1424 0.0933 0.3305
210 0.1530 0.1239 0.4873 0.2158 0.1829 0.7137 0.1884 0.1538 0.6063 0.1665 0.1410 0.5518
225 0.1821 0.1473 0.3585 0.1969 0.1565 0.3811 0.2090 0.1620 0.3945 0.2142 0.1649 0.4011
235 0.2619 0.1979 0.9103 0.3590 0.3061 1.3999 0.3327 0.2865 1.3114 0.2701 0.2362 1.0834

Abbreviations: RMSE, root mean squared error; MAE, mean absolute error; MAPE, mean absolute percentage error.
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5. Conclusions, Limitations, and Future Works

This study proposed a novel extended Adaboost.RT algorithm to forecast ground surface settlement
in tunnel construction processes. The proposed extended Adaboost.RT algorithm integrates different
types of base classifiers instead of a single type of classifiers (as in the traditional way). The base
classifiers were selected according our previous study on the same dataset. In the training phase,
the Adaboost.RT algorithm was used to improve different type models by distribution that were
constantly being updated.

Comprehensive experiment results were shown in Section 4 to demonstrate the effectiveness
of the proposed ensemble learning framework. First, we compared the proposed framework with
individual machine learning classifiers, including SVR, BPNN, and ELM. Next, more experiments were
carried out to compare the proposed framework with traditional ensemble learning approaches, (i.e.,
the Adaboost.RT framework integrating a single type of classifiers). The performance of the proposed
ensemble learning framework is the best among all compared methods.

The main limitation of this study is that only one tunnel settlement dataset is tested. The dataset,
as we attached to this manuscript as a Supplementary File (Table S1), contains only 70 surface points data.
Out of the 70, we selected nine representative points along the tunnel medial axis to show the prediction
results of the proposed Adaboost.RT forecasting framework. As one of the future works, the proposed
method will be applied to more real-world tunnel settlement dataset to verify the robustness. In addition,
more extensions of the Adaboost algorithms will be implemented and evaluated.

Supplementary Materials: The following are available online at http://www.mdpi.com/2071-1050/12/1/232/s1.
Table S1: Tunnel settlement data collected from Zhuhai subway construction project in China.
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