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Abstract: In many tourism destinations, sustainability of the local economy leans on small and
medium-sized hotels that are individually owned and operated by members of the community.
Suffering from seasonality more than their big competitors, these hotels should undertake marketing
initiatives to counteract wide demand fluctuations. Such initiatives are most effective if based
on accurate occupancy forecasts, which must be performed at the individual hotel level. In this
aim, the present paper suggests a demand forecasting approach adapted to specific features that
characterize reservation data for small and medium-sized enterprises (SMEs) in the hospitality
sector. The proposed framework integrates historical and advanced booking methods into a forecast
combination with time-varying, performance-based weights. Whereas historical methods use only
past observations about the number of guests recorded on a particular stay night to forecast future
room occupancy (long-term perspective), advanced booking methods predict bookings-to-come
based on partially accumulated data from reservations on hand (short-term perspective). In order to
provide a possible solution to data sparsity issues that affect the application of advanced booking
models to hospitality SMEs, a procedure that incorporates length-of-stay information directly into
the reservation processing phase is also introduced. The methodology is tested on real time series
of reservation data from three Italian hotels, located either in a city center (Milan) or in a typical
destination for seasonal holidays (Lake Maggiore). Model parameters are calibrated on a training
dataset and the accuracy of the occupancy forecasts is evaluated on a holdout sample. The results
validate earlier findings about combinations of long-term and short-term forecasts and, in addition,
show that using performance-based weights improves the quality of forecasts. Reducing the risk
of large forecast failures, the proposed methodology can indeed have practical implications for the
design and implementation of effective demand-side policies in hospitality SMEs. These policies
are expected to provide a competitive advantage that can be crucial to the sustainability of small
establishments in a context of growing global tourism.

Keywords: hospitality management; local tourism sustainability; long-short forecast combination;
forecast accuracy

1. Introduction

In the report “Making Tourism More Sustainable—A Guide for Policy Makers”, presented by the
UN Environment Programme (UNEP) and World Trade Organization (WTO), sustainable tourism was
defined as “tourism that takes full account of its current and future economic, social and environmental
impacts, addressing the needs of visitors, the industry, the environment and host communities” ([1],
p- 12). The viability of the hospitality industry, which is one of the core providers of the tourism
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ecosystem, is thus fundamental to achieve local sustainability. Moreover, as the long-term development
of tourist destinations is jointly influenced by their natural and cultural environment and by their
integration with the host community [1], the presence of small and medium-sized enterprises (SMEs)
that are individually owned and operated by local residents can be particularly useful to pursuing
social well-being, which is one of the pillars of sustainability. Being deeply rooted in local heritage and
culture, these hotels provide customers with authentic experiences and, at the same time, reconcile
long-term economic benefits with visitor awareness and conservation of the environment [2,3]. In many
European destinations, where small and medium sized hotels are widespread, market globalization
and internationalization raise new challenges for the hospitality industry. In addition, the seasonal
nature of demand chiefly penalizes hospitality SMEs that, as a consequence, tend to generate moderate
to low levels of revenue and local employment. Limited managerial skills, scarcity of resources and
difficult access to markets may additionally lead to their weak economic sustainability [4]. In order to
increase the contribution of local tourism to economic and social wellbeing, the sustainable growth of
hospitality SMEs becomes a priority.

Whereas the literature on sustainable development presumes a constant or increasing pattern of
global demand for resources, this assumption is not applicable to the tourism and hospitality industry,
which is both supply- and demand-driven [5]. Indeed, “finding enough tourists to fill capacities is
often more critical than resource management since tourist demand usually fluctuates more frequently
and abruptly than tourist resources” ([6], p. 462). In this framework, demand management “is often
more critical than resource management since tourist demand usually fluctuates more frequently and
abruptly than tourist resources” ([7], p. 463). A sound understanding and a proper management of
demand are indeed crucial to a successful pattern of long-term development for hospitality SMEs
and, in this respect, reservation forecasting becomes a fundamental tool to guarantee their economic
sustainability. Accurate forecasts of guests’ arrivals and room occupancy are not only critical pillars in
view of increasing customer service and hotel revenues, but they are also instrumental to the design
of demand-side policies that, reducing seasonality and increasing length-of-stay, promote a more
efficient use of resources and the reduction of congestion at peak periods (wWhen negative impacts on
the community and the environment are most likely to occur). Thus, as part of the ongoing debate on
sustainable tourism, this paper presents a study of demand forecasting techniques aimed at capturing
specific features (seasonal closures, impact of special events, sparse information) that characterize
reservation data for hospitality SMEs. In particular, the objective of this study is to develop and test
a forecasting model that can be used by small and medium-sized hotel managers as an effective tool to
produce accurate forecasts of daily room demand.

Previous research on hotel demand forecasting has mainly been driven by Revenue Management
(RM) considerations. In such a context, according to Talluri and Van Ryzin [8], demand management
decisions consist either in exploiting customer heterogeneity and prioritizing high-margin segments
when allocating scarce capacity, or in adjusting prices dynamically over time in response to
non-stationary demand. Both approaches have the drawback of being mainly intended for large
international hotels and hotel chains as they require detailed forecasts of arrivals and occupancy
(disaggregated by customer segment, room type, rate category and length-of-stay) that need to be
calculated with sophisticated proprietary or commercial software [9]. These strategies are rarely
practicable for low-volume, small seasonal hotels, whose daily reservation matrices are frequently
sparse (i.e., zero increments are commonly observed in the buildup of reservations pertaining to
specific segments). Furthermore, solutions based on “black box” software packages appear unfeasible
or inappropriate for this hotel category, since they represent a major investment and may not have
been tested for specific characteristics of small businesses. Conversely, the involvement of hotel
managers throughout the planning and implementation stage is considered essential (cf. [10,11]).
Hence, for the present study, information has been collected directly from hotel executives in order to
develop a flexible forecasting framework starting from their everyday practice.
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Advance bookings represent an important source of information for the hotel demand forecasting.
Guests may book reservations days prior to their arrivals and hotels maintain these reservation profiles
for each calendar day [12]. In the advanced reservation setting, forecasting “requires the application
of uniquely designed and creative approaches such as the pickup models and the forecasting
combinations of advanced reservation with established historical /actual demand patterns” ([13], p. 7).
This study contributes to the existing literature by suggesting a new criterion to combine a long-term
and a short-term forecasting perspective. Based on current management practices, the long-term
forecast is computed from past reservation data integrating the “Same day-Last year” principle with
calendar events scheduled for the current year (school and religious holidays, trade fairs, special
events). The short-term forecast is obtained from the additive and multiplicative variants of the
popular pickup technique [14]. Both methods are compatible with seasonal breaks in reservation
data, easy to understand and implement in a worksheet environment with minimal training. Another
original aspect of the proposed forecast combination is that the weights are updated weekly according
to the relative forecast errors made by the short- and long-term constituent methods over specific
forecast horizons. This gives a performance-based weighting scheme that adapts dynamically to the
characteristics of demand experienced by a particular hotel and improves the quality of combined
forecasts compared to some results described in recent literature [9,15]. As pointed out in multiple
studies (see, e.g., [16]), a major limitation of pickup methods is that they can only forecast arrivals
and not occupancy, since they do not account for differences in length-of-stay (LOS) among the
various reservations. Nonetheless, occupancy rates play a major role in demand management as they
determine both reservation denials and LOS controls aimed at increasing occupancy on “shoulder
nights, i.e., nights that are next to full or very busy nights [8]. This work suggests a new approach that
can be used to incorporate the LOS dimension into the build-up of reservations on hand, allowing the
derivation of pickup forecasts for future room occupancy rather than just arrivals, thus filling a gap in
reservation forecasting literature.

The proposed methodology is tested on real reservation data provided by three independent, small
to medium-sized hotels located in Northern Italy. Occupancy-based pickup and performance-weighted
forecast combinations are shown to improve forecast accuracy considerably in comparison with
conventional methods. These findings indicate that hospitality SMEs can effectively adopt the
forecasting framework developed in the current paper in conjunction with their internal resources and
managerial experience.

The rest of the paper is organized as follows. Section 2 presents a review of the literature. Section 3,
after introducing the dataset and the different forecasting methods, illustrates how LOS can be
integrated with arrival information to produce pickup forecasts of future occupancy, and proposes
long-short forecast combinations with performance-based weights. Results of the empirical analysis
are reported in Section 4. Section 5 discusses theoretical and practical implications, limitations of the
study and suggestions for future research. Finally, some conclusions are drawn in Section 6.

”

2. Literature Review

As part of a healthy tourism ecosystem, the hospitality industry is called to preserve the ecologic
balance of tourist destinations and to enhance their competitiveness, ultimately contributing to
improving the quality of living for the host communities. These objectives cannot be achieved without
a solid understanding and a proper management of the market demand.

In a global perspective, the size and preferences of tourism demand are determined by
socio-economic variables (such as income, population changes, tastes) in generating countries, whereas
the spatial distribution of tourist flows is related to the competitiveness of each destination and depends
on prices, exchange rates, marketing campaigns, infrastructures and transportation costs [17-19].
As pointed out by multiple econometric and macroeconomic studies, these factors jointly influence
the trend, cycle and seasonality of tourism demand at a national/international level and contribute
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to explaining the unprecedented growth of the tourism industry since the end of World War II
(see, e.g., [20]).

Despite growing global tourism markets, the European hospitality industry is facing increasing
competitive pressure both on its domestic side and on its ability to attract tourists from other continents.
Particularly affected are the small, independent and family-owned hotels that account for a majority
of tourism enterprises and employment in Europe [1]. As a way of strengthening the sustainability
of these businesses, the development of forecasting methods for hotel room demand has emerged
in the last few years as a response to more competitive markets [4]. Forecasting demand for hotel
accommodations involves multiple variables, including guest arrivals [9,21], the number of nights
stayed [22] and occupancy rates [11,15]. Although macro-level demand forecasting has been widely
used to obtain information concerning the hotel industry as a whole, this approach is based on
highly aggregated data and has limited implications for demand management policies of individual
hotels [23]. For this reason, researchers have increasingly turned to alternative methods that forecast
room demand for a single hotel based on hotel-specific data [9,15]. These methods are designed to
help hotel practitioners implementing RM policies, business planning and length-of-stay controls [11].

Three approaches to forecasting hotel room demand have been identified in literature: historical
models, advanced booking models and combined models. Historical models derive forecasts based
exclusively on the final number of rooms or arrivals on a particular stay night. They include basic
models (“same day-last year”, simple or weighted moving averages), which are easily implemented
with low data requirements and often represent the only type of forecast computed in small and
medium-sized hotels [24].

Advanced booking models focus on the build-up of reservations for a particular arrival day.
Current booking data are incremented by estimates of the “pickup” of rooms between two points in
time during the booking process. In the additive pickup model, the average historical pickup of rooms
is added to the bookings on hand for a particular arrival date; in the multiplicative pickup model,
the number of booked rooms is multiplied by the average historical pickup ratio [25]. The resulting
forecasts are usually responsive to recent shifts in demand [21], but may be unable to capture long-term
dynamics and seasonality effects. This probably explains why historical and advanced booking
methods do not systematically outperform each other [9].

In the context of hospitality SMEs, implementing advanced booking methods raises a major
issue related to data sparsity. For instance, Weatherford and Kimes [9] presented a study of small
roadside hotels (under 150 rooms) in which additive pickup was among the best-performing methods
in relation to arrivals forecasting. Nonetheless, the associated forecast errors were in the order of
40 rooms over forecast horizons of 6 to 21 days prior to the arrival date and, although LOS information
was available, it was not used “as the numbers were so small (i.e., lots of zeros) that only overall,
aggregated arrivals forecasts were developed” (see [9], p. 408). In view of the importance of predicting
occupancy for demand management decisions, Ellero and Pellegrini [15] generated forecasts of room
occupancy (rather than arrivals) for a number of small city hotels in Italy, based on pickup methods
and proprietary software. According to these authors, however, even the best forecasts appeared
“of rather low quality”, with an overall Mean Absolute Error (MAE) of 19 rooms for the smallest hotel
in Turin (with a capacity of 139 rooms) and MAE in the order of 36-37 rooms for medium-sized hotels
in Rome and Milan (with a capacity of 247 and 283 rooms, respectively). These findings suggest that
additional research is needed to calibrate the application of advanced booking methods to the specific
features of hospitality SMEs, in order to provide these companies with more reliable information for
designing and implementing effective demand-side policies.

Given that no single model can outperform the others in all circumstances, forecast combinations
are an efficient way to limit potential forecasting failures. A number of studies in tourism and
hospitality forecasting have shown that combined methods are indeed able to reduce forecast risks
and improve forecast accuracy [23], subject to an appropriate calibration of the weights attributed to
each constituent forecast. Rather than suggesting complex models, these studies support the idea that
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combining simple techniques can improve the overall performance of the forecasts, particularly when
historical data are matched with recent booking data. Combined methods have been successfully
tested in the context of demand forecasting for aggregate tourism data [26] and for guest arrivals in
large international hotels [27]. However, the potential of combined forecasts for room occupancy in
hospitality SMEs is still controversial. In their study of small and medium-sized city hotels in Italy,
Ellero and Pellegrini [15] used combinations of historical and advanced booking forecasts in which
the time structure of the weights was fixed according to a deterministic rule. In particular, the weight
attributed to the short-term (pickup) constituent was 100% one week prior to the date of stay and then
decreased linearly to 0, by steps of 1/7, as the forecast horizon increased up to 8 weeks; the weights were
reversed for the long-term (historical) constituent. As noted by Ellero and Pellegrini [15], this approach
resulted in very limited improvement (close to 1% in terms of Mean Absolute Percentage Error) relative
to the individual performance of the best pickup forecast. Hence, in order to enhance the quality of
demand forecasts for hospitality SMEs, the investigation of innovative combination strategies appears
to be a relevant research direction.

3. Methodology

3.1. Data

The data for this study were provided by three small to medium-sized Italian hotels that, in the
following, will be referred to as hotel 1, 2 and 3, respectively.

Hotel 1 and 2 are family-owned properties located on Lake Maggiore, a seasonal tourism
destination in Northern Italy. The first is a five-star, 253-room hotel; the second is a four-star lodge with
128 rooms. Both properties are characterized by a seasonal closure between mid-October and early
April: this feature has rarely been considered in hospitality research and explains the interest for the
present analysis. Hotel 1 and 2 provided access to daily reservation data for three consecutive years,
2007-2009, during which special events were frequently hosted in the hotels themselves (wedding
parties, conferences, business conventions) as well as in surrounding areas (exhibitions, sightseeing
tours). These circumstances attracted a highly diversified customer base, including business/leisure
and individual/group clients. Hotel 3 is a four-star city hotel in Milan, with 144 rooms. The hotel, which
is open on a yearly basis, provided access to daily reservation data covering the period from 1 January 2011
to 12 November 2014 (approximately four years). Similar to hotels 1 and 2, hotel 3 also hosts a mixture
of leisure and business customers, who are often attracted by special events (trade fairs, meetings and
exhibitions) organized by the municipality throughout the year.

For all properties, the information stored in each reservation record includes the booking date,
the arrival date, the (LOS) and the number of rooms booked. Although the customer base of the three
hotels has a heterogeneous composition, an effective segmentation appears to be impracticable since
guests’ characteristics often overlap (e.g., business guests may book either as individuals or corporate,
arrive on a weekday for a business meeting and then stay over the weekend for a sightseeing tour or
a cultural event). In this context, it seems more reasonable to aggregate all customers into a unique
demand segment, as suggested in previous studies of small roadside hotels in the US [9] and small city
hotels in Italy [15].

For hotel 1 and 2, each year in the sample period was processed separately, in consideration of the
seasonal closures. The corresponding time series of daily room occupancy are shown, respectively,
in Figures 1 and 2. Figure 3 displays the (uninterrupted) time series of daily room occupancy for hotel 3
over the whole sample period. All figures exhibit significant peak-trough fluctuations, revealing that
demand for all hotels is extremely volatile even in the short period.
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Figure 1. Hotel 1, time series of daily room occupancy for years 2007 (top), 2008 (center), 2009 (bottom).
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Figure 2. Hotel 2, time series of daily room occupancy for years 2007 (top), 2008 (center), 2009 (bottom).
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Figure 3. Hotel 3, time series of daily room occupancy from 1 January 2011 to 12 November 2014.

A number of reasons were suggested in literature to explain why hospitality SMEs face a more
volatile demand compared to their larger competitors. In addition to the presence of mixed clientele
and special events as discussed above, these reasons include the inherent noise of reservation data,
which are often recorded by staff with no specific training. These features make the task of forecasting
demand for hospitality SMEs a very difficult one.

3.2. Forecasting Methods

Previous studies of hospitality SMEs in Italy [15,24] report the use of two types of demand
forecasts, one based on historical booking data (long-term perspective) and the other based on
advanced booking data (short-term perspective). Sections 3.2.1 and 3.2.2 illustrate these methods and
propose a few simple modifications to account for special events and LOS information.

As anticipated in Section 2, multiple studies have shown that there is no single best method
for all cases and increasing model complexity does not necessarily produce more accurate forecasts.
Therefore, the combination of different methods can be useful to reduce forecast errors, particularly
when historical data are matched with recent booking data. In this regard, Section 3.3 introduces
a performance-based weighting scheme that integrates the historical and the pickup method into
a long-short forecast combination. Some measures of forecast accuracy, that will be used in the
following analysis, are discussed in Section 3.4.

3.2.1. Historical Booking Forecasts

Daily series of hotel occupancy suggest that reservations behave similarly if they refer to the same
calendar period and the same day-of-week. Therefore, the simplest occupancy forecast for a given
day ¢t (say, Wednesday, 18 July 2018) is the occupancy observed for the same day of the previous year
(i.e., Wednesday, 19 July 2017). Formally,

FT,w,d = YT—l,w,d/

where F; ,, ; denotes the historical booking forecast of reservations for day-of-week d (1 < d <7)
in week w (1 < w < 52) of year T and Y;_1 4,4 is the observed number of reservations received
for the same day-of-week in the same week of the previous year. This naive approach, known
as “Same day-Last year” (SdLy), is often the only forecast implemented by hotel staff in small to
medium-sized properties [24].

The main advantages of the SdLy method are minimal data requirements and ease of
implementation. Nonetheless, a recent study [28] has shown that, in a number of circumstances,
the performance of SdLy forecasts is comparable to that of more sophisticated time series models over
multi-step-ahead forecast horizons.

A major shortcoming of SdLy forecasts is the use of a single data point, which may be subject to
considerable noise. However, when SdLy is replaced by a simple average of occupancy levels on the
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same day of a few previous years, a substantial increase in forecast errors is possible [28]. A plausible
explanation for these findings relates to the influence of special events that take place in the hotel itself,
or in the destination. As the timing of such events varies from year to year, occupancy forecasts based
on past years’ information may be seriously biased on specific days. A typical solution consists in
regarding unusual days as outliers and removing them from the dataset. However, a long history
of reservation data is needed to correctly apply outlier suppression techniques, and their impact on
forecast quality is still controversial [15].

This study suggests an alternative approach that can be useful in the context of small seasonal
hotels, in which the occupancy level is strongly dependent on special events that are already scheduled
by the beginning of the current season (e.g., Easter, recurrent trade fairs, bank holidays). Based on
publicly available information, the SdLy forecast for a day 4 in which a special event will take place in
year T can be replaced by the occupancy level recorded for the corresponding day of the same event
in year T — 1. Conversely, the SdLy forecast for a day d in which no special events are scheduled for
year T can be replaced by the occupancy level in the nearest “ordinary” day-of-week in year 7 — 1.
This modified SdLy approach, that is simply referred to as the historical (Hist) method in the rest of
the paper, will be empirically tested in Section 4.

3.2.2. Advanced Booking Forecasts

Advanced booking methods exploit the daily records on how reservations are accumulating as
time approaches the date of stay. Among them, the pickup techniques are the most commonly used.
To forecast the arrivals on a future date, these methods integrate the number of bookings on hand on
a given reading day with a quantity that is representative of the incremental bookings that will be
“picked up” between the reading day and the stay night. Research in hospitality forecasting divides
pickup methods into additive pickup (AP) and multiplicative pickup (MP). These are briefly described
in the following paragraphs (for additional details, the interested reader is referred to, e.g., [14,25,29]).
A step-by-step guide to reading reservation data and implementing pickup methods is provided in
Appendix A.

Additive Pickup

In the AP, the number of reservations on hand is assumed to be independent of the total number
of rooms sold. Hence, the final number of rooms booked for a given arrival day is estimated by
adding the number of bookings accumulated until the current reading day to a sum of estimated
pickup increments between consecutive lead times. Let b; ; denote the number of reservations received
for the i-th check-in day at least j periods in advance, with j = 0,1, ..., ] indicating the reservation
“lead time” (in particular, j = 0 identifies the "walk-ins”, i.e., customers who check-in without reserving
in advance). Then, the difference

a;j = bjj_1— bj; @

represents the net increment in bookings between lead times jand j — 1,forj =1,...,]. On areading
day d, the k-period moving average

t—1
Y ai )
k

i=t—

| =

ag(j) =

is the AP estimate of the expected pickup of rooms between lead times j and j — 1, for a future check-in
dayt=d+j(j=1,...,]). Fors > 1, a s-period-ahead forecast of the final number of reservations for

t is computed by:
j
AP _
Fiy) = b+ Y g, ®)
s=1

where b; ; denotes the latest cumulative bookings observable on the reading day d for the check-in day
t=d+j.
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Multiplicative Pickup

The MP method assumes that the reservations on hand affect the rate of increase in room demand
for future periods. Hence, the final number of reservations for a future check-in day is obtained
by multiplying the number of bookings accumulated until the current reading day by a product of
estimated pickup ratios between consecutive lead times.

Let m;; denote the ratio between the number of rooms booked with lead times j — 1 and j
(j=1,...,)) for the i-th check-in day, then

bij1
b

mij = - @)
7

On a reading day d, the hotel is interested in forecasting the total number of reservations for
a future check-in day t = d + j. Assuming that a volume-weighted average provides the most reliable

results, the expected MP of bookings for t between lead times j — 1 and j can be estimated by:

-1 . t—1 ..
g = ) mij bij  _ Yicgybij
dij) — L il g - il g
i=t—k i=t—k “1,] i=t—k “L]

, ©)

where k > 1 is the length of the moving average. The s-period-ahead forecast of the final number of
reservations for t is then computed by:

j
F%Pl = by 1‘{ i ys)- 6)
s=

From Arrivals to Occupancy

A major limitation of all pickup methods is that they only forecast arrivals and not occupancy,
since differences in LOS among the various reservations are not taken into account [16]. Nonetheless,
LOS information impacts hotel occupancy and is a determinant of denials of booking attempts.
Moreover, occupancy rates play a major role in hospitality RM as they guide hotel executives in
deploying LOS controls in view of increasing occupancy on “shoulder” nights.

This study proposes a simple technique to incorporate LOS information directly into the
reservations on hand in view of replacing the number of arrivals with the number of rooms effectively
occupied by guests. Suppose that a hotel receives, j periods prior to a given arrival day ¢, a room
reservation for r consecutive nights. It follows that the hotel occupancy for day t increases by one room
as a consequence of a reservation received with lead time j; the occupancy for day t + 1 increases by
one room corresponding to one reservation with lead time j 4 1; and so on. Finally, the occupancy level
for t + r — 1 (the night before the departure) increases by one room corresponding to a reservation with
lead time j + r — 1. In other words, one r-night reservation for arrival day ¢ can be decomposed into r
single-night reservations with different dates of stay (from f to f + r — 1) and associated lead times
(from j to j + r — 1). Based on this decomposition, it is possible to re-define the cumulative bookings
used in pickup Formulae (1) and (4) in such a way that b; ; now denotes the effective room occupancy
rather than the number of arrivals. This information can be immediately processed by AP and MP
algorithms to generate forecasts of future room occupancy based on Equations (3) and (6), respectively.

Calibration of AP and MP Averages

In practical applications of pickup methods, the most appropriate number of periods to include
in moving averages of AP increments (2) or MP ratios (5) need to be determined. While some authors
work with all the historical reservations available (see, e.g., [8]), others recommend the use of a limited
amount (usually 3 to 6 weeks) of past data (see, e.g., [14]). Since the best solution appears to be
context-specific, it is important to calibrate AP and MP estimates to optimize forecast quality in relation
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to the demand function faced by individual hotels. The approach proposed in the present study
requires the creation of a training set of past reservation data. Based on the training set, the best number
k% of periods to include in pickup averages can be determined by minimizing the Mean Square Error
(MSE) of occupancy forecasts:

MSE,, % i (Y - ) )2, )

where Y; denotes the true occupancy on day £, Fy,) is the corresponding AP or MP forecast generated
s-periods prior, # is the total number of such forecasts. The optimal k} obtained from the training set
can subsequently be used to generate s-step-ahead forecasts of future room occupancy.

The proposed criterion is also related to the objectives of the next research stage. In particular,
if the length of the pickup averages is calibrated by minimizing (7), it is then possible to use the
minimum MSE at each forecast horizon to determine a performance-based weighting for the pickup
component in the forecast combinations. This proposal is illustrated in the next section.

3.3. Performance-Based Combinations

Individually, pickup and historical booking forecasts track the dynamics of different time scales.
As argued in Andrawis et al. [26], combining two methods based on diverse information sources can
substantially reduce the forecast error variance, leading to a forecast quality which is often superior to
that of either method on its own.

Ways to best combine forecasts have been widely investigated. A simple but effective approach
consists in applying a dynamic weighting scheme that is updated according to the number of steps
ahead being forecast. When the date of stay is far into the future, more weight should be assigned to
the historical booking method, which is based on a long-term perspective. Conversely, the pickup
method, which is more reactive to recent demand shifts, should have a greater influence on the forecast
combination when the date of stay is imminent [15]. Another well-established approach consists in
weighting each constituent method according to its historical performance. Thus, more weight should
be put on methods that have produced relatively more accurate forecasts in the recent past [23].

This work proposes a new combination strategy that is both performance- and time-weighted.
Denote by Y; the actual occupancy on a given day ¢ and by Ft[é]s)
prior by method i. Here, any pickup method (AP or MP) is identified by i = 1 and the historical
booking method by i = 2. Based on a training set of data, the performance of each method at forecast
horizon s is evaluated by the corresponding MSE:

a forecast of Y; generated s periods

0 i
MSE, = ;(Y Ft(s)) /

(1]

where 7 is the total number of s-step-ahead forecasts available. Assuming that the ratio of MSE(S) over

MSEE]) is approximately stable over time, a combined s-step-ahead occupancy forecast for a future
day ¢ can be defined by:

wl'EL + (1 - wl)E7) ®)
where 2
o MSE)
MsEelY 1 Msg?

(s) (s)

(1]

denotes the relative weight of the first constituent (pickup) and (1 — ws ') is the relative weight of the
second constituent (historical booking).

The outcome of this approach is a performance-based weighting scheme tailored to the forecast
horizon. As time nears the date of stay, the forecast combination adapts dynamically to changes in the
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relative performance of the constituent methods. More details on estimation and empirical results are
given in Section 4.

3.4. Forecast Accuracy

In addition to the MSE, several measures of forecast accuracy have been used in literature to
compare the performance of alternative forecasting methods (see, e.g., [11] for a comprehensive study).
Based on the forecast error

ey = Yt — Ft(s)/ (9)

the following accuracy metrics will be used in Section 4 to evaluate multiple aspects of forecast quality:

e  Mean Absolute Error (MAE):

1 n
MAE = — et|.
=) el
t=1
The measure is expressed in the same scale (= number of rooms) as the data, thus allowing a direct
evaluation of losses associated to forecast errors

e  Mean Absolute Scaled Error (MASE):

%2?:1 et

MASE = ——- .
T Lo | Vi = Yi|

This is a scale-free metric with denominator given by the in-sample MAE of a naive method,
the one-step-ahead random walk. The measure is easily interpreted as the relative performance
gain (MASE < 1) or loss (MASE > 1) of the proposed approach compared to the naive method.
It can be used to compare forecast methods on a single demand series (like MAE) and also to
compare forecast accuracy between series.

e  Mean Absolute Percentage Error (MAPE):

vare_ L Lo
=0

This is the percentage-error measure most frequently used in practice: it is meaningful to decision
makers, easy to communicate and useful in comparing forecasts from different situations.

In real-world circumstances, hotel room occupancy has to be predicted and re-predicted multiple
times as the date of stay approaches. Forecasts computed several weeks in advance allow Revenue
Managers to plan marketing strategies that could be implemented in response to possible low-demand
periods, usually in cooperation with the sales team. Conversely, short-term forecasts (with a lead
time of one or two weeks) are instrumental to choices among a few tactical options (such as adjusting
inventory controls). It is consequently crucial for an effective demand management system to evaluate
the accuracy of a forecasting method separately at a number of different forecast horizons and to
monitor how accuracy evolves as the date of stay approaches. This dynamic perspective is adopted in
the empirical analysis presented in the next section.

4. Results

The datasets described in Section 3.1 were used to test AP and MP individually, and then in
combination with the historical (Hist) method according to the performance-based criterion described
in Section 3.3.

4.1. Preliminary Analysis

Since the data reservation patterns and volumes exhibit a strong weekly seasonality, the forecasting
problem was separated by day-of-week as is common practice in the hotel industry [9]. For each year
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in the sample period, arrivals were combined with LOS information to generate seven occupancy
matrices, each reflecting the buildup of reservations on a specific weekday. The occupancy matrix of
past Mondays was then used to forecast occupancy on future Mondays, and so on.

Occupancy records were compared to the capacity of each hotel to detect possible outliers and
inconsistencies in the data. When the occupancy exceeded the hotel capacity, the corresponding data
were adjusted to reflect the effective number of rooms available in each hotel. Following Ellero and
Pellegrini [15], no other outlier suppression technique was applied since using effective reservation
records appeared to improve the quality of pickup forecasts.

The study was divided in two stages. Forecasts of daily room occupancy for a specific date were
computed six times before the date, using forecast horizons s of one to six weeks ahead. In the first
stage, data from 2007-2008 (hotel 1 and 2) and from 2011-2013 (hotel 3) were used as a training set to
calibrate values of the forecast parameters k; and wy] for s = 1,...,6 weeks (forecast horizon). In the
second stage, data from 2009 (hotel 1 and 2) and from 2014 (hotel 3) were used as an evaluation set to
compare the accuracy of individual and combined forecasting methods. For hotel 1, the forecasting
period was chosen to cover all dates between July, 1 (beginning of high season) and 12 October, yielding
a total number of 104 daily occupancy forecasts for each forecast horizon. For hotel 2, in view of the
later seasonal opening, the forecast period was shifted to 15 July—22 October (100 forecasts for each
forecast horizon). For hotel 3, thanks to the availability of an uninterrupted time series, it was possible
to obtain 316 daily occupancy forecasts for each forecast horizon, covering the period from 1 January to
12 November.

All calculations can be performed in a worksheet environment, with minimal training.

4.2. Stage 1: Calibrating Forecast Parameters

4.2.1. Pickup Averages

Based on the training set, AP and MP forecasts were computed with different amounts of sample
data (k = 1,...,16 weeks, possibly subject to data availability). The best number k; of periods to
include in pickup calculations was determined separately for each forecast horizon according to the
lowest MSE of occupancy forecasts (7). Table 1 illustrates the results (the table refers to year 2008 for
hotels 1 and 2, and to pooled years 2011-2013 for hotel 3).

Table 1. Best amount of weekly data to include in pickup averages, respectively for additive pickup
(AP) and multiplicative pickup (MP), by forecast horizon s (with s ranging from one to six weeks prior
to the date of stay). In brackets: square root of the minimum Mean Square Error (MSE).

Hotel 1 Hotel 2 Hotel 3
AP MP S AP MP S AP MP

3(1493)  3(15.93) 1 291 3 (8.84) 1 16(1647) 16 (20.53)
2(25.71)  2(27.45) 2 2(1181)  2(13.37) 2 16(2081) 16 (29.48)
10*(36.36) 10 * (37.02) 3 2(1641)  2(17.33) 3 16*(21.93) 16(33.43)
4 4
5 5

»

9%(4291)  9*(4545) 10 *(22.38) 10 * (24.48) 16 *(22.98) 16 (37.17)
8 *(47.23) 8 *(49.90) 9%(24.43) 9*(26.94) 16 *(23.06) 16 (39.52)
7*(51.99) 7 *(56.86) 6 8%*(24.99) 8 * (27.60) 6 16%*(23.18) 16 (44.99)
* The MSE was monotonically decreasing as the number of weekly data used in pickup forecasts increased.

In these circumstances, the minimum MSE was reached by the longest pickup average compatible with the
sample size, given the forecast horizon.

U= WD =

For seasonal hotels 1 and 2, both pickup methods displayed similar error patterns. Pickup forecasts
based on short moving averages (ki = 2,3 weeks of sample data) performed generally better over short
forecast horizons. Conversely, as the forecast horizon increased, the MSE decreased monotonically
with k for both hotels, independently of the pickup method in use. In particular, the optimal calibration
of pickup forecasts required the maximum amount of sample data available in the training set when
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the forecast horizon exceeded, respectively, 2 weeks for hotel 1 and 3 weeks for hotel 2. For hotel 3,
AP was considerably more accurate than MP. For both methods, the optimal length of pickup averages
was equal to 16 weeks across all forecast horizons.

4.2.2. Performance-Based Weights for Combined Forecasts

For seasonal hotels 1 and 2, Hist forecasts for the year 2008 were generated from 2007 occupancy
data using the SdLy method adjusted for calendar effects and public information available at least six
weeks before the date of stay. For hotel 1, the Hist method performed sensibly worse than both pickup
methods, with a square root of the MSE close to 63 rooms. Conversely, for hotel 2, the square root of
the MSE for Hist forecasts was equal to 27.46, not far from the performances of AP (24.99) and MP
(27.60) over a 6-week forecast horizon (cf. Table 1).

For hotel 3, based on the availability of a longer and uninterrupted time series, the Hist method
for a given day-of-week 4 in 2013 was implemented by averaging the occupancy levels on the
corresponding day-of-week for years 2011 and 2012. This gave a square root of the MSE for Hist
forecasts equal to 28.53, considerably worse than AP but more accurate than MP over forecast horizons
exceeding 2 weeks.

Assuming that the MSE ratio between Hist and pickup forecasts is approximately stable over time
in each hotel, the MSE estimates obtained for AP, MP and Hist over the training set were used to calibrate
the weights of forecast combinations for future years, as explained in Section 3.2.2. In particular, the
MSE estimates retained for AP and MP were those corresponding to the best-performing pickup
calibrated to each forecast horizon (Table 1). These MSEs were combined with those of Hist forecasts
according to the weighting scheme given in Equation (8). The first constituent forecast (to be assigned
weight wE]) was identified with either AP or MP, the second constituent (with weight 1 — wgl]) was
identified with Hist. The outcome of this approach, shown in Table 2, was a performance-based
weighting scheme that varied according to the forecast horizon. As the occupancy date moved far into
the future, more and more weight was attributed to the Hist component, whereas when the occupancy
date became imminent, more and more weight was put on pickup forecasts. For seasonal hotels 1 and
2, this time-varying structure appears to be influenced by the choice of the pickup method only to
a limited extent, as wy was slightly higher for AP compared to MP. The relative weight of the Hist
constituent was quite relevant for hotel 2, in which the performance of this method was comparable to
that of pickup forecasts. Conversely, for hotel 1, the weight attributed to the Hist constituent never
exceeded 45%, even at the longest forecast horizons. Interestingly, for hotel 3, the weight attributed to
the Hist component was sensibly higher in combination with MP, since Hist forecasts outperformed
MP forecasts considerably for s > 2 over the training period.

4.3. Stage 2: Evaluating Forecast Accuracy

In the second stage of the empirical study, the accuracy of individual pickup forecasts (AP, MP)
and combined pickup /historical forecasts was tested on the evaluation set. In addition to forecast
combinations with performance-based weights, the study includes a simple combination assigning
50% weight to both Hist and pickup forecasts, irrespective of the forecast horizon. The different
combinations are identified by the following notation: AP-S (respectively, MP-S) denotes the
simple, equally weighted average of additive (respectively, multiplicative) pickup and Hist forecasts;
AP-W (MP-W) is the performance-weighted combination of additive (multiplicative) pickup and
Hist forecasts.

In order to compare the accuracy of the proposed methods with a commonly used benchmark,
a simple moving average (MA) of length m > 1 was used:

Ly
Fi=—) Yi,
mi=
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where F; is the one-step-ahead MA forecast computed by averaging the last m records of observed
demand for a specific day-of-week d. Based on preliminary analysis performed on the training set, the
parameter m was set equal to 3 for hotels 1 and 2, and 5 for hotel 3.

Table 2. Percentage weights for performance-based combinations of pickup and historical booking
(Hist) forecasts, according to the forecast horizon s (from 1 to 6 weeks). AP denotes Additive Pickup,

MP denotes Multiplicative Pickup.

Hotel 1
5 1 2 3 4 5 6
AP 9449 8635 7458 68.09 64.61 61.07
Hist 551 13.65 2542 3191 3539 3893
MP 91.78 8394 6995 6148 58.73 54.03
Hist 822 16.06 30.05 3852 4127 4597
Hotel 2
s 1 2 3 4 5 6
AP 9235 8428 5566 4376 4298 40.76
Hist 7.65 15.72 4434 5624 57.02 59.24
MP 8894 69.95 55.08 4797 38.66 36.31
Hist 11.06 30.05 44.92 52.03 6134 63.69
Hotel 3
S 1 2 3 4 5 6
AP 7498 6526 6285 60.64 6047 60.65
Hist 25.02 34.74 3715 3936 3953 39.35
MP 65.89 4836 4214 37.06 3423 31.70
Hist 34.11 51.64 57.86 6294 65.77 68.30

For each forecast horizon s (s = 1, ..., 6 weeks), the best performing method was identified as
that delivering, on average, the lowest forecast error according to the accuracy metrics described
in Section 3.4. The outcomes of the different metrics (MAE, MASE and MAPE) are summarized in
Tables 3-5, respectively for hotel 1, 2 and 3. At every forecast horizon, the best and worst method(s)
were compared (the simple moving average (MA) was not included in this comparison because it was
not used in forecast combinations (it was just included in Tables 3-5, as a benchmark model)) for each
hotel and the percentage reduction in forecast errors from the worst to the best method was averaged
across the various accuracy measures (Table 6).
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Table 3. Hotel 1, forecast accuracy of alternative models evaluated by MAE, MASE and MAPE,
separately for each forecast horizon s (from 1 to 6 weeks). MAPE values are expressed as percentages.

AP denotes additive pickup, MP multiplicative pickup, AP-S (respectively, MP-S) is the simple

combination of Hist and additive (resp. multiplicative) pickup, with equal weights; AP-W (MP-W) is

the performance-weighted combination of Hist and additive (multiplicative) pickup, MA(3) denotes

a simple moving average of length 3. Bold characters identify the best-performing method according

to each metric.

MAE
s AP APS AP-W MP MPS MP-W MA(Q)
1 1026 2399 954 1097 2461 1055 37.21
2 1668 2512 1561 174 2485 1568  38.65
3 2871 2953 2525 2652 2822 2297 4557
4 3243 3152 2903 3158 3125 2895 4947
5 3491 32.88 30.83 3425 3351 3191  51.74
6 3768 3316 3249 3654 3281 3198 5158
MASE
s AP APS AP-W MP MP-S MP-W MAQ)
1 017 040 016 018 041 018 062
2 028 042 026 029 042 026  0.64
3 048 049 042 044 047 038 076
4 054 053 049 053 052 048  0.82
5 058 055 052 057 056 053 086
6 063 055 054 061 055 053 086
MAPE (%)
s AP APS AP-W MP MP-S MP-W MAQ)
1 645 1668 590 7.07 1688 652 2647
2 1239 1743 1004 1091 1713 1005  27.09
3 1994 2023 1692 1650 1881 1478  32.50
4 2368 2197 2017 2063 2113 1937 3452
5 2526 2276 2156 2228 22.66 2134 3570
6 2764 2335 2294 2513 2264 2197 3470
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Table 4. Hotel 2, forecast accuracy of alternative models evaluated by MAE, MASE and MAPE,
separately for each forecast horizon s (from 1 to 6 weeks). Bold characters identify the best-performing

method according to each metric. MAPE values are expressed as percentages (cf. Table 3 for notation).

MAE
s AP APS AP-W MP MPS MP-W MAQ)
1 745 899 691 84 869 746  18.18
2 1364 1090 1155 1352 1081 1053  22.57
3 1794 1264 1278 1794 1284 1297 2533
4 2390 1654 1602 27.09 17.16 1722  27.97
5 2460 1777 17.00 3361 2093 19.09  29.11
6 2995 1778 17.39 3285 2151 19.86  29.14

MASE
s AP APS AP-W MP MP-S MP-W MAQ)
1 034 042 032 039 040 035 0.85
2 063 050 053 063 050 049 1.05
3 08 059 059 083 059 0.0 1.18
4 111 077 074 125 079  0.80 1.30
5 114 082 079 156 097  0.88 1.35
6 139 082 081 152 100 092 1.36

MAPE (%)

s AP APS AP-W MP MP-S MP-W MAQ)
1 880 1233 826 971 1190 885  21.88
2 1672 1448 1421 1614 1414 13.02  26.76
3 2216 1692 1695 2146 1660 1646  30.63
4 3056 21.64 21.02 3465 2260 2264  33.13
5 3154 2294 2222 4455 2827 2488 3454
6 3941 2294 2253 4334 2898 2688  33.97




Sustainability 2019, 11, 1274 17 of 24

Table 5. Hotel 3, forecast accuracy of alternative models evaluated by MAE, MASE and MAPE,
separately for each forecast horizon s (from 1 to 6 weeks). Bold characters identify the best-performing
method according to each metric. MAPE values are expressed as percentages. (cf. Table 3 for notation).

MAE
AP AP-S AP-W MP MP-S MP-W MA()

1145 1238 10.87 1419 1267 11.99 19.08
1472 1425 13.82 2138 1585 15.82 21.98
1533 1463 1435 2597 1776 17.18 21.52
1671 15,60 1551 31.21 20.62 1898 21.56
17.09 1578 1574 3587 2232 19.58 21.52
18.78 16.54 16.68 41.05 2464 2051 21.49

MASE
s AP APS AP-W MP MP-S MP-W MA()

0.44 0.48 0.42 0.55 0.49 0.46 0.73
057  0.55 0.53 0.82 0.61 0.61 0.84
0.59 0.56 0.55 0.99 0.68 0.66 0.83
0.64 0.60 0.60 1.19 0.79 0.73 0.83
0.66 0.61 0.61 1.38 0.86 0.75 0.83
0.72 0.64 0.64 1.58 0.95 0.79 0.83

MAPE (%)
s AP APS AP-W MP MP-S MP-W MA({)

1058 11.62 10.19 13.03 11.57 10.88 18.34
13.70 1337 1296 1959 1424 14.23 21.26
1441 1382 1358 2399 1599 1552 21.51
1573 1469 14.62 2828 1837 17.01 21.66
1592 1481 14.77 3200 1955 1732 21.72
1739 1544 1556 3622 2132 1798 21.78

NGk WP |®»
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These findings indicate that, with the only exception of hotel 3 for a forecast horizon of 6 weeks,
the most accurate method was always a pickup/historical combination with performance-based
weights. For hotel 1, the combination included AP at short forecast horizons (s = 1,2 weeks) and MP
at longer horizons (s > 3 weeks). For hotel 2, the MP-W combination was optimal for s = 2,3 weeks,
whereas AP-W performed better at any other forecast horizon. For hotel 3, AP-W was optimal for
1 < s < 5and AP-S for s = 6. According to the tables, the best-performing combinations had MASE
between 0.16 and 0.53 for hotel 1, between 0.32 and 0.81 for hotel 2, between 0.42 and 64 for hotel 3.
These numbers represent much better forecasts, on average, relative to one-step ahead, naive forecasts
computed in sample.

Looking at the forecast-quality of individual pickup methods, MP appears globally more accurate
than AP for hotel 1 but (considerably) less accurate for hotel 2 and 3. Hence, the choice between
additive and multiplicative pickup is to be considered a context-specific issue. Moreover, performance
differences between forecast combinations and individual pickup methods were particularly evident
over forecast horizons exceeding 3 weeks: for hotel 1, the performance improvement from the
worst pickup (AP) to the best combined forecast (MP-W) was between 15.5% and 20.5%; for hotel 2,
MP (worst pickup) was outperformed by AP-W (best combination) by a factor of 39.3%-50.1%; for
hotel 3, AP-W improved over MP by a factor of 21.8%-53.8% (Table 6).

The simple average of Hist and pickup forecasts was frequently among the worst-performing
methods. In particular, for hotel 1 and s < 3 weeks, the use of performance-based weights led
to an improvement in forecast accuracy in the order of 27%-65% relative to equally weighted
combinations. These findings suggest that choosing an appropriate weighting scheme for combined
forecasts is crucial to forecast accuracy, particularly when constituent methods have different
individual performances.
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Table 6. Forecast accuracy and forecast error correlation. Left side (columns 1 to 4) best and worst
forecasting methods by forecast horizon s (1 to 6 weeks ahead), with % improvement in forecast
accuracy averaged across all error measures (in brackets: MAPEs). Right side (last two columns):
correlation between forecast errors made by historical booking (Hist) and pickup methods (cf. Table 3
for notation).

Hotel 1
Forecast Accuracy Error Correlation
s Best Worst Improv. Hist-AP  Hist-MP
1 AP-W (59%) MP-S(16.9%) 65.1%  —0.1230 —0.2322
2 AP-W (10.0%) AP-S(17.4%) 424%  —0.0327 —0.1136
3 MP-W (14.8%) AP-S(202%)  26.9% 0.1830 0.1290
4 MP-W (19.4%) AP (23.7%) 18.2% 0.1951 0.1488
5 MP-W (21.3%) AP (25.3%) 15.5% 0.2260 0.2156
6 MP-W (22.0%) AP (27.6%) 20.5% 0.1977 0.1892
Hotel 2
Forecast Accuracy Error Correlation
s Best Worst Improv. Hist-AP  Hist-MP
1 AP-W (83%) AP-S(12.3%) 33.0%  —0.0965 —0.1338
2 MP-W (13.0%) AP (16.7%) 25.7%  —0.0540 —0.0913
3 MP-W (16.5%) AP (22.2%) 25.7% 0.0759 0.0405
4 AP-W (21.0%)  MP (34.7%) 39.3% 0.1790 0.0973
5 AP-W (222%)  MP (44.6%) 50.1% 0.2611 0.2457
6 AP-W (22.5%) MP (43.3%) 48.0% 0.4005 0.3535
Hotel 3
Forecast Accuracy Error Correlation
S Best Worst Improv. Hist-AP  Hist-MP
1 AP-W (10.2%) MP (13.0%) 21.8% 0.2387 0.0590
2 AP-W (13.0%)  MP (19.6%) 33.8% 0.3910 0.1733
3  AP-W (13.6%)  MP (24.0%) 43.4% 0.4046 0.1207
4 AP-W (14.6%) MP (28.3%) 48.3% 0.4634 0.1570
5 AP-W (14.8%)  MP (32.0%) 53.8% 0.4679 0.1736
6  AP-S (15.4%) MP (36.2%) 57.4% 0.5072 0.2090

A further advantage of combining forecasts with different time frames emerges from the last two
columns in Table 6. The forecast error correlation between Hist and pickup was frequently close to zero
(and sometimes negative), indicating that forecast errors made by the two methods (partly) offset each
other. In practice, when the historical method overestimated occupancy on a given date, the pickup
method frequently underestimated it (and vice versa). As a consequence, the performance-weighted
combination of Hist and pickup forecasts was able to deliver good quality forecasts even in situations
when the Hist method (hotel 1), or the MP method (hotel 3), had a rather poor individual performance.

5. Discussion

The ability to forecast and, possibly, control demand fluctuations is crucial to the development of
tourism sustainability. Mismatching of supply and demand, with consequent over- or under-utilization
of capacity, are characteristic features of the tourist industry that threaten, in particular, small and
medium-sized seasonal hotels. Even if “for some hotels seasonal closure may continue to be the
most cost-effective method for dealing with pronounced seasonality” ([30], p. 138), nonetheless these
hotels may focus on improving occupancy levels during intermediate, or “shoulder”, seasons and
attempting to extend the main season. In particular, “the occupancy analysis needs to be performed
at the individual hotel level, and marketing plans to counteract seasonality should be tailor-made to
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suit the particular occupancy performance patterns and precise circumstances of the individual hotels
involved” ([30], p. 139).

The present study has focused on forecasting occupancy for hospitality SMEs, in which occupancy
levels are strongly dependent on external events and reservation data are difficult to handle due
to a variety of reasons (seasonal interruptions, sparse information, intrinsic noise). In a context
of growing global tourism markets, the ability to understand and anticipate the pattern of future
demand represents a competitive advantage for hospitality SMEs, since it is directly related to the
opportunity of designing effective demand-side policies as a response to dynamic changes in tastes
and customer habits.

As recommended by Koupriouchina et al. [11], the study was designed in relation to multiple
criteria, including data characteristics, practical implications of the forecasts, and the nature of decisions
derived from them. The proposed approach was tested on real reservation data provided by three
independent hotels in Northern Italy (one in Milan and two on Lake Maggiore, a seasonal tourism
destination). Whereas most of the hospitality forecasting research was conducted on large international
hotels and hotel chains, this data set is valuable also for low-volume, small to medium-sized businesses,
two of which are family-owned and operated on a seasonal basis. In all cases, our forecast combination
model performed better than the competing methods in terms of various error measures (MAE, MASE,
MAPE). These findings were (partly) expected since the combination of forecasting techniques has long
been a key direction of methodological development and a number of authors have shown that forecast
combinations are a robust approach to reduce the risk of large forecast errors (see, e.g., Wu et al. [23]
and the references therein).

5.1. Theoretical Implications

In addition to validating earlier findings about combinations of long-term and short-term
forecasts [26], the present work makes the point that using performance-based weights improves
forecast accuracy.

A peculiarity of the forecast combinations proposed here is that the weights are updated weekly
according to the relative forecast errors made by the short- and long-term constituent methods over
specific forecast horizons. This gives a performance-based weighting scheme that adapts dynamically
to the characteristics of demand functions experienced by the individual hotel. In particular,
performance improvements between 15% and 50% relative to the MAPE of individual pickup methods
were observed in the empirical study (Section 5). A further explanation for these findings relates to
the fact that forecast errors made by historical and pickup methods were nearly uncorrelated. Hence,
combining these forecasts with performance-based weights was a good strategy to take advantage
of (partial) compensations between negative and positive forecast errors made by each constituent
method. This effect was so relevant that it largely offset some inaccuracies of historical booking
forecasts (hotel 1 and 2) and MP forecasts (hotel 3).

In view of the importance of occupancy forecasting for implementing effective LOS policies,
the current study has introduced a simple method that integrates LOS information into the partially
accumulated reservations on hand. This generates occupancy-based reservation records that can be
used as inputs to conventional pickup methods. As shown in Tables 3-5, the proposed approach yields
accurate pickup forecasts of hotel occupancy. In particular, averaging the MAE of the best pickup
method over all forecast horizons gives a value of 23 for hotel 1 (253 rooms), 13 for hotel 2 (128 rooms)
and 16 for hotel 3 (144 rooms), which represents a considerable improvement in terms of forecast
accuracy relative to previous studies of small city hotels in Italy [15] and in the US [9].

5.2. Practical Implications

These findings underscore the importance that small to medium-sized hotels develop their own
demand forecasting systems combining internal resources with external information concerning
special events. As different businesses face different demand functions, the present study suggests
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that managers in hospitality SMEs should carry out an empirical analysis on the hotel’s own data.
In particular, a training set of (at least) two years of reservation records should be collected in view of
(a) testing the performance of long-term and short-term forecasting methods, (b) identifying which
methods generate the lowest correlation between forecast errors and (c) calibrating performance-based
weights to use in forecast combinations. Since timeliness is crucial to effective demand fulfillment
policies, the quality of individual and combined forecasts should be evaluated separately at different
forecast horizons (cf. [11]). As shown in the empirical study, this approach produces dynamic
adjustments in forecast combinations that can be helpful in capturing extreme demand fluctuations
experienced by small and medium-sized hotels.

Given that SMEs likely have limited access to technology and usually lack well-trained RM
personnel, the proposed models were designed for execution in a worksheet environment with minimal
training. It is nevertheless crucial to collect detailed customer information inside each organization,
and to carry out basic investments in human resources to achieve the competitive advantage that can
arise from increased productivity and managerial efficiency [31]. In this perspective, collaboration
with local authorities in reservation management and event planning appears to be a relevant direction
for sustainable development of the sector [1,4].

5.3. Limitations and Future Research

Although the proposed methodology leads to a number of practical implications, it should
be remembered that the current investigation is based on hotel-specific data provided by three
establishments for a limited period of time. Further empirical work is needed to develop a more
thorough understanding of specific demand features and possibly identify more sophisticated
strategies that could be implemented in the context of hospitality SMEs. In particular, a number of
socio-economic factors (including income, prices, exchange rates, marketing spending, infrastructures,
tastes and preferences) influence tourism demand at an aggregate level. The potential impact of
these factors on demand patterns for hospitality at a single-establishment level certainly deserves
further investigation.

Since occupancy levels appear to be strongly influenced by special events (trade fairs, international
holidays, exhibitions, .. .), future research could focus on the impact of collaborative networks and
public-private coordination in promoting off-season visits and possible season extensions [1,32].

In addition to external information about special events, managers of small and medium-sized
hotels are encouraged to collect internal information about customers’ countries of origin and/or
reservation channels (web, travel agencies, ...). These data could be used to identify and forecast
specific demand segments, offering a concrete alternative to the classical distinction between business
and leisure clients that is of little use in hospitality SMEs [9,15].

6. Conclusions

This study has investigated the application of demand forecasting models to hospitality SMEs,
based on hotel-specific data. The proposed models feature a combination of historical and advanced
booking forecasts, which are easily implemented in a worksheet environment and are compatible
with seasonal interruptions in reservation data. Empirical results obtained for three Italian hotels
show a considerable improvement in forecast accuracy compared to commonly used methods (such as
simple moving average). These findings underscore the importance of being able to forecast in the
hospitality sector in view of gaining a competitive advantage. In particular, the proposed approach
could help small and medium-sized hotels to develop effective demand-side policies, with the ultimate
purpose of enhancing their sustainable development.
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Abbreviations

The following abbreviations are used in this manuscript:

AP Additive pickup

AP-S  Equally weighted average of additive pickup and Hist forecasts
AP-W  Performance-weighted average of additive pickup and Hist forecasts
Hist Historical

LOS Length-of-stay

MAE  Mean Absolute Error

MASE  Mean Absolute Scaled Error

MASE Mean Absolute Percentage Error

MP Multiplicative pickup

MP-S  Equally weighted average of multiplicative pickup and Hist forecasts
MP-W  Performance-weighted average of multiplicative pickup and Hist forecasts
SMEs  Small and Medium Enterprises

Appendix A

Appendix A.1. The Cumulative Booking Matrix

Let b;; denote the number of reservations received for the i-th check-in day at least j periods
(days or weeks) in advance, with j = 0,1, ..., ] indicating the reservation “lead time” (in particular,
j = 0 identifies the “walk-ins”, i.e., customers who check-in without reserving in advance).
This information can be summarized into a cumulative booking matrix B = {b;;}. The structure
of this matrix is illustrated by a numerical example in the following table, where today is represented
by row i = 5 and future dates i = 6,7, 8 have to be forecast.

The information contained in Table Al can be read as follows. On date 5 (today), 70 rooms were
reserved by walk-in customers (j = 0), 63 rooms were reserved at least one period in advance (j = 1),
44 rooms were reserved at least two periods in advance (j = 2), and so on. For tomorrow (i = 6),
information is available for rooms that have been reserved at least one period in advance, fori =7
information is available for rooms that have been reserved at least two periods in advance, and so on.
Advanced booking models use reservation data from the cumulative matrix B both for completed stay
nights (i < 5) and for stay nights which have not yet occurred (i > 5), since partially accumulated
bookings are nonetheless available.

Table A1l. Cumulative booking matrix, a numerical example.

Number of Days Prior to Date of Stay

Date of Stay 0 1 2 3 e J
1 70 60 50 35 10

2 90 75 60 40 9

3 75 66 57 42 8

4 80 75 57 32 7

5 (today) 70 63 44 29 1
6 - 60 46 30 15

7 - - 35 28 1

8 - — - 25 3

Appendix A.2. Multiplicative Pickup (MP)

For multiplicative pickup (MP), the information given in consecutive columns of B is used to
compute the average pickup ratio between consecutive booking periods, according to Equation (5).
This is illustrated in Figure A1, where the elements in the numerator and denominator of each
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pickup ratio are included in a gray rectangle. The one-period-ahead pickup ratio, denoted by i),
is multiplied by 60 (the bookings on hand for day 6) to obtain the MP forecast of rooms for i = 6.
The product of two consecutive pickup ratios, 77ig(1) and 74 (2), is multiplied by 35 to obtain the MP
forecast of rooms for i = 7 (two-period-ahead). Finally, the product overlinemgy), g () and 7ig(3) is
multiplied by 25 to derive the MP forecast of rooms for i = 8 (three-period-ahead).

Cumulative booking matrix B

Number of days prior the date of stay

Date of stay 0 1 2 3 J
1 70 60 50 35 10

2 90 75 60 40 9

3 75 66 57 42 8

4 80 75 57 32 7

5 (today) 70 63 44 29 1
6 60 46 30 15

7 35 28 4

8 25 3

A%

Average pickup

g 1.14 1.28 1.48
ratio m,)
D:::YOf Multiplicative pickup forecasts computed today (date 5)
6 FMP = bgy X i) = 60 X 1.14 = 68.4
7 FME = by, X ig)q X ez =35 X 1.14 x 1.28 = 51.1
8 F5) = bg3 X g1 X Mg)2 X M(g)3 = 25 X 1.14 X 1.28 X 1.48 = 54

Figure A1. Derivation of MP forecasts for dates 6,7, 8, based on (complete and incomplete) booking
information available today (i = 5).

Appendix A.3. Additive Pickup (AP)

The derivation of additive pickup (AP) forecasts starts from the incremental booking matrix A,
which is obtained by subtracting consecutive columns of matrix B as explained in Equation (1) and
illustrated here in Figure A2. Simple moving averages of incremental bookings are computed to
estimate the expected pickup of rooms between consecutive booking dates, according to Equation (2).
The figure illustrates these calculations for a pickup average of length k = 5, yielding the net average
pickup increments denoted by 44(;). Adding these increments to the latest bookings on hand for
a particular stay date (i = 6,7, 8) gives the AP forecast of rooms for the corresponding date, as shown

in the figure.
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Incremental booking matrix A

Number of days prior the date of stay

Date of stay 1 2 3 J
1 10 10 15 byj—byjs
2 15 15 20 byy —by -1
3 9 9 15 bs; — bz ;-1
4 5 18 25 byj — by -1
5 (today) 7 19 15 bs; —bs ;1
6 - 14 16 be; — bsj-1
7 - - 7 by — by 1
8 - - - bg; —bg ;1
Net average 9.2 15 15.6
pickup @) ;
Date of stay Additive pickup forecasts computed today (date 5)
6 Féhy =beq+a1=60+9.2=692
7 F{y =bsz+ a1+ 82 =35+92+15=59.2
8 Fghy =bgz+ae)1 + a2 + 83 =25+92+15+15.6 = 64.8

Figure A2. Derivation of AP forecasts for dates 6,7, 8, based on (complete and incomplete) booking
information available today (i = 5).
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