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Abstract: In recent years, with the increased focus on climate protection, electric vehicles (EVs) have
become a relevant alternative to conventional motorized vehicles. Even though the market share of
EVs is still comparatively low, there are ongoing considerations for integrating EVs in transportation
systems. Along with pushing EV sales numbers, the installation of charging infrastructure is necessary.
This paper presents a user- and destination-based approach for locating charging stations (CSs) for
EVs—the electric charging demand location (ECDL) model. With regard to the daily activities of
potential EV users, potential positions for CSs are derived on a micro-location level in public and
semipublic spaces using geographic information systems (GIS). Depending on the vehicle users’
dwell times and visiting frequencies at potential points of interest (POIs), the charging demand at
such locations is calculated. The model is mainly based on a survey analyzing the average time spent
per daily activity, regional data about driver and vehicle ownership numbers, and the georeferenced
localization of regularly visited POIs. Optimal sites for parking and charging EVs within the POIs
neighborhood are selected based on walking distance calculations, including spatial neighborhood
effects, such as the density of POIs. In a case study in southeastern Germany, the model identifies
concrete places with the highest overall demand for CSs, resulting in an extensive coverage of
the electric energy demand while considering as many destinations within the acceptable walking
distance threshold as possible.

Keywords: electric vehicle; charging station; spatial localization; GIS; user- and destination-based;
point of interest

1. Introduction

As a political strategy for fighting climate change by reducing CO2 emissions, national governments
in the EU promote electric vehicles (EVs), along with the required charging infrastructure, by providing
a range of subsidies for EV users. Although registered EVs still account for less than one percent of
the total number of vehicles in most countries, several governments have declared their intention
to entirely ban conventionally fueled cars by 2030, 2040, or 2050 [1]. While Germany is attempting
to boost the e-mobility market penetration by subsidizing EV purchases and the United Kingdom
offers grants to support the wider use of low emission vehicles, northern countries like Norway
exempt EV owners from several tax obligations. In Norway and the Netherlands, about 11,000 and
20,000 new EVs, respectively, were registered from 2011 to 2013. These are the highest EV sales
in both absolute and relative numbers in Europe. Additionally, countries like Germany or France
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have recorded a yearly growth rate of around 50% in the last few years [2,3]. From the view of
sustainability, EVs can only be the ultimate goal of driving systems when it becomes possible that
EVs actually cause less carbon dioxide than conventional vehicles, including the entire life cycle from
manufacturing process to charging [4]. The local electricity for charging as well as battery production
must at least get greener for sustainability reasons. Regardless of whether EVs will be an interim
solution or the ultimate goal in times of mobility changes, the transportation infrastructure has to
be transformed in the most sustainable way as possible, not only from the political point of view,
for instance, in terms of governmental subsidies, but also from the standpoint of infrastructure and
energy suppliers, automotive manufacturers (industry development), and users (awareness).

According to surveys [5], besides the high costs and range anxiety in terms of how far the vehicle
will drive with one charge, one barrier for car buyers to purchase an EV is the poorly developed
charging infrastructure for EVs. At the same time, the small number of EVs and the thin spatial density
of EV owners result in a low utilization rate of charging stations (CSs). This low utilization rate means
that most CSs are not profitable, which hinders significant growth in the spread of CSs [6]. This chicken
and egg situation begs the question of which aspect—the development of charging infrastructure or
the number of EVs—requires the most effort at this early stage of market development. Regardless of
whether CSs play the main role in promoting electrically powered mobility or not, it is indispensable to
determine convenient locations for CS, especially in public and semipublic areas [1]. With CSs situated
at popular public places, infrastructure capacities for slow-charging can be increased profitably [7].
Sensible CS positioning adds to the convenience of driving an EV and reduces range anxiety, which may
lead to a higher user frequency of CSs [8]. As a consequence, the CS infrastructure may provide the
groundwork for increasing the market share of EV in the mobility sector.

In the present paper, the electric charging demand location (ECDL) model for identifying optimal
CS locations based on an EV charging demand calculation is introduced. The model pursues the
approach of including EV users’ behaviors, their dwell times at destinations, and the optimal positioning
of CSs by considering minimal walking distances for the drivers. First, a brief overview of current
research and the predominantly used modeling approaches in the domain of CS localization is given.
Subsequently, the ECDL model is explained in theory, and the calculation process in geographic
information systems (GIS) is demonstrated. To prove the model’s applicability, a case study in the
southeast of Bavaria, Germany, is described. Next, the benefits of the ECDL model as well as its
limitations are discussed. Finally, its transferability and the possibility for extension in future work
are outlined.

2. State of the Art of CS Location Models

Several research projects have aimed to identifying ideal places for situating CSs using different
emphases and targets, e.g., using optimization algorithms [9–11] or more spatially based, geostatistical
approaches [12,13]. The minimization of trip length or travel times [14,15] is a widely used target
criterion for CS location models. Another target is to locate CSs at hotspots of charging demand
following population distributions or driving path densities [16–18]. A microscale analysis of parking
and walking from CS to destinations is also a proposed approach [19]. Several studies have targeted
more than one criterion by considering user-, destination-, and route-oriented approaches in a
combined model [15,20,21].

Pagany et al. [22] gave a broad and systematic overview of publications in the domain of CS
localization for EVs. The review categorized 661 studies based on their structure (user, destination,
or route orientation), overarching objectives (like demand density, trip length, or queuing), and data
sources (statistics, measured travel data, simulations or surveys) and discussed the advantages and
limitations of the applied data and methods. Some studies, for instance, Ahn and Yeo [23], Tu et al. [15],
and Wagner et al. [18], are based on real data from existing CSs or travel data from tracked EVs.
However, the number of EV fleets is still at a low level [1], making the validity of results and overall
transferability possibly uncertain. Other studies have evaluated tracking data from conventional,
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fossil-fueled vehicles for the analysis of optimal charging locations while assuming that driving
behavior and trajectories remain the same when using EVs [11,12,24]. For both cases of movement
data, the limited knowledge on potential driving behavior, which may change in the face of higher EV
market penetration and further development of CS infrastructure, is a constraining factor.

Other models are based on statistics, such as census data about family status, income, and number
of vehicles per inhabitant [17,25], resulting in lower spatial resolutions as they constitute total values
for a whole district (e.g., number of vehicles per household). Questionnaire-based surveys complement
the list of data sources for CS location analysis by assessing the activities, opinions, and expectations of
potential participants [10,26], also assuming that travel paths and driver behaviors remain the same in
spite of changes in traffic technology.

In some other studies with a focus on geospatial process integration, aspects such as interconnectivity
of regional patches or the neighborhood of several destination points are observed [15,18,24]. Namdeo
et al. applied a multidimensional spatial analysis that included socioeconomic factors and combined
commuting, vehicle, and household numbers using different GIS layers [17]. A spatial plot showed
the outputs from weighted overlay statistics for public charging locations. Efthymiou et al. [25],
Gkatzoflias et al. [27], and Wirges [13] used similar approaches by transferring statistical data into the
spatial dimension to identify areas with high charging demand in GIS. Brost et al. [28] combined traffic
modeling with aspects such as public transport accessibility to define CS sites. Andrenacci et al. [12]
adopted a distance-based approach by calculating the charging demand for EVs from tracking data.

Approaches like these have the advantage of being easily transferable to municipal planning
processes and allowing zoomed-in spatial siting for CSs. Moreover, identified CSs could also be
used for alternative recharging of, for instance, electric bikes or speedelecs as electric light vehicles,
the manufacture of which emits less CO2.

Pagany et al. [22] concluded that a more integrated process should be the aim of further research
on CS localization. Based on this, our study pursues a more holistic CS localization model, including
EV drivers’ dwelling times and destinations as well as the points of interest (POIs) as the model’s
key aspects. The crucial combination is the spatial dispersion of POIs, the temporal duration of EV
users’ dwelling at the POIs, the minimum distances between POIs, and the minimum walking distance
between a parking or, rather, a charging point and the POI. This ensures that the model provides a
more efficient and sustainable approach for a whole region as the planning is not only for a single
site but also simultaneously considers neighborhood relations, preventing an oversupply through
overlapping of planning in the same area. (Only the CS development without the linkage to energy
supply per se is part of this model presentation).

3. Materials and Methods

In this section, the ECDL model is first explained, i.e., the demand calculation for each destination
point within the case study area. Next, spatial modeling is carried out by importing data from the
previous step into the GIS environment and calculating EV users’ minimum walking distance between
destinations and the nearest CS. Afterward, a case study undertaken in a region in southeastern
Germany offers results for the scenario of a 50% EV market penetration and visualizes the spatial
distribution of CSs in a zoomed-in map section.

3.1. Data Analysis

The general idea of the ECDL model is to analyze potential charging locations in public and
semipublic areas where people usually drive to. (The model focuses mainly on short-distance
driving, which is typical for inhabitants or tourists moving within a specific region, and less on long,
supraregional trips aiming for fast charging and high loading rates.) The end points of their travel
paths are the destinations where they spend a certain amount of time depending on their daily activities.
The aim is to place CSs within the drivers’ daily activity environment in such a way that they have the
opportunity to charge their EVs while staying at the destination points. The proximity to POIs, such as
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public institutions or supermarkets, is a prerequisite as EV drivers need to park and charge within
walkable distance to the destinations.

3.1.1. Destinations

POIs from Open Street Map (OSM) are used as basic data for the destination points. The dataset
is divided into various classes (shopping, leisure, etc.) and subclasses (supermarket, bakery, clothes
shop, etc.). For the demand analysis of charging near a destination, the classes are grouped into
four destination categories: living, working, shopping, and recreation (see Table 1). In the present
work, private households have been excluded from the destination category “living” because private
charging is possible at home and is often used in single-family houses, which are common in rural
regions, such as the case study area (see Section 4) [29,30]. However, public and semipublic CS sites
have a high relevance for this category in urban areas, where multifamily houses and apartment blocks
are predominant. Touristic accommodations are categorized into the group “living” as it is assumed
that the duration of stays at accommodations, and thus the time for charging, are similar to staying at
home (i.e., overnight).

Table 1. Categories of points of interest (POIs) from Open Street Map (OSM) as the basis for the
charging station (CS) modeling.

Destination Category OSM Superclasses

Living Accommodation 1

Working Education, Money
Shopping Health, Shopping
Recreation Leisure, Catering, Tourism, Place of worship 2

1 Private households are excluded because private home charging is assumed to be possible. 2 The subclass “tourist
information” is excluded as dwell time is too short.

3.1.2. User Groups and Their Dwell Time

The destination categorization is done depending on the dwell time of people visiting the place.
The dwell time is determined according to a comprehensive survey about the personal time spending
concept, published by the German Federal Statistical Office [31] for 2012 and 2013. With a quota
sample, individuals in over 5000 households all over Germany were asked to document their daily
time spending in a diary. On the basis of nearly 34,000 diary days, average values for the different
forms of time spending were assessed. As people have heterogeneous ways of life, they not only
drive in different travel patterns but also stay at different location types for various lengths of time.
Consequently, the charging demand at a specific location depends on the destination type and on the
user group. A certain lifestyle may be characterized by family status, income, or age, as pointed out
by [16], [26], and [32]. Based on these studies, the essential criterion of age is used to determine user
groups. Hence, the inhabitants of a region are classified according to their age, with the time spending
concept used for calculating the dwell time at the POI in daily averages.

Four user groups are defined (see Table 2) as they differ in their activities and driving behaviors.
For example, the silver agers use their time for activities in the category “living” and less for working as
most people in this group are retired. The ECDL method does not focus on travel time but on the time
sequences when the vehicle is stationary at different locations, which determine the average charging
time per place. Combining user and destination orientation, the various activities are assigned to
one of the four POI categories depending on the time spent. Personal duties, such as basic needs
(sleeping, washing, and dressing), housekeeping (without grocery shopping), and family support are
included in the activities that take place in the categorized places for “living”. Working time is the
time spent for full and part-time jobs, qualification, and education at schools or universities. Shopping
time comprises all activities in supermarkets and clothes shops but also other services like visits to
official agencies or medical services (doctors or pharmacies). Recreational time includes social life
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and meetings, sports, hobbies, and volunteer work. The activity time is an average of all persons
(practicing and non-practicing).

Table 2. Average time use by user groups depending on daily activities 1 (= sum of subactivity time
spent multiplied by percentage share of practicing persons); driving time is excluded [31].

Category
g 1: Young

Agers (18–29
years) 2

Practicing
(%)

g 2: Mid
Agers (30–44

years)

Practicing
(%)

g 3: Best
Agers (45–64

years)

Practicing
(%)

g 4: Silver
Agers (65+

years)

Practicing
(%)

Living 14:00:20 14:58:49 15:26:20 17:48:01
Personal duties 10:57:00 100% 10:36:00 100% 10:52:00 100% 11:50:00 100%
Domestic work 0:29:00 79% 1:57:00 94% 1:36:00 94% 2:04:00 96%

Media use 3:04:00 87% 2:48:00 91% 3:19:00 93% 4:07:00 97%

Working 3:47:22 3:43:14 3:09:24 0:13:31
Working 7:19:00 40% 7:10:00 51% 6:59:00 45% 4:35:00 4%

Education 3:50:00 23% 3:37:00 3% 2:38:00 2% 1:29:00 2%

Shopping 0:23:37 0:30:47 0:37:31 0:44:19
Shopping 1:03:00 38% 1:04:00 48% 1:12:00 52% 1:19:00 56%

Recreating 5:05:08 4:07:17 4:29:20 6:05:51
Voluntary work 1:25:00 11% 1:18:00 14% 1:22:00 18% 1:30:00 23%

Social issues 1:53:00 76% 1:17:00 75% 1:13:00 76% 1:19:00 84%
Sport 1:57:00 42% 1:15:00 36% 0:52:00 28% 1:11:00 57%

Media use 3 3:04:00 87% 2:48:00 91% 3:19:00 93% 4:07:00 97%
1 All persons of a user group are included, practicing and non-practicing persons (average). 2 Conditions: Persons
with a minimum age of 18 years (required minimum age for driving license in Germany). 3 Media use is not related
to one category but is regularly used at living and recreating sites (double count).

With regard to the different user groups and their daily activities, which are distributed over time
and space, the CS demand at each location within an activity area is predetermined. Census statistics
of the respective municipality deliver data about the number of inhabitants belonging to one defined
user group, the vehicle share per person, and tourist numbers.

3.2. Electric Demand Analysis

The POI dataset and statistical characteristics comprise information for the demand calculation of
a CS. Therefore, each POI is weighted according to the share of users of one user group in the total
number of inhabitants, the share of vehicle owners, and the share of potential EVs (see Equation (1)).
For touristic accommodations, the number of tourist vehicles is used as specific regional data input.
In this work, the number is based on the average value of 1.9 persons per vehicle for recreational trips
in Germany [33]. The more frequently and the longer a user group stays at one location, and the higher
the share of vehicles in that group, the higher is the electric demand for a CS at the location.

The driving distance of around 43 km per day and person on German average [33] is converted
into the electric energy needed for the daily travel. Afterward, the demand of energy is distributed
across the different destinations. On the one hand, this division depends on the relative share of the
total dwell time of the vehicles near the destination. On the other hand, the demand is weighted
equally over the distribution of all POIs in one category as there was no detailed information on
utilization rates or capacities (number of visitors, employees) available. Thus, for each POI, the yearly
electric demand is calculated by extrapolating daily energy consumption for one year. The objective is
to calculate the charging demand under the consideration of the following influencing parameters:

Eg,p =
K ∗ Fg ∗Og ∗ Ig ∗Dg, p

Ap
(1)

where Eg,p is the average electric demand for charging EVs per year at one POI of the type p for the
user group g. The charging demand depends on the electric energy demand K [kWh] needed by one
EV for the driving distance extrapolated for one year. The energy demand K is multiplied with the
share of potential EVs Fg (penetration rate in %) in total vehicles for the user group g, the share of
vehicle owners Og with the number of inhabitants Ig belonging to the user group g to consider the
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whole electric demand for a user group g at a destination of type p with regard to the number of EVs
derived from the current number of vehicles in a specific region. Additionally, variable Dg,p contains
the average dwell time (% of dwell time at POI of type p in relation to total time use) of a user group
g at a destination point of type p. In the last step, the charging demand for every single destination
is calculated. This depends on the amount Ap of all POIs of the type p within the investigation area.
The charging sum is divided by the number of Ap, which leads to an equal distribution within the
same destination type in the region. By multiplying all the mentioned factors, the charging demand at
each POI for each user group is calculated and the groups’ demand summed up to a total demand
value at each POI as the basis for the subsequent spatial modeling.

3.3. Walking Distance Assumptions

In the next step, different walking distances between the parking spot or charging point and the
destinations are defined according to the location type and user group. Other CS-locating studies
have proposed a uniform walking distance, e.g., for a 1 × 1 mile grid cell [7] or assumed desirable and
acceptable walking distances between 400 and 600 m [16]. Studies about walking behavior [34,35] have
determined that distances up to 400 to 800 m are seen as being justified. Another frequently mentioned
factor is the walking time. A walking duration of 10 to 15 min is considered acceptable [36,37],
which is comparable to the abovementioned length specifications. As the lifestyle patterns and
walking behaviors may be similar in all industrialized countries, the maximum acceptable walking
distance between the parking spot for charging and the destinations is defined based on these studies,
which were mainly conducted in medium-sized cities in industrialized research areas. However,
lower distances are assumed according to user and destination groups (see Table 3). Walking distances
for the silver agers are assumed to be shorter than for the other groups for health and mobility reasons.
A relatively short walking distance of 100 m is chosen for the POI type “shopping” because people
usually carry bags between shopping places and their vehicle. It is assumed that this distance is also
acceptable for downtown shopping, even if the acceptable distance for this activity is usually longer
(see conclusions).

Table 3. Maximum walking distances between CS and destination (POI) depending on users and types
of POI (meter unit).

POI Type

Maximum Walking Distance (in Meters) for User Group:

Young Agers
(18–29 years)

Mid Agers
(30–44 years)

Best Agers
(45–64 years)

Silver Agers
(65+ years)

Living 300 300 300 150
Working 500 500 500 500
Shopping 100 100 100 100
Recreation 500 500 500 250

3.4. Spatial Modeling

3.4.1. Overlay Analysis of Demand-Weighted Walking Areas

The calculated electric demand of each POI (Eg,p) is transferred to a GIS to model the CS location
analysis with spatial reference (Figure 1). A service area along the road network is calculated for
each destination based on its type and the maximum walking distance of the respective user group.
The service area defines the area in which EVs can be parked and charged while the driver walks to
and dwells at the destination. The service areas are derived from the OSM road network data as it
is assumed that people normally follow the street or path and do not cross a private, unpaved area.
The demand in the POI area is assigned to the whole service area within walking distance, originating
from the POI. Within the relevant walking distances, the overlaying charging demands of the different
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user groups are summed up into the demand map (sum of overlaying demand-weighted area). Hence,
sections with high charging demand can be selected.
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3.4.2. Selection Process of CS Locations

Next, the section of maximum demand can be selected as the location of the first CS (CS 1).
The further selection of CS areas requires an iterative process (Figure 2). A position-related selection of
all walking areas intersecting the maximum demand area (area for CS 1) from the demand-weighted
walking areas is carried out. The selected features are subtracted from the demand-weighted walking
areas as these POIs with their walking areas are already supplied by CS 1. The feature with the
maximum value of remaining demand areas is selected as the second CS. Then, the selection process is
run through again until the energy sum of selected maximum demand areas covers the total electric
energy demand of the area. Hence, it is also possible to determine the maximum number of CSs or the
percentage of demand coverage (i.e., top 10% of energy demand) according to the planning conditions
or financial limitations.
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3.4.3. Alternative Considerations of Walking Distance Optimization

Alternative considerations for optimizing the walking distance within the sections with high
charging demands are explained in this section, even when the optimization is not included in the case
study. With the optimization process, a specific place for a CS can be selected within these demand hot
spots, as Figure 3 shows. For each POI, service areas with intervals of 25 m and the maximum walking
distance corresponding to Table 3 are calculated. In order to be added up, the polygons are converted
into a grid with a resolution of 5 m and the attribute of the distance value assigned to the destination
point. For the determination of the optimized walking distance, the summed-up walking distance is
divided by the number of POIs taken into account. If there is only one destination located within the
maximum walking distance, the average walking distance is equal to the absolute walking distance,
and the optimal CS location is as close as possible to the POI. However, if two or more POIs are closer
than the maximum upper limit, the totalized raster provides the absolute sum of the distances to all
POIs. Then, the average walking distance is again calculated by dividing the number of POIs within
the service areas. The result is the average distance to all nearby POIs. Finally, the CS is located inside
the region with the highest demand and at the location where the average walking distance to the
POIs is minimized. This very zoomed-in modeling scale allows a detailed spatial analysis with an
output of optimized CS locations.
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4. Case Study and Results

The applicability of the ECDL model is demonstrated in the E-WALD project area covering
7200 km2 in the southeast of Germany, including eight administrative districts (NUTS-3): Cham,
Deggendorf, Freyung-Grafenau, Passau, city of Passau, Regen, city of Straubing, and Straubing-Bogen.
Although 150 sites for charging have already been set up as part of the E-WALD project, the existing
CS are not considered in this case study as the sites are mostly in the centers of the municipalities and
not necessarily positioned at high demand places.
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4.1. Data and Case Study Area

The case study is based on an area with a total population of nearly 800,000. Among them,
about 600,000 are potential EV drivers, which are divided into the four user groups: 102,000 young agers,
143,000 mid agers, 224,000 best agers, 153,000 silver agers (for these and further statistic parameters
about the study area, see Table 4). The case study area has 2.7 million tourist stays per year (average
stay = 4 days/year and 1.9 persons per vehicle); subsequently, 15,650 tourist vehicles are considered
present on any one day. In total, 6720 POIs are considered, divided into four POI types, for which
the electric charging demand per user group and the appropriate walking distance are calculated.
A penetration rate of 50% is assumed, meaning that 224,500 vehicles are assumed as potential EVs.

Table 4. Data of case study area (own calculations) [31].

Statistics Case Study Area

Area size 7200 km2

Population density 109 per km2

Number of POI per type

560 Living
400 Working

2480 Shopping
3280 Recreation

Number of persons per user group

102,000 Young ager
143,000 Mid ager
224,000 Best ager

153,000 Silver ager

Number of vehicle (from inhabitants) 449,000
Number of daily tourist vehicles (average stay = 4 days/year) 15,650

Assumption: penetration rate 50%
Average driving distance per day and person 43 km

Electric demand (total in one year)—calculated 85.76 Gigawatt hours (GWh)

4.2. Results of CS Location Analysis

With the model, the electric demand in kWh for each POI type combined with user groups and
walking distances is calculated. The demand is analyzed for each district considering the specific
population, vehicle, tourist, and POI numbers. Table 5 shows the total numbers for the complete case
study area. In total, an electric demand of 85.76 GWh is calculated.

Table 5. Electric demand in kWh per POI type and user group for the case study area.

POI Type Total E (kWh) Number of POI Per Type

Living 18,577,000 560
Working 34,200,000 400
Shopping 12,530,000 2480
Recreation 20,454,000 3280

Figure 4 shows the results of the ECDL modeling process and the identified CS positions in a
sample area of the case study. The optimum location is identified as appropriate for CS installation
due to the addition of high demand and short walking distances. The charging demand is graded in
color (demand map (kWh/a)).
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Figure 4. Sample extract of the case study with results of charging demand, walking distances, and
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demand of CS 1 and second selected CS areas (CS 2) in yellow; Map C without demand of CS 1 and 2.

The CS-locating process assumes an EV penetration rate of 50%, resulting in full coverage of electric
energy supply. In the sample section shown in Figure 4, the first selected CS area (colored yellow)
covers a demand of 374,000 kWh, which is 0.44% of the total electric demand for EVs. A potential CS
position (colored red) is located within the CS area. In the ongoing iterative calculations, POIs lying
within walking distance of CS 1 are no longer included in the maximum demand selection. This can be
observed from the reduced energy values in Figure 4 (maps A–C). In the second model run, CS area
2 is identified, covering an energy demand of 302,000 kWh. Due to the EV market share, the level
of demand can be calculated arbitrarily in the model. An economic valuation can determine the
profitability of the potential CS sites under the consideration of the calculated charging demand.

In Figure 5, the electric charging demand over the total E-WALD case study area is visualized,
including two detail maps of the towns Deggendorf and Freyung. The comparison shows that the
charging demand in Deggendorf is higher than in Freyung. By zooming in, it is visible that small areas
with a higher demand are also located outside the city centers due to some overlapping demand areas
(neighborhood effect of POIs).

Depending on the planning objective, for instance, the five most efficient CSs (highest electric
demand areas) can be identified (financial reason), or a certain percentage of electric demand for EV
charging could be selected.
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5. Discussion

The ECDL model provides a GIS-based CS location analysis with a flexible and transferable
method, but it also makes some assumptions. Questions about how long and where user groups
dwell for EV charging can be answered using this modeling tool. The tool is based on the assumption
that people are charging their vehicles at POIs or nearby, where they spend time anyway. The spatial
and temporal dimensions of user activities not only constitute a benefit of the ECDL but also take
into consideration the walking distances for potential EV users, which has an advantageous effect
for zoomed-in localization. Even though the distance for each user group and destination type are
estimated based on the limited information (see Section 3.1), the embedding of this parameter is seen
as an improvement with regard to user requirements on the one hand and spatial planning for the
whole area on the other. By calculating service areas to define walkable distance zones, intersection
areas are found, where CSs can supply a charging opportunity for several destinations in the vicinity
while, at the same time, guaranteeing acceptable walking distances for EV users. Instead of providing
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the charging option at each POI itself, this holistic approach ensures a comprehensive concept from
the outset. It is also possible to restrict installation costs by implementing CSs only at the sites with
the highest demand. As there is an opportunity to lower or raise the demand threshold value for a
CS installment decision, this holistic kind of model can be used such that the sites with the highest
demand, together with the highest number of included POIs and within optimized walking distances,
are found.

Moreover, the method also prevents a surplus of CSs installed at each destination because of
the short-distance effects of POIs positioned in close proximity to one another. Thus, the bundling
of charging locations can minimize the costs for set-up and operation of CSs. As far as the walking
distance is concerned, the limitation of the model is that it assumes equal acceptance of walking distance
by each person of a user group, even if unequal willingness between group members exists. In this
approach, a readjustment is carried out by calculating the average shortest paths between parking
spots and all included destinations. Gaining more knowledge about the probability distributions of
walking distances accepted within the user groups or the definition of additional user groups would be
an aim of future work. The same applies to users’ driving distances as users cover different distances
by car and, consequently, have different levels of charging demand.

The POI categorization offers the benefit of selecting destination types that are relevant for the CS
localization, but an inaccuracy in the modeling still appears. The advantage of categorization is that,
on the one hand, the category to be taken into account in the analysis must be determined. This means
that, for instance, only shopping places can be considered if there are such limited intentions from the
planning side. In the case study shown, households were not included in the search for CS locations
because of the high share of single-family houses with private charging possibilities in the mainly rural
case study area. However, on the other hand, some places can be associated with more than one POI
category. Apart from being a recreational place for guests, a hotel, for example, could also constitute
a workplace for its employees. In this case, the destination category with the strongest influencing
factor, meaning the highest demand, is chosen but could be examined with a further categorical
division. With the freely available data (POIs from OSM, municipal statistics, and publicly available
time-spending surveys), the method can be easily transferred to any region, although it cannot provide
a more subdivided demand distribution. Additional data about, for instance, the location and size of
companies or visitors at recreation or tourist points would be necessary for a more precise analysis
with a more detailed demand distribution. Information on the spatial characteristics and the size of
companies should especially be collected because companies are only registered as POIs in OSM if they
are public places, such as shopping facilities. Furthermore, the equal distribution of EVs among the
number of POIs is unrealistic as the capacities of, for example, supermarkets are not identical. Thus,
the completeness of the volunteered data is not necessarily given, as demonstrated by a basic data
validation (see Table 6). However, if a more precise analysis is to be pursued, a more complete dataset
would be required.

Table 6. Basic validation of POI data: example of pharmacist and doctor locations in the district
Deggendorf of the case study.

District: Deggendorf OSM Google Das Örtliche (Online Telephone Book)

Number of pharmacies 24 17 22
Number of doctors 15 20 261

In a more detailed analysis, the temporal dimension should preferably also have a higher resolution
as the current model only depends on sums of time use and average dwell time. The model yields a
yearly sum of energy demand at CSs. Weekdays, weekends, or charging demand in hourly resolution
cannot be distinguished based on this data. Data from market surveys about the temporal capacities of
supermarkets may provide helpful information, especially in terms of economic profitability. Due to
the time intervals, a different number of charging points has to be installed in order to cover the
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charging requirement, as [38] notes. As a next step, the supply side should be integrated in the locating
process, for instance, in terms of installing decentralized photovoltaic systems near or at the CS sites to
provide renewable electric energy for charging. This could be on neighboring roof tops, especially in
cities, or on shady roof above the parking sides, for instance, at rural or recreation sites, as leisure time
and solar energy production are expected to be correlated.

Lastly, the model has to be adapted for supraregional planning because the location analysis
emphasizes the daily activities of the majority of persons within their home region but does not
consider supraregional, long distance travels with charging at driving breaks.

6. Conclusions

The presented ECDL model calculates the electric charging demand at POIs for EVs and identifies
the most appropriate sites for CSs within optimized and acceptable walking distances. Electric
demand values of single POIs in this walking area are summarized, and the zoomed-in site is found by
minimizing the walking distances to all relating destinations within this walking area. The interaction
between the users and their environment is central to the ECDL model, which is aimed at locating
an ideally positioned, central CS by determining walking distance areas while considering spatial
relationships between the destination points within acceptable walking distances. Consequently,
the model is, on the one hand, able to ensure a comprehensive CS supply for meeting total EV charging
demand while, on the other hand, bundling CS sites with the purpose of cost optimization for set-up and
operation, as, for instance, Bioly et al. [39] claim. The presented work primarily emphasizes the spatial
planning approach on a street level, which facilitates the model’s implementation in municipal planning
processes, as the case study confirms. In future projects, a more detailed analysis may be developed,
including additional data to ensure the completeness of destination sites and more details about time
usage. In urban areas, extending the model by the POI type “living” for areas with multiple-family
houses would be useful as the inhabitants usually do not have home charging options. Although
the study is based on several assumptions (e.g., acceptable walking distances), the model is flexible,
and assumed values can be replaced by more specific values, such as the real employee numbers,
resulting in more precise and qualitative studies that are adjusted to a specific district. Nevertheless,
the distinction of categories according to user groups at different POI types (distinguishing between
number of persons, duration, frequency in terms of charging time, and differential acceptance of
walking distances) constitutes an essential approach for demand calculation. The next step in the case
study area could be the implementation of CSs at optimal locations in order to test the planning results
and verify them with the actual charging demand. The supply side as well as alternative mobility
concepts (other electric driving systems, depending on their sustainability) should also be considered.
Finally, by gaining more knowledge about real user activities and EV charging processes from the test
environment, the CS location model can be adjusted and transferred to other regions.
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