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Abstract: This study provides a scientific assessment of water scarcity in the Beijing-Tianjin-Hebei
(BTH) city region and investigates its restrictive effects on urban economic development by quantifying
economic loss caused by water scarcity based on an input–output optimization model. The results show
that the water scarcity reflected by shadow prices has significant sectoral and regional heterogeneities.
Southern Hebei faces the most severe water scarcity in the BTH city region and the situation is
worsening. Water scarcity is shown to have a negative impact on the economy of the BTH city
region that amounts to CNY 270.02 billion. Hebei has the largest potential economic loss caused by
water scarcity, especially in southern Hebei, the potential GDP (gross domestic product) of which
is decreased by 6.2%. This study also points out that the water scarcity in the BTH city region is
underestimated in terms of actual water prices, and the scarcity of agricultural water use is mostly
underestimated. The results contribute to a deeper understanding of the restrictive impact of water
scarcity on regional economic development, and thus provide a scientific reference for policymaking
in the BTH city region.

Keywords: water scarcity; shadow price; input–output optimization model; potential economic loss;
restrictive effect; BTH city region

1. Introduction

Given the tremendous increase in water demand, also accompanied by population expansion,
rapid urbanization, as well as economic booms, the issue of water scarcity has intensified and is
now jeopardizing food security, regional stability, and sustainable development in many areas [1–4].
Currently, an estimated 3.6 billion people (almost half of the global population) live in areas that
may face water scarcity for at least one month each year, and this number may increase to around
4.8–5.7 billion by 2050 [5]. In this context, a major challenge for governments is to enable the supply
of water for domestic consumption in urban communities located in semi-arid environments, such
as California, Brazil, the Middle East, and northern China [6], where the economic impacts of water
scarcity are increasing [7,8]. China is, thus, a country under great pressure from water shortages, with
its per capita occupancy of water resources being 2074.5 m3 in 2017 [9], less than a quarter of the world
average level. The Beijing-Tianjin-Hebei (BTH) city region in northern China faces the most severe
water shortages [10].
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An assessment of water scarcity is fundamental for water management, since it allows policymakers
to become aware of the severity of the problem [11,12]. Amber [13] and Pedro-Monzonís [14] provided
basic reviews of water scarcity and drought from different perspectives to assess the state of the water
recovery system to better manage water resources under water scarcity conditions and to help decision
makers and stakeholders select the most appropriate indicators. Kummu [15] analyzed the temporal
development of physical, population-driven water scarcity using population data derived from the
History Database of the Global Environment (HYDE) dataset. Hoekstra [16] assessed freshwater
scarcity using the blue footprints of 405 river basins over the period of 1996–2005, showing that for 201
basins with 2.67 billion inhabitants there was severe water scarcity during at least one month of the
year. Gain [17] provided a comprehensive dynamic assessment of the water scarcity risks for the Lower
Brahmaputra river basin, with the results indicating that the risk of water shortage was expected to
increase slightly and fluctuate significantly with the change of the danger signal.

Water price is an effective indicator of water scarcity. Theoretically, water price should be
determined based on both the supply and demand of water resources under perfect market conditions,
and thus measure the real value of water resources. However, in reality, water price usually deviates
from its real value, since it is top-down administratively determined, rather than on the market [18].
As such, the water shadow price is defined as the marginal contribution of unit water resources to social
and economic development after the optimized allocation, which makes it a scientific and reasonable
measure of the real value and scarcity of water resources [19]. The water shadow price is typically
calculated using linear programming techniques [20,21]. Liu [22] calculated the shadow prices of
industrial and productive water in nine river basins using input–output tables for water conservancy in
combination with linear programming techniques, pointing out that the shadow price was a valuable
tool for setting reasonable water prices and establishing a water market in China. Input–output models
can, thus, fully consider the relationships between the various sectors but cannot calculate shadow
prices in consecutive years due to data limitations.

As such, if we want to examine the shadow prices of consecutive years, Data Envelopment
Analysis (DEA) is a better choice [23]. For example, Shen [24] estimated the shadow price and
technical efficiency of agricultural water by a stochastic nonparametric envelopment of a data model
(StoNED), which combined DEA with the Stochastic Frontier Approach (SFA). Wang [25] used the
Global Non-radial Distance Function (GNDF) to measure the shadow price of industrial water during
2004–2012. Recently, the distance production function has become widely used in shadow price
calculations. Zhang [26] and Wang [27], respectively, derived the shadow prices of China’s carbon
emissions at provincial levels and industrial levels by using the directional output distance function.
Tang [28] and Färe [29] used the directional output distance function to calculate the shadow price of
agricultural sectors in China and the United States. This method allows the production modeling of a
multi-input and multi-output technology when the prices of some outputs or inputs are not available,
or alternatively when the prices are available but cost, profit, or revenue representations are precluded
because of the possibility of violations of the required behavioral assumptions of cost minimization
or profit maximization [30]. However, existing studies on shadow price for production water at the
city level and the shadow price of water for the service sector are still rare. In addition, it is also hard
to calculate the shadow price of water for the three major industries (i.e., agriculture, industry, and
service sector) in a region simultaneously.

Given the conflict between limited water endowment and the rising water demand driven
by socio-economic development, the restrictive impact of water resources has attracted increasing
attention. Liu [31] analyzed the impact of water resources on regional economic growth based on
the Cobb-Douglas production function, and found that the loss of economic growth caused by water
scarcity was mainly due to industrial structure, technological progress, water saving, and scarcity
of water resources. To measure the constraint effect of water scarcity on economic growth, some
scholars calculated the “drag effect” of water use on economic growth by embedding water as a
production resource into the Cobb-Douglas production function. The Cobb-Douglas production
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function, including natural resources and land, constructed by Romer [32] revealed the differences
between unlimited and limited economic growth due to water scarcity [33–35]. Romer [32] argued that
the growth drag caused by resources and land limitations was the difference between the growth in a
hypothetical case of equilibrium development and that in the case of these limitations.

Similar analytical thinking is often used in examining the effects of specific policies and actions
on society and the economy by comparing various scenarios under specific policies and actions with
baseline scenarios [36]. The computable general equilibrium (CGE) model, combined with scenario
analysis, is one of the most commonly used methods [8,37–41]. Bruvoll [42] applied a dynamic CGE
model to measure the environmental constraints of economic growth by comparing the outcomes
of the feedback model with the baseline model. Qin [40] used a multi-region CGE model to analyze
the effectiveness of the measures and policies used for mitigating North China’s water scarcity with
respect to three different groups of scenarios. The findings suggested that a reduction in groundwater
use would negatively affect economic growth and household incomes. Based on a CGE model,
Berrittella [36] investigated the role of water scarcity in the context of international trade, and the
results proved that restrictions in water supply would change the trade patterns of agriculture and
virtual water. Additionally, Li [43] combined the dynamic CGE model with the bio-economic model
(BEM) to study the economic impact of a total water use control policy in the Heihe river basin, which
was proven to have a limited negative impact on regional economic growth. Moreover, there are also
studies reflecting the idea of equilibrium and investigating the economic impact of water resources
using systematic methods [44,45].

The existing studies have deepened our understanding of the impacts of water resources on
regional economic development, but some gaps should be noted. In most studies applying statistical
methods to measure the impact of water constraint, the inter-sectoral linkages in the economic system
are not fully considered. Although the CGE and social accounting matrix (SAM) can incorporate
inter-sectoral linkage, they are merely applicable to analysis at large scales, such as the national
or provincial levels, while the input–output model fully embodies the interconnections across all
sectors in the economic system and it is applicable to city-level analyses. Considering the significant
discrepancies between the 13 cities of the BTH city region in terms of economic levels and water
resource endowments, it is necessary to conduct a city-level analysis on how water scarcity impacts
urban economic growth.

Therefore, this study aims to address the above literature gaps using a directional output distance
function and the input–output model. The objectives of this study are: (i) scientifically evaluating the
scarcity of water for production in the 13 cities in the BTH city region by calculating shadow prices;
and (ii) evaluating the potential economic loss caused by water scarcity in the cities of the BTH city
region. The results of this study contribute to a deeper understanding of the water scarcity in the BTH
city region and its restrictive impact on urban economic growth, and thus provide a scientific reference
for policymaking in the BTH city region.

2. Background of BTH

The BTH city region is composed of 13 cities, including Beijing, Tianjin, and 11 cities in Hebei
(Figure 1). The region lies at the core of China’s Circum-Bohai-Sea region, which occupied 1.9% of
China’s territory, had 8.09% of the nation’s population, and produced 9.77% of China’s GDP, as of
2017 [9]. The past two decades have witnessed rapid economic growth and sustained population
expansion in the region. During 2000–2017, the total GDP of the BTH city region increased from
CNY 995.86 billion to 8058.05 billion, for an average annual growth rate of 13.06%. Meanwhile, its
total population increased from 90.39 million to 112.47 million, with an average annual growth rate
of 1.4% [9,46]. However, the region is extremely water scarce, with average annual water resources
amounting to only 18.11 billion m3, that is, 0.63% of the national total water resources. The per capita
occupancy of water resources in the region is 161.02 m3/capita per year, only 7.76% of the national
average level, and far lower than the international standard water shortage limit of 1000 m3/capita per
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year [8]. Additionally, the average proportion of agricultural water use is as high as 75%, which is not
favorable for regional water conservation [47–49]. Worse, the extent of water scarcity in the region is
usually underestimated, resulting in large economic loss and waste of water resources. In this context,
it is necessary to scientifically evaluate the levels of water scarcity in the cities of the BTH city region
and determine to what extent water scarcity restricts urban economic development.

There is a distinct heterogeneity amongst the cities in the BTH city region in terms of economic
level and water resource constraints (Figure 1, Table 1). Beijing is the most economically developed,
with the highest GDP and income per capita, followed by Tianjin and Hebei. It is worth noting
that the economic levels and water resources are discrepant, even inside Hebei. Cities (except for
Baoding) in central Hebei generally have the highest economic levels, while their water resources
are scarcest. Specifically, the water scarcity in Cangzhou is extreme, with water resources of merely
86.6 m3 per capita. Except for Shijiazhuang, the other three cities in southern Hebei (i.e., Handan,
Xingtai, and Hengshui) have both low economic levels and water resources endowments, with GDPs
and income per capita below the average province level and water resources per capita below 200 m3.
The water resource constraint in the cities in northern Hebei is lightest, with water resources per capita
mostly over 500 m3, much higher than any other cities in the BTH city region. Different levels of
economic development and water resources have led to large differences in water use between cities.
Due to limited data on sub-industries, we calculate the water use conditions of different sectors for
2012, as listed in Table 1. Beijing has the highest per capita residential water use (34.1 m3/person)
and per capita services water use (43.2 m3/person) and the lowest per capita agricultural water use
(44.9 m3/person) and per capita industrial water use (23.7 m3/person). The per capita agricultural
water use (82.8 m3/person) in Tianjin is significantly lower than that in the cities of Hebei, while the per
capita services water use (7.9 m3/person) is higher than that in Hebei. Although the per capita water
use gap of the various industries is relatively small inside Hebei, the per capita agricultural water use
(201.7 m3/person) in southern Hebei is higher and the per capita water consumption in other sectors is
lower. Given the non-negligible city-level differences, it is necessary to conduct a city-level analysis on
water scarcity and its restrictive impact on urban economic growth.
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Table 1. The economic and production water use condition in the BTH city region (Year 2016).

Regions/Cities Economic Condition Water Endowment
Condition Water Use Condition

GDP Per
Capita

(CNY/person)

The Per Capita
Net Income of

Rural Residents
(CNY)

The Per Capita
Disposable

Income of Urban
Residents (CNY)

Total Water
Resources

(108m3)

Water
Resources
Per Capita

(m3/person)

Residential
Water Use
Per Capita

(m3/person)

Agricultural
Water Use
Per Capita

(m3/person)

Industrial
Water Use
Per Capita

(m3/person)

Services
Water Use
Per Capita

(m3/person)

Beijing - 11813.2 22310.0 57275.0 35.1 161.5 34.1 44.9 23.7 43.2

Tianjin - 11449.3 20076.0 37110.0 18.9 121.0 25.4 82.8 37.9 7.9

Northern
Hebei

Zhangjiakou 3312.9 9241.0 26069.0 17.8 402.3 22.0 182.4 31.8 2.3
Chengde 4074.4 8736.0 24856.0 24.0 679.5 30.3 181.1 40.2 7.7

Qinhuangdao 4359.2 11621.0 30348.0 21.5 694.8 29.6 197.6 51.1 7.6
Sub-total/average 3693.7 8988.5 25462.5 41.8 540.9 26.8 186.2 39.8 5.5

Central
Hebei

Langfang 5893.8 14286.0 34633.0 7.1 153.9 28.7 150.5 33.5 6.0
Cangzhou 4723.2 11340.0 28605.0 6.5 86.6 22.3 136.4 27.7 1.8
Tangshan 8102.1 15023.0 33725.0 22.4 285.6 32.5 207.2 79.0 14.2
Baoding 2988.5 11612.0 25680.0 24.8 213.2 22.2 214.1 23.3 4.6

Sub-total/average 5426.9 13065.3 30660.8 60.8 184.8 25.8 184.8 39.7 6.5

Southern
Hebei

Shijiazhuang 5496.7 12345.0 30459.0 32.0 296.7 28.7 224.4 34.6 7.1
Handan 3540.6 12153.0 26603.0 17.9 188.6 23.4 163.5 32.8 1.7
Xingtai 2699.5 10006.0 23913.0 25.6 349.7 23.0 193.8 27.4 0.8

Hengshui 3188.8 10069.0 23787.0 6.5 146.0 19.6 306.1 29.2 2.4
Sub-total/average 3731.4 11143.3 26190.5 82.0 245.2 24.5 210.7 31.7 3.4

Regional Total/Average 5606.9 13099.8 31059.6 238.6 257.0 27.1 152.2 34.1 12.7

Data source: Hebei economic yearbook 2017 [50]; Water resources bulletin of Beijing, Tianjin, and Hebei 2012, 2016 [47–49].



Sustainability 2019, 11, 2452 6 of 23

3. Data and Methodology

3.1. Data

The calculation of the shadow price of water resources includes input variables (capital, labor,
and water use) and an output variable (industrial value added). Considering data availability, the
analysis period is 2000–2016. Since the shadow prices of water resources in this study are categorized
into agricultural, industrial, and service sector water shadow prices, the above four variables also have
to be categorized by the three industries. Furthermore, the labor input is represented by the number
of employees in each sector and capital data are estimated based on existing studies on the capital
stock estimation of industries [51–53]. The basic data on the above three input variables are derived
from the Beijing Statistical Yearbook, Tianjin Statistical Yearbook, and Hebei Economic Yearbook for
2001–2017 [54–56]. Water resource inputs are represented by direct water withdrawal from each sector,
which is estimated based on data from the Beijing Water Resources Bulletin, Tianjin Water Resources
Bulletin, and Hebei Water Resources Bulletin for 2000–2016 [48–50]. Descriptive statistics of these
variables are shown in Table 2.

Table 2. Descriptive statistics of input and output variables in calculation of shadow price.

Sectors Variable Unit Maximum Minimum Mean Standard Deviation

Agriculture

Capital Billion CNY 16.48 0.12 3.06 34.36

Labor Ten thousand
people 298.21 45.18 131.54 56.90

Water Billion ton 2.87 0.40 1.32 6.06

Value added Billion CNY 29.30 2.66 11.73 65.04

Industry

Capital Billion CNY 179.06 2.12 35.41 362.02

Labor Ten thousand
people 268.58 16.04 92.32 61.46

Water Billion ton 1.05 0.07 0.28 1.88

Value added Billion CNY 105.17 5.87 32.33 280.24

Services

Capital Billion CNY 360.57 2.43 43.56 610.55

Labor Ten thousand
people 1045.38 50.35 195.62 190.52

Water Billion ton 1.01 0.02 0.16 2.08

Value added Billion CNY 420.16 7.52 53.62 862.01

The input–output optimization modeling for the BTH city region is built based on the 2012
input–output tables of the 13 cities in the BTH city region [56–58].

3.2. Methodology

3.2.1. Calculation of Shadow Price for Production Water

This paper uses the distance output function to calculate the shadow price of production water.
The theoretical model of shadow price is based on existing research studies [23,59], and the specific
process is listed in the Appendices A and B.

Two techniques can be used to estimate the directional distance function: the non-parametric
and the parametric approaches. The non-parametric one, namely DEA, aims to construct a piecewise
frontier to encompass all DMUs (Decision Making Units). The parametric approach needs to pre-specify
a function form and fit the data. This study adopts the commonly used quadratic form to represent the
model empirically. A parametric specification is adopted considering its advantages of differentiability
and flexibility, which enables us to easily derive the shadow price.
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Specifically, the shadow price is usually calculated based on the linear mathematical programming
method [19,20], but this is only a hypothesis. At present, many scholars have begun to break
this limitation when solving shadow prices, and began to estimate the shadow price by means
of translog production function or higher-order function [25–28]. As Färe [59] suggested, the
quadratic representation over-performs compared to translog parameterizations. Following similar
studies [25–28], we set the directional distance function to quadratic, with the direction vector of
(gy, gw) = (1,−1). This means that while other inputs remain unchanged, output increases and water
use decreases can be achieved at the same time. Assuming the number of the cities is k (k = 1, 2, · · · , 13)
and the number of years is t (t = 1, · · · , 17), the quadratic directional distance function for city k in
year t is given as:

→

Dt
k(x

t
k, yt

k, wt
k; 1,−1) = α+

2∑
n=1

αnxt
nk + β1yt

k + γ1wt
k + xt

nk

2∑
n=1

αnn′xt
nkxt

n′k +
1
2β2(yt

k)
2
+ 1

2γ2(wt
k)

2

+
2∑

n=1
ηnxt

nkwt
k +

2∑
n=1

δnxt
nkyt

k + µyt
kwt

k

(1)

To estimate the parameters in the above model, we use the linear programming algorithm of
Aigner [60].

Algorithm 1

min
∑
t

∑
k

→

Dt
k(x

t
k, yt

k, wt
k; 1,−1)

s.t.

(1)
→

Dt
k(x

t
k, yt

k, wt
k; 1,−1) ≥ 0

(2)
→

Dt
k(x

t
k, yt

k, 0; 1,−1) ≤ 0

(3) ∂
→

D
∂w ≥ 0, ∂

→

D
∂y ≤ 0, ∂

→

D
∂x ≥ 0

(4)β1 − γ1 = −1,β2 = γ2 = µ, δn = ηn
(5)αnn′ = αn′n

The objective function is to minimize the sum of the distance deviations from the frontier.
Restriction (1) ensures that the production set is feasible. Restriction (2) imposes the attribute of
“null-jointness.” In other words, in the extreme case of water resource consumption being zero, any
non-negative output is not feasible. Restriction (3) guarantees a convex set. Restrictions (4) and (5)
impose the translation and symmetry properties, respectively.

According to Färe [28], the price of output is generally considered as py = 1, so the expression of
the specific shadow price of water resources in this study is:

pw = −
γ1 + γ2w +

∑2
n=1 ηnxn + µy

β1 + β2y +
∑2

n=1 δnxn + µw
(2)

3.2.2. Estimation of Economic Loss Caused by Water Scarcity

In this study, the restrictive impact of water scarcity on city economic growth is measured by the
potential economic loss caused by water scarcity, which can be obtained by comparing the optimized
GDP based on the input–output optimization model, including and excluding water constraints.

In the input–output optimization model, it is assumed that capital and labor are not constrained,
which may have a certain impact on the measurement of the impact of water resources on GDP.
However, the BTH city region is one of the most economically viable regions in China. Its capital
and labor are abundant and the water constraint is obvious. Therefore, the effects of water resource
constraints on the economic constraints measured by the input–output optimization model will not
be large. In addition, the implementation of the CGE model has higher data requirements, which is
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difficult to obtain for Hebei’s cities. In this case, the input–output optimization model is a better choice
because it can not only describe the relationships between industries in the region, but also estimates
the impact of water shocks on the economy.

The input–output model is developed based on the input–output tables of the 13 cities of the BTH
city region in 2012. The objective of the optimization model is to maximize the GDP of the target city,
and the constraints include input–output constraints, constraints of the sectoral output in each city,
and industrial water constraints. The detailed setting of the objective and constraints are as follows.

The objective is to maximize the urban economic benefit reflected by GDP. In the model setting,
the relationship between sectoral output and water use is assumed as stable and can be reflected by the
industrial water use coefficient. Therefore, maximizing urban GDP is achieved through the adjustment
of the sectoral production scales in each city. The function for maximizing urban GDP is as follows:

max
13∑

R=1

3∑
i=1

xR
i vR

i (3)

where xR
i is the output of sector i in city R and vR

i the value added rate of sector i in city R, which is the
amount of added value created from one monetary unit of production.

(1) Input–Output Constraints

The input–output model is an analytical framework that represents the monetary transactions
between economic sectors, and therefore, their interdependence on the economic system [61]. Its basic
mathematical structure consists of n linear equations depicting how the production of an economy
depends on inter-sectoral relationships and final demand:

xi =
∑n

j=1
xi j + yi, (4)

where n is the number of economic sectors, xi is the total output of sector i, xi j denotes the inter-sectoral
monetary flows from sector i to sector j, and yi is the final demand of sector i. This equation can be
rewritten to include the direct input coefficient ai j, which indicates the amount of input from sector i
required to increase by one monetary unit the output of sector j, as:

xi =
∑n

j=1
ai jx j + yi, (5)

where
ai j

xi j

x j
, (6)

Therefore, for each city, the input–output constraint can be expressed as:∑n

j=1
ai jx j + yi ≤ xi, (7)

(2) Constraints of Sectoral Output in Each City

To avoid dramatic fluctuations in sectoral production, the changes of sectoral outputs of each
sector are assumed to be confined within a certain range:

xR
i ≤ xR

i ≤ xR
i , (8)

where xR
i and xR

i are the lower and upper limits of output in sector i in city R, respectively, obtained
based on the average change rate of the sectoral output in each city from 2007 to 2016 [62].

(3) Agricultural Water Constraints
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The optimal agricultural water brought about by the industrial changes in each city should not
exceed the actual agricultural water.

aR
w1xR

1 ≤WR
1 δ

R
1 , (9)

where aR
w1 is the agricultural water use coefficient in city R, xR

1 denotes the agricultural output in city
R, and δR

1 indicates the change coefficient for agricultural water, which is determined by the shadow
price. The change coefficient is lower in areas with severe water shortage, which means that the water
constraint is stronger than the actual one. Conversely, the change coefficient is higher in areas where
water shortage is not serious, but it cannot exceed 1, which means that the upper limit of agricultural
water is the actual water use. WR

1 indicates the actual water use in the agricultural sector of city R, the
data coming from the Beijing, Tianjin, and Hebei Water Resources Bulletin (2012) [47–49].

(4) Industrial Water Constraints

The optimal industrial water amount brought about by the industrial changes in each city should
not exceed the actual industrial water:

aR
w2xR

2 ≤WR
2 δ

R
2 , (10)

where aR
w2 is the industrial water use coefficient in city R, xR

2 denotes the industrial output in city R,
and δR

2 indicates the change coefficient for industrial water, which is determined by the shadow price.
Similar to the agricultural sector, the change coefficient ranges from 0 to 1, reflecting the degree of
adjustment of water scarcity to the upper limit of water use. In areas where water scarcity is more
severe, the change coefficient is lower, and conversely, the change coefficient is higher. WR

2 indicates
the actual water use in the industrial sector in city R, the data coming from the Beijing, Tianjin, and
Hebei Water Resources Bulletins (2012) [47–49].

(5) Service Sectors Water Constraints

The optimal service sector water amount brought about by the industrial changes in each city
should not exceed the actual service sectors water:

aR
w3xR

3 ≤WR
3 δ

R
3 , (11)

where aR
w3 is the service sectors’ water use coefficient in city R, xR

3 denotes the industrial output in city
R, and δR

3 indicates the change coefficient for service water, which is determined by the shadow price,
whose range is from 0 to 1, thus reflecting the degree of adjustment of water scarcity to the upper limit
of water use. In areas where water scarcity is more severe, the change coefficient is lower, and the
change coefficient is higher in opposite circumstances. WR

3 indicates the actual water use in the service
sectors of city R, and is determined by deducting “residential water for residents” from “domestic
water” from the Beijing, Tianjin, and Hebei Water Resources Bulletins (2012) [47–49].

(6) Total Water Use Constraints

The summation of the water consumption of each sector in each city should not exceed the actual
total production water use of the entire BTH city region.

13∑
R=1

3∑
i=1

WR
i ≤W, (12)

where W is the actual total production water use of the BTH city region.
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4. Results

4.1. Water Scarcity in the BTH City Region Based on an Assessment of Water Shadow Price

The values of the parameters in the distance function are shown in Table 3, where all the input
and output variables are normalized by their mean values to avoid convergence [60]. In a first step,
we test whether our estimation of technical efficiency meets the condition of null-jointness. That is, if
D(x, y, 0; 1,−1) < 0, then observed (y, 0) are not P(x). For the entire samples of agriculture, industrial,
and service sectors, the property of null-jointness is met by above 90% of observations (agriculture,
industrial, and service sectors are 95%, 92%, and 91%, respectively), which shows that the results of
parameter estimation have good applicability. The shadow prices of production water use are obtained
for each city from 2000 to 2016 by inputting the parameters into the shadow price expressions.

Table 3. The solutions of the parameters for the distance function.

Parameters Agriculture Industry Services

α −0.0680 0.0341 −0.1223
α1 0.0281 0.0256 0.0000
α2 0.0000 0.0000 0.2916
β1 −0.2390 −0.4290 −0.3369
γ1 0.7610 0.5710 0.6631
α11 −0.0217 −0.0225 −0.0001
α12 0.0000 0.0000 0.0004
α21 0.0000 0.0000 0.0004
α22 0.0000 0.0000 −0.2091
β2 −0.0771 0.0081 −0.0972
γ2 −0.0771 0.0081 −0.0972
η1 0.0359 0.0692 −0.0001
η2 0.0000 0.0000 0.1313
δ1 0.0359 0.0692 −0.0001
δ2 0.0000 0.0000 0.1313
µ −0.0771 0.0081 −0.0972

The shadow prices of production water use in the BTH city region show prominent sectoral
variations (Figure 2). Generally, the shadow price of agricultural water use is the lowest, with the
average price ranging from 1.8 CNY/m3 to 3.8 CNY/m3 during 2000–2016. The shadow price of
industrial water use is significantly higher, from 7.3 CNY/m3 to 13.1 CNY/m3 during 2000–2016.
The shadow price of service water use is the highest, from 11.6 CNY/m3 to 14.9 CNY/m3 during
2000–2016. The sectoral variation of shadow prices may be relevant for the following reasons. First, the
cost to make the water use meet the requested standard varies by sector. It is more expensive to meet
the high standard of water quality in service sectors, since they are closely related to human health and
life security, while it is much cheaper for agricultural water use. Second, marginal revenue varies by
sector. Generally, marginal revenue in service sectors is higher than in industrial sectors, with the one
in the agricultural sector being the lowest.
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Figure 2. The average shadow prices of the production water use in the three industries in the BTH
region (2000–2016).

There are significant spatial differences in the shadow prices of production water in the BTH
city region in 2016 (Figure 3). The cities in southern Hebei (i.e., Shijiazhuang, Handan, Xingtai, and
Hengshui) have higher shadow prices of production water, with the shadow prices of water use in
agriculture, industrial sectors, and service sectors exceeding the average level in the entire BTH city
region. The shadow price of agricultural water use in Beijing is 2.8 CNY/m3, the lowest in the region,
whereas those of agricultural water use in the cities of southern Hebei are all above 4.0 CNY/m3, higher
than all the other cities in the region. The cities in northern Hebei have the lowest shadow prices of
industrial water use, especially Qinhuangdao, where the shadow price of industrial water use is 9.8
CNY/m3, 38% lower than the highest ones in Shijiazhuang and Xingtai in southern Hebei. The shadow
prices of service water use in most cities in northern Hebei, Beijing, and Tianjin are lower than that in
southern Hebei. The exception is Tangshan, whose shadow price of service water use is 16.5 CNY/m3.
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Figure 3. Shadow prices of production water use in the cities of the BTH city region (2016).

The trends of the changes in shadow prices for production water use of the three industries
during 2000–2016 are investigated. For agricultural water use, all cities except Beijing show steady
upward trends in their shadow prices. The shadow price of agricultural water use in Beijing stopped
its ascending trend and started declining from 2014 (Figure 4). The shadow price of industrial water
use fluctuated but showed an overall increasing trend, with Cangzhou increasing fastest, followed by
cities in southern Hebei (Figure 5). As for the shadow price of service water use, Beijing and Tianjin
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show declining trends, while all cities in Hebei show increases at different degrees, with the southern
region rising fastest (Figure 6).

The results for the shadow prices of production water use in the BTH city region indicate that: (1)
water scarcity is the most severe in southern Hebei in the BTH city region; (2) water became increasingly
scarce in most sectors and most cities in the BTH city region during 2000–2016, especially in southern
Hebei; and (3) the water scarcity in Beijing has been improved to some extent in the agriculture and
service sectors in recent years, although there is still a long way to go to solve its water shortage.
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Figure 4. The shadow price of agricultural water use in the BTH city region (2000–2016).
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4.2. Potential Economic Loss of Water Scarcity in the BTH City Region

As previously mentioned, the difference between the optimized GDP from the optimization
model including and excluding water resource constraints is considered to be the potential economic
loss caused by water scarcity. The results of the comparison between the optimized GDP from the
optimization model, with and without water constraints, are shown in Table 4. For the entire BTH city
region, the potential economic loss resulting from the water constraint is CNY 270.02 billion. In other
words, water scarcity has a negative impact of CNY 270.02 billion on the economy of the BTH city
region. The restrictive impact of water scarcity on the economy shows significant regional variations.
The GDPs of two municipalities, Beijing and Tianjin, are decreased by water scarcity by 4.95% and
2.59%, respectively. The restrictive impacts of water scarcity on economic growth in Hebei are much
larger than those in Beijing and Tianjin, with the potential GDP decreased by 5.53%. The potential
GDP in southern Hebei will decrease by 6.2% due to water scarcity, with Handan showing the highest
potential GDP decline of 6.8%. Central and northern Hebei register economic losses in potential GDP
of 5.67% and 3.1% due to water scarcity, with Baoding and Chengde having the highest potential GDP
declines of 6.64% and 4.56%, respectively. The difference in economic losses caused by water scarcity
between cities can be partially explained by the industrial structure. The proportions of agricultural
added value to regional GDP in Beijing and Tianjin are rather low, with both around 1%, while in each
city in Hebei they are around 10%. The large-scale agricultural production in Hebei will inevitably
lead to a surge in water demand, and thus reduce water use in industry and services and increase
economic loss.

At the sectoral level, the potential economic losses caused by water scarcity in the industrial and
service sectors are far higher than in agriculture (Table 5), which is due to agriculture’s characteristics
of low added value and high water use. Specific to sub-regions and cities, the potential economic
losses of the three major industries in Hebei are higher than those in Beijing and Tianjin. It is worth
mentioning that the potential economic losses caused by water scarcity are also heterogeneous inside
Hebei. The potential economic losses of agriculture in central and southern Hebei are greater than that
of the northern Hebei. Handan shows the largest economic loss of agriculture, followed by Tangshan,
Baoding, Shijiazhuang, and Changzhou. Southern Hebei has the largest potential industrial loss,
followed by central and northern Hebei. The city with the largest industrial loss is Shijiazhuang.
Additionally, the potential industrial loss of Tangshan, Baoding, and Handan are also obvious. Central
Hebei has the greatest potential economic loss of the service sector, followed by its southern and
northern regions. Tangshan registers the largest economic loss in the service sector, and the potential
economic losses in Changzhou, Baoding, Shijiazhuang, and Handan are also conspicuous.
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Table 4. Comparison of optimized GDPs, with and without water constraints (billion CNY).

Cities/Regions
Optimal GDP

with Water
Constraints

Optimal GDP
without Water

Constraints

Potential Decline
in Optimal GDP

(%)

Beijing 1795.38 1884.33 4.95%
Tianjin 1288.83 1322.24 2.59%
Hebei 2668.59 2816.26 5.53%

Northern Hebei

Zhangjiakou 122.32 126.45 3.38%
Chengde 117.26 122.61 4.56%

Qinhuangdao 113.12 114.57 1.28%
Sub-total 352.70 363.63 3.10%

Central Hebei

Langfang 175.32 182.13 3.88%
Cangzhou 280.20 295.54 5.47%
Tangshan 584.40 618.65 5.86%
Baoding 271.00 288.98 6.64%
Sub-total 1310.92 1385.30 5.67%

Southern Hebei

Shijiazhuang 448.11 475.96 6.21%
Handan 304.21 324.90 6.80%
Xingtai 152.35 160.98 5.67%

Hengshui 100.30 105.47 5.16%
Sub-total 1004.97 1067.32 6.20%

Regional total 5752.80 6022.82 4.69%

Table 5. The comparison of added value of each industry, with and without water resource constraints
(billion CNY).

Cities/Regions

Agriculture Industry Services

Water
Constraint

Without
Water

Constraint

Water
Constraint

Without
Water

Constraint

Water
Constraint

Without
Water

Constraint

Beijing 14.5 15.8 337.1 350.2 1443.8 1518.3

Tianjin 16.6 17.7 612.3 620.2 659.9 684.4

Heibei 312.8 327.0 1268.5 1319.0 1087.3 1170.3

Northern
Hebei

Zhangjiakou 19.5 20.1 44.2 45.3 58.6 61.0
Chengde 17.6 18.3 55.4 57.7 44.3 46.6
Qinhuangdao 14.4 14.6 37.6 38.3 61.0 61.7
Sub-total 51.5 53.0 137.2 141.4 163.9 169.3

Central
Hebei

Langfang 19.0 19.9 82.5 84.4 73.8 77.8
Cangzhou 30.9 32.4 133.8 137.6 115.5 125.5
Tangshan 51.1 53.1 324.4 333.4 208.9 232.1
Baoding 36.7 38.6 125.9 133.9 108.3 116.5
Sub-total 137.7 144.1 666.7 689.3 506.6 551.9

Southern
Hebei

Shijiazhuang 43.3 45.0 199.4 209.7 205.4 221.2
Handan 39.0 42.1 141.6 148.8 123.6 134.0
Xingtai 23.2 24.1 76.2 79.7 53.0 57.1

Hengshui 18.1 18.7 47.4 50.2 34.8 36.6
Sub-total 123.5 129.9 464.6 488.4 416.8 449.0

Regional total 343.9 360.4 2217.9 2289.4 3191.1 3373.0

Interestingly, while southern Hebei and Beijing have comparable per capita water availability, the
economic impacts are different. This could be due to industrial structure and supply chain constraints.
In 2012, Beijing’s services with low water consumption and high added value were dominant (76.48%),
while in the cities of southern Hebei, industry (around 50%) and agriculture (around 10%), which have
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higher consumption and lower added value, are predominant. Therefore, Beijing’s water resources
pose a higher constraint on the economy than in southern Hebei, with the result that Beijing’s potential
economic losses (CNY 88.9 billion) are greater than in southern Hebei (CNY 62.4 billion). This coincides
with Nechifor’s research, in that greater GDP impacts are obtained with increased constraints on the
water availability of non-agricultural sectors [7]. In addition, the degree of inter-industry linkages
in Beijing is higher than that in the cities of southern Hebei, which increases the transfer of water
restrictions between industries and the overall effect. However, from a relative perspective, southern
Hebei has a lower economic level and smaller economic volume, meaning that the potential economic
loss percentage caused by water resources is higher than in Beijing.

5. Discussion

5.1. Trends of Shadow Prices of Production Water in BTH Cities

The calculation results indicate that the shadow prices of production water in Hebei continuously
increase over the research period, which shows that the scarcity of production water in Hebei intensified.
Meanwhile, there are significant disparities in water scarcity amongst the different parts of Hebei,
being more severe in southern than in northern Hebei. Compared with the cities in Hebei, the increases
in the scarcity of production water in Beijing and Tianjin are milder, while the water scarcity in their
service sectors even declined.

The reasons for the regional discrepancies in water scarcity may be attributed to the following
factors. First, Beijing and Tianjin have better access to more advanced technologies for water saving
and more stringent environmental regulations. Although technology development has also improved
the water use efficiency in Hebei, it is not sufficient to offset its huge water demand due to rapid
industrialization and urbanization, let alone for the cities in southern Hebei (i.e., Hengshui and Xingtai),
where water-saving measures have not been fully implemented and the relevant regulations are rather
loose. Second, the water prices in Beijing and Tianjin are higher than in Hebei, which contains the
expansion of its water demand to some extent. In 2016, the actual prices of industrial water in Beijing
and Tianjin were 9.92 CNY/m3 and 7.85 CNY/m3 respectively, while the average industrial water
price in Hebei was 5.06 CNY/m3. The difference in water pricing for the service sector is greater,
especially for special industries (the industries that use water as raw material for production, mainly
including bathing, car washing, etc.). Beijing’s water price for special industries is 161.68 CNY/m3,
higher than Hebei’s, where the average price is 21.5 CNY/m3. Moreover, the regional discrepancy in
water endowment is also relevant to the regional differences in water scarcity.

In addition, cross-sectoral water re-allocation is not considered in the optimization settings in
this paper, mainly because one of the main focuses of this paper is to use the shadow price of water
to indicate the current scarcity of water resources, rather than the factors affecting shadow prices.
Of course, cross-sectoral water re-allocation will affect the value of shadow prices. According to the
nature of the shadow price, if a certain degree of cross-sector water redistribution is allowed, just as in
Nechifor’s research [7], the shadow price of the sector with reduced water resources will increase (in
this paper, the agricultural sector), while the shadow price of the sector with increased water resources
will decrease (the industrial and service sectors). The extent of shadow price changes is determined by
the production process and the scarcity of water resources in each sector.

As the shadow price of water has been studied for a long time, our results can be compared with
those of extant studies. Compared with Liu’s research [21], the shadow price of water is marginally
higher, which may be due to the differences between calculation models and survey time. Further,
compared with Shen [23] and Wang’s research [24], the shadow price of agricultural water in Tianjin is
lower, and that of industrial water in Tianjin and Hebei is higher in this paper, which may be mainly
due to the differences in the production function form and sample data level.
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5.2. Water Scarcity is Underestimated in the BTH City Region

Water shadow prices theoretically reflect the real value and degree of water scarcity without
administrative influences. Here, the ratio of shadow prices to actual prices (STA) is used to measure the
deviation between actual and shadow price. STAs higher than 1 refer to the shadow price exceeding
the actual price, meaning water scarcity is underestimated. The higher the STAs are than 1, the higher
the degree of underestimation.

The STAs of the industrial sector in the BTH city region are all above 1 and reveal an uptrend during
2007–2016, which indicates an increasing degree of underestimation. The STAs of industrial water use
in the cities of southern Hebei are generally higher than in other sub-regions or cities. Compared with
cities in Hebei, The STAs of the industry sectors in Beijing and Tianjin are lower (Table 6). The STAs
of service sectors in the BTH city region have been generally stable during 2007–2016, indicating the
degree of underestimation of water scarcity remained at a stable level in each city. The STAs of service
sectors in Beijing and Tianjin are in general not higher than 2, being lower than those in the cities of
Hebei. The STAs in southern Hebei are still the highest, some even exceeding 3 (Table 7).

It is worth nothing that a pricing mechanism for agricultural water has not been fully implemented
in the BTH city region yet. The current agricultural water pricing is determined based on non-volumetric
charges, such as fees paid for electricity consumption. The current agricultural water price in the BTH
city region is around 0.3–0.4 CNY/m3, merely 10% of the shadow price. This means the scarcity of
water for agriculture is mostly underestimated by current agricultural water price.

Recently, the BTH city region has recognized the seriousness of its water shortage problem,
implementing strict water price adjustment and issuing their “Opinions on the most stringent water
resources management system” in 2016, according to the “Notice of the General Office of the State
Council on Implementing the Most Strict Water Resources Management System Assessment Measures.”
Each city also regards water use and water intensity as strict hard-test indicators of the “National
Economic and Social Development Plan.” These measures will certainly encourage water users to
increase their awareness of water conservation, improve water efficiency, and minimize the economic
losses caused by water resources.

Table 6. The ratio of shadow prices to actual prices (STA) of industrial sectors in the BTH city region
(2007–2016).

Regions Cities 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016

Beijing 1.8 1.8 1.8 1.6 1.6 1.6 1.9 1.5 1.2 1.2
Tianjin 0.9 1.0 1.5 1.5 1.1 1.6 1.7 1.7 1.9 1.6

Northern
Hebei

Zhangjiakou 1.8 1.8 1.9 2.0 2.0 2.1 2.2 2.2 2.6 2.6
Chengde 1.3 1.3 1.4 1.4 1.5 1.5 1.8 2.0 2.1 2.3

Qinhuangdao 2.3 2.2 2.3 1.2 1.2 1.2 1.4 1.3 1.5 1.6
Average 1.7 1.7 1.8 1.5 1.5 1.6 1.7 1.8 2.0 2.1

Central
Hebei

Langfang 1.6 1.7 2.0 1.9 1.8 1.8 2.0 2.1 2.4 2.3
Cangzhou 1.1 1.2 1.3 1.1 1.1 1.3 1.6 1.8 2.3 2.0
Tangshan 2.1 2.2 2.2 1.6 1.5 1.7 2.0 2.1 2.1 2.2
Baoding 3.5 2.3 2.1 2.0 2.1 2.3 2.8 2.7 2.9 3.3
Average 1.8 1.8 1.9 1.6 1.6 1.7 2.0 2.1 2.4 2.4

Southern
Hebei

Shijiazhuang 2.5 2.4 2.6 2.8 2.5 2.9 2.9 3.1 3.3 3.6
Handan 1.7 1.8 2.0 2.0 2.0 2.6 2.8 3.0 3.1 3.4
Xingtai 3.3 3.4 3.7 2.0 2.0 2.1 2.2 2.4 2.4 2.7

Hengshui 4.3 3.1 3.3 3.3 3.4 3.4 3.9 4.0 4.3 4.3
Average 2.7 2.6 2.8 2.4 2.4 2.7 2.9 3.0 3.2 3.4

Regional average 1.9 1.9 2.0 1.8 1.7 1.9 2.1 2.2 2.3 2.3

Note: The water price data of industrial sectors in the BTH city region is collected from the website of www.h2o-
china.com/price/ [63].

www.h2o-china.com/price/
www.h2o-china.com/price/
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Table 7. The ratio of shadow prices to actual prices (STA) of service sectors in the BTH city region
(2007–2016).

Regions Cities 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016

Beijing 1.9 1.8 2.0 1.7 1.7 1.7 1.6 1.0 0.9 0.9
Tianjin 2.1 1.9 2.1 1.8 1.7 1.6 1.7 1.8 2.0 1.8

Northern
Hebei

Zhangjiakou 2.5 2.2 2.2 2.2 2.5 2.5 2.6 2.7 2.9 2.7
Chengde 2.1 2.2 1.9 1.9 1.9 1.9 2.0 2.0 2.2 2.0

Qinhuangdao 2.3 2.3 2.4 2.0 1.9 2.1 2.3 2.3 2.3 2.2
Average 2.3 2.2 2.1 2.0 2.0 2.1 2.3 2.3 2.4 2.3

Central
Hebei

Langfang 1.7 1.8 1.7 1.7 1.8 1.8 1.8 1.6 1.6 1.7
Cangzhou 1.3 1.2 1.3 1.6 1.8 1.9 1.8 1.9 1.9 1.9
Tangshan 2.5 2.3 2.4 2.2 2.2 2.2 2.5 2.4 2.5 2.8
Baoding 3.3 1.4 3.1 3.1 3.2 3.3 3.4 3.1 3.5 3.3
Average 2.1 1.6 2.0 2.1 2.1 2.2 2.2 2.1 2.2 2.3

Southern
Hebei

Shijiazhuang 3.3 2.8 2.8 3.0 2.5 2.7 2.7 2.7 2.8 3.0
Handan 1.7 1.7 2.2 3.0 2.5 3.0 3.2 3.3 3.4 3.5
Xingtai 2.3 2.4 2.5 2.3 2.2 2.6 2.9 2.6 2.4 2.4

Hengshui 2.1 1.5 1.8 1.8 2.1 2.2 2.2 1.8 2.0 1.9
Average 2.3 2.0 2.3 2.4 2.3 2.6 2.7 2.5 2.6 2.6

Regional average 2.2 1.9 2.1 2.1 2.1 2.2 2.3 2.1 2.1 2.1

Note: The water price data of service sectors in the BTH city region is collected from the website of http:
//price.h2o-china.com/ [63].

5.3. Agricultural Water Saving in Hebei is Key to Solving Water Scarcity in the BTH City Region

The results of this study indicate that water scarcity has a significant restrictive impact on the
urban economic growth of the BTH city region, with Hebei bearing the largest economic loss due to
this water scarcity. Hebei is one of the most important grain production bases in China, supporting
the entire nation with large amounts of grain and vegetables, with high water consumption and low
added value every year; the majority of production water use is attributed to agricultural water use,
the proportion of which in total production water was 78.3% in 2017 [64]. For example, southern Hebei
is the main area for growing winter wheat, the irrigation for which has been proven to be closely
related to the overexploitation of groundwater [65]. Therefore, agricultural water saving in Hebei is
key to solving the problem of water scarcity in the entire BTH city region.

Currently, most cities of Hebei still adopt traditional and backward irrigation methods.
The utilization efficiency of irrigation water is very low, and the waste of water resources is very serious.
The utilization rate of water-saving projects is not high. Although the irrigation area of water-saving
projects is increasing year by year, the management and maintenance of water-saving equipment in
rural areas are not in place due to technical management, with many water-saving projects being idle
and the utilization rate not high.

Facing an aggravating water crisis, the best way for Hebei to reduce agricultural water use and
the associated potential economic loss is to further improve irrigation water use efficiency. Further,
improved agronomic measures, such as soil water management, irrigation system innovation, and
water-saving technology applications, can effectively increase irrigation water use efficiency, and thus
ensure agricultural production using less water.

Moreover, the results indicate that the pricing mechanism for agricultural water in Hebei fails
to reflect the degree of water scarcity, causing the scarcity of agricultural water use in Hebei to
be substantially underestimated. Low water prices will, thus, lead to wasting water resources,
increasing water scarcity, and ultimately affecting economic development. To enhance Hebei’s
transformation of water management from a traditionally extensive pattern to an intensive one, a
rational pricing mechanism for agricultural water use that properly reflects water scarcity is urgently
needed. The agricultural water price should not only be increased but also differentiated based on
crop types (i.e., food or cash crops). It is noteworthy that repricing agricultural water use can increase

http://price.h2o-china.com/
http://price.h2o-china.com/
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agricultural input costs, where the trade-off between the water conservation effects and the increasing
costs needs to be considered and an appropriate balance sought.

In addition to reducing agricultural water use, there are other ways to alleviate water shortages in
the BTH city region. As such, the government and the market must cooperate. On one hand, water
resources are distributed through government administrative means to ensure the integrity and healthy
operation of the industrial system; on the other hand, the establishment of a water rights market
allows water resources to be redistributed according to their economic contributions, maximizing the
value of water resources while ensuring a national base. Coastal cities (Tianjin, Cangzhou, Tangshan,
Qinhuangdao) can use seawater desalination technology to expand the utilization of seawater resources
and enable the abstraction of drinking water from the mouths of great rivers, which would be led by
a pipeline below the water level and would follow the route of the seacoast [6]; the South-to-North
Water Transfer Project can also provide water from the Yangtze River to alleviate water shortages in
the study area.

6. Conclusions

This study measures the water scarcity of the 13 cities in the BTH city region and the restrictive
impacts of water scarcity on urban economic growth based on an optimization analysis. The main
findings are:

(1) Water scarcity in the BTH city region, reflected by the water shadow price, shows significant
sectoral and regional heterogeneities. At the sectoral level, the shadow price of agricultural water use
is the lowest, while that of service water use is the highest. At the regional level, southern Hebei faces
the most severe water scarcity in the BTH city region. Moreover, water is becoming increasingly scarce
in most sectors and cities in the BTH city region, especially in southern Hebei, the region with the most
severe water scarcity. While water scarcity in Beijing has improved to some extent in the agriculture
and service sectors in recent years, there is still a long way to go in solving this problem.

(2) The shadow price of production water is much higher than its actual price in the BTH city region,
indicating that the scarcity of water use in the region is significantly underestimated. The scarcity
of industrial and service water in southern Hebei is mostly underestimated. Further, the scarcity of
agriculture water use in the BTH city region is mostly underestimated, since the current agricultural
water pricing is determined based on non-volumetric changes, and it is merely 10% of the shadow price.

(3) Water scarcity has a negative impact and total economic loss of CNY 270.02 billion for the BTH
city region. The economic loss caused by water scarcity in Hebei is largest, especially in southern Hebei,
whose potential GDP decreased by 6.2%. At the sectoral level, the potential economic losses caused
by water scarcity in the industrial and service sectors are far higher than in agriculture. Moreover,
the potential economic losses of the three major industries in Hebei are higher than those in Beijing
and Tianjin.

However, this study only provides a preliminary analysis of the potential economic loss associated
with water scarcity. To deepen the understanding, a quantitative analysis of the mechanism of how
water scarcity impacts urban development is needed, which would be conducive to more effective and
pertinent evidence for policy making.
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Appendix A

Water resources are considered as the cost of output, since they are consumed in the production
process. The set of production possibilities is considered as P(x) =

{
(y,−x,−w) : x ∈ RN

+

}
, where y
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refers to the output level of the region, denoted by industrial value added; x refers to the input of other
elements except for water resources, such as labor force and capital; and w is the water use.

In our application, the vector of outputs contains one desired output (y). The vector of inputs can
be divided into two types: non-water inputs, including capital (x1) and labor (x2), and water inputs (w).
The production technology is under the standard assumptions of being compact and freely disposable
in terms of inputs, which means finite amounts of inputs can only produce finite amounts of outputs,
and if x′ ≥ x, then P(x′) ⊇ P(x).

The production technology is under the following three additional assumptions: (1) closed set
and convex set; (2) weak disposability between input and output—if (y, x) ∈ P(x) and 0 ≤ θ ≤ 1,
then (θy, θw) ∈ P(x); and (3) strong disposability of input and output, respectively—if x′ ≥ x, then
P(x′) ∈ P(x), while if y′ ≤ y, then (y′, w) ∈ P(x). This implies that output can be freely adjusted under
the same investment scale.

Accordingly, the general directional output distance function is defined as follows:

→

Dt
0(yt, xt, wt; g) = sup[β : (yt, wt) + βg ∈ Pt(x)] = max

z,β

{
β : (y + βgy, w−βgw ∈ P(x))

}
, (A1)

where g denotes the direction vector and Sup denotes the upper infimum, the possible production
boundary, and is a variable which means that the increase in output is accompanied by a reduction in
water consumption to achieve the maximum feasible amount of the total output efficiency frontier.
The relationship among the three variables is shown in Figure A1 [66]. Production is efficient only
when (yt, wt) is on the output frontier and the directivity distance function equals 0. Otherwise, the
larger the directivity distance function (the movement distance) is, the lower productivity is.
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Appendix B

The shadow price of water can be derived from the relationship between the directional output
distance function and the profit function. Setting py as the price of output, pw as the price of water
resources, and px as the price of other inputs, the profit function can be defined as:

π(py, pw, px) = max
y,w,x

{
pyy− pww− pxx : (y, w) ∈ P(x)

}
, (A2)

Because the production unit is at the production frontier,
→

D0(y, x, w, gy, gw) ≥ 0. In other

words, (y, w) ∈ P(x) and
→

D0(y, x, w, gy, gw) ≥ 0 are equivalent. Therefore, the profit function can be
converted into:

π(py, pw, px) = max
y,w,x

{
pyy− pww− pxx :

→

D0(y, x, w, gy, gw) ≥ 0
}
, (A3)
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For the output vector, if (y, x) ∈ P(x), then the movement distance in the g = (gy,−gw) direction
is as follows:

(y + βgy, w−βgw) =
{

y +
→

D0(y, x, w, g)gy, w−
→

D0(y, x, w, g)gw ∈ P(x)
}
, (A4)

The above formula shows that if the output vector (y, w) ∈ P(x) is feasible, the output along
the direction vector is also feasible after eliminating technology inefficiencies. Therefore, the profit
function can be converted into:

π(py, pw, px) = (pyy− pww− pxx) + py
→

D0(y, x, w, g)gy + pw
→

D0(y, x, w, g)gw, (A5)

This means that maximum profit can be obtained by increasing output along the direction vector
of the original profit,(pyy− pww− pxx), reducing water resource input and eliminating technological
inefficiency. The following results can be obtained:

→

D0(y, x, w, g) = min
{
π(py, pw, px) − (pyy− pww− pxx)

pygy + pwgw

}
, (A6)

By taking the first partial derivative of the above equation, the shadow price of the output, water
resource, and other inputs can be obtained:

∂
→

D0(y, x, w; g)
∂y

=
−py

pygy + pwgw
, (A7)

∂
→

D0(y, x, w; g)
∂w

=
pw

pgy + pwgw
, (A8)

∂
→

D0(y, x, w; g)
∂x

=
px

pygy + pwgw
, (A9)

Clearly, the shadow price of the output is negative, while the shadow prices of water and other
inputs are positive. Shadow price is the price at which profit can be maximized on the production
frontier. The relative shadow price of water resources and other input factors can be obtained through
sorting:

pw = −py[
∂
→

D0(y, x, w; g)/∂w

∂
→

D0(y, x, w; g)/∂y
], (A10)
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