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Abstract: Biofuels and electrification are potential ways to reduce CO2 emissions from the transport
sector, although not without limitations or associated problems. This paper describes a life-cycle
analysis (LCA) of the Brazilian urban passenger transport system. The LCA considers various
scenarios of a wholesale conversion of car and urban bus fleets to 100% electric or biofuel (bioethanol
and biodiesel) use by 2050 compared to a business as usual (BAU) scenario. The LCA includes
the following phases of vehicles and their life: fuel use and manufacturing (including electricity
generation and land-use emissions), vehicle and battery manufacturing and end of life. The results
are presented in terms of CO2, nitrous oxides (NOx) and particulate matter (PM) emissions, electricity
consumption and the land required to grow the requisite biofuel feedstocks. Biofuels result in similar
or higher CO2 and air pollutant emissions than BAU, while electrification resulted in significantly
lower emissions of all types. Possible limitations found include the amount of electricity consumed
by electric vehicles in the electrification scenarios.
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1. Introduction

This article describes a life-cycle analysis (LCA) performed for urban passenger transport (cars,
urban buses and bus rapid transit (BRT) buses) in Brazil for the years 2015–2050 in five-year steps,
calculated in a spreadsheet. The LCA compares the effect of a gradual but complete shift to the use
of either biofuels or battery electric vehicles (BEVs) from a 2015 starting point and compared to a
business as usual (BAU) scenario. The scenarios assume that the only change made is the propulsion
technology/fuel used and that the distance driven by all vehicles (within each mode) per year is the
same for all scenarios. The authors acknowledge a wholesale conversion to a particular powertrain
type is neither realistic or necessarily desirable, but the intention of this LCA is not to provide a forecast
of greenhouse gas (GHG) and air pollution emissions or other factors; the system is too complex and
the uncertainties too great. Instead, the intention is to compare the effect of applying the various
technologies/fuels in extremis in order to discern their effect in a simplified manner and identify any
possible limitations and allow further discussions on the ideal policy strategy.

1.1. Literature Review

Changing from the use of internal combustion engine vehicles (ICEVs, i.e., conventional petrol- or
diesel- fueled vehicles) offers potential GHG emissions savings. The literature contains a wide range of
estimates on how much this potential is, and what is important in determining it. Hawkins et al. [1]
find the advantage of EVs to be 9%–29% less than petrol vehicles (EVs using EU-average electricity),
while Garcia et al. [2] find it to be 30%–39% in Portugal. Abdul-Manan [3] quotes a 10%–60% advantage
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in other studies, and also finds a 40% reduction in GHGs, along with a 60% likelihood that GHG
emissions would increase if hybrid electric vehicles (HEVs) were displaced by BEVs.

From an LCA perspective, the major difference between a BEV and its ICEV equivalent is a shift
of emissions from those produced in the production and use of fossil fuel to those from the production
of batteries and the electricity used to power the vehicle. It follows that the major determinants of the
overall effects of BEVs relate to the production of vehicles and their batteries, and the electricity used
to power them.

Given the production-heavy emissions profile of BEVs, the lifetime of the vehicles and their
batteries significantly affects the lifetime CO2 emissions [1,2,4–10], i.e., how many driven km before
either must be replaced; this need not be the same value, as a vehicle’s battery may be replaced before
the end of the vehicle’s life. Peters et al. [10] point out that most of the LCA studies reviewed focus
primarily on assessing impacts through storage capacity basis rather than accounting for the battery
lifetime, which they suggest might lead to misleading conclusions.

Battery manufacturing, and in particular the cell chemistry adopted to manufacture the battery, is
another significant determinant of the overall CO2 emissions. Several studies examine various effects of
different cell chemistries [7,11–13]. Depending on the electricity used to power the EV in its use phase,
battery manufacturing was found to contribute between 8% and 38% of the total life-cycle emissions
(Poland and Sweden, with electricity CO2 emissions of with 650 and 20 g/kWh, respectively), or 15%
at the EU-average electricity CO2 emissions (300 g/kWh) [14]. Notter et al. [7] estimate that batteries
cause 7%–15% of the environmental impacts of e-mobility, while Ambrose and Kendall [15] estimate
that the battery production phase accounts for 5%–15% of the fuel cycle GHGs of plug-in electric
vehicles. Peters et al. [10] find equivalent CO2 emissions for battery manufacturing of 110 kg/kWh,
while Ambrose and Kendall [15] find 256–261 kg/kWh. Hall and Lutsey [16], in a wide-ranging review
(including the two sources mentioned here), find a range of battery manufacturing emissions of 30–494
g/kWh. Finally, Peters and Weil [17], however, urge caution, concluding that the discrepancies in
many of these results are primarily due to the differences in assumptions rather than the particular
cell chemistries.

Related to the high production emissions, material recycling is another significant contributor to
the overall CO2 emissions [4,6].

The most commonly noted determinant of the overall CO2 emissions of BEVs is the carbon
intensity of the electricity used to power the vehicles [2,5,7,15,18–20]. For example, Onat et al. [21] find
different optimum vehicle types in different US states based on the states’ electricity generation (and
driving patterns). Hawkins et al. [8] find that BEVs generally outperform ICEVs, although not for very
efficient ICEVs compared to BEVs running on coal-fired electricity. Similarly, Varga [22] concludes
that increasing the use of EVs will have no effect on GHG emissions in Romania given the country’s
carbon-intensive electricity generation. In Malaysia, Onn et al. [23] conclude that EVs produced higher
well-to-wheel (WTW, i.e., all impacts from fuel production to delivery to the vehicle and final use in
the vehicle) environmental impacts in seven out of 15 categories than ICEVs, primarily due to the
composition of the electricity grid (40% coal). Similar conclusions for China were put forth by Hofmann
et al. [24] and Zhou et al. [25]. Finally, in Beijing, Ke et al. [26] show that BEVs can significantly reduce
CO2 emissions, unlike previous assessments, primarily due to the shift from coal-based electricity
generation to gas. Similar results are presented by Shi et al. [27] who analyze the impacts of the electric
taxi fleets in Beijing.

Given the significance of electricity emissions on the overall results and the temporal variation of
electricity emissions, at what time of day BEVs are charged is significant [28]. Faria et al. [29] warn
that a renewable-dependent grid may not necessarily directly translate to low GHGs for EVs due to
the high variability of such systems. Rangaraju et al. [30] point to the importance of charging during
off-peak hours in terms of reducing the impacts of BEVs. However, a study performed by EPRI (as
quoted in [31]) warns that an off-peak charging scheme might increase emissions of EVs, particularly if
the grid is coal based, by increasing the base-load (often coal-fired) electricity demand.
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While electric motors are much quieter than their internal combustion engine (ICE) equivalents,
above approximately 40 km/h, other sources of noise (tyre and aerodynamic) begin to become dominant,
leading to little difference in the noise emissions of BEVs and ICEVs from that speed and above [28].

Garcia and Freire [32] discuss the different fleet-based LCAs that have been conducted and observe
that many of these studies have not integrated all stages of the life cycle. In particular, end-of-life
treatment (i.e., recycling and/or reuse) is another influential, and oft-overlooked aspect of an LCA of
vehicle technologies [4–6,32].

While BEVs have definite benefits in terms of urban air pollutant emissions, and
electricity-dependent benefits in terms of GHG emissions, these benefits are also accompanied
by negative effects, such as human toxicity, water eco-toxicity, freshwater eutrophication, acidification,
and metal depletion, amongst others [1,33], with Notter et al. [7] estimating that human health damage
accounts for 43% of the complete environmental burden caused by the production of a Li-ion battery.

Few studies could be found directly comparing electrification with biofuels. Choma and Ugaya [33]
examine the effect of increasing the number of electric vehicles in Brazil, finding that EVs offer reduced
global warming potential compared to ICEVs (using E25 fuel: 25% ethanol and 75% petrol). While
Meier et al. [34], in their high electrification scenario (40% of distance and 26% of fuel use) in the USA,
find that meeting an 80% GHG reduction target would require “significant quantities of low-carbon
liquid fuel”.

The calculation of the overall GHG emissions from biofuel production is particularly reliant on
the inclusion (or not) of direct (the effect of changing land from one use to growing biofuel feedstocks)
indirect (increased land use for biofuel feedstocks causes land elsewhere to be converted to other uses)
land-use change emissions, and how those are calculated. Particularly the inclusion (and calculation
method) of LUC, especially indirect, emissions is difficult and subject to significant controversy [35].
However, the degree to which including LUC reverses the GHG advantages of biofuels depends on a
great deal of factors and conditions [36–39].

1.2. Brazilian Transport and Biofuel Industries

The establishment of the National Alcohol Program (PROALCOOL by its Portuguese acronym) in
1975 marked the beginning of a unique model that promotes the large-scale production and use of
biofuels for transport. PROALCOOL was created with the aim of promoting the production of ethanol
and thus reducing the economic and environmental impacts of imported petrol. The program started
with a required blend of 10% anhydrous ethanol with petrol in 1979, and this reached 27% by March
2015 [40].

In addition to ethanol, in 2005, Brazil started to promote the production of biodiesel as an
alternative for petroleum-derived diesel fuel. Brazil’s Federal Law No. 11,097/2005 established the
legal requirement for blending biodiesel with petroleum-derived diesel, which started with a blend
ratio of 2% by volume and has subsequently been increased to 7%. In March 2016, new mandatory
blend ratios were set for 2017 (8%), 2018 (9%) and 2019 and onward (10%) [40].

As a result of these policies and programs, Brazil is the second largest producer of biofuels
in the world after the USA and more than 90% of all new light vehicles sold in Brazil run on any
combination of ethanol and petrol (flex-fuel engines) [41]. Sugarcane ethanol plays a key role in terms
of energy security as it represents 18% of primary energy production, 34% of energy consumption in
the transportation sector for light vehicles, and 5.5% of the electricity generation in Brazil [42]. In the
Brazilian transport sector, 49% of emissions are due to the combustion of diesel fuel and 33% due to
the combustion of petrol. In addition, it is important to bear in mind that sugarcane production is
associated with the following environmental and social impacts [43]:

• Land degradation and deforestation and direct and indirect land-use change (LUC);
• Soil and water pollution;
• Loss of biodiversity due to monocultures and straw burning;
• Carcinogenic air emissions from sugarcane straw burning;
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• Worsened inequality in the countryside and poor working conditions (overworking, low wages,
the use of temporary and seasonal labor, and even child and slave labor).

In 2015, agriculture accounted for 31% and LUC for 24% of the GHG emitted, adding up to more
than half of the total GHG emissions of Brazil [44].

1.3. Brazilian Electricity Sector

As shown in Table 1, Brazil’s electricity system is low carbon, with low-emission sources (hydro,
wind and other renewable) making up 84% of the total generation in 2018. Moreover, according to
the Strategic Electricity Plan, by 2030, Brazil will double its electricity generation in relation to 2014
levels [45].

Table 1. Electricity generation by source in 2018 [46].

Source GWh %

Hydro 399,109 73.6%
Thermal—fossil 66,467 12.3%

Wind 44,506 8.2%
Thermal—other 13,816 2.5%

Thermal—renewable 10,723 2.0%
Nuclear 4974 0.9%

Solar 2492 0.5%
Total 542,087

2. Methodology

The LCA presented here examines the effect of a gradual but complete adoption of either electric
vehicles or biofuels by 2050 in Brazilian (urban) passenger transport. This means 100% of vehicles
would be BEVs, or 100% of all fuel sold would be biofuel (sugarcane ethanol or soy-based biodiesel)
in conjunction with 100% biofuel-capable vehicles, respectively, in 2050. The results are calculated
in terms of CO2 emissions, urban air pollution (nitrous oxides (NOx) and particulate matter (PM)),
electricity consumption and the land area required to grow sufficient biofuel feedstocks.

The LCA considers passenger cars, urban buses and bus rapid transit (BRT) buses. However,
because the magnitude of results of BRT buses is negligible in comparison to the other modes (see
Figure 4), the results for BRT are omitted for brevity. The LCA is calculated in a spreadsheet for
the years 2015–2050 in five-year steps. The results for each year are for only the year in question
as a ‘snapshot’ (i.e., the intervening years are ignored). An overview of the aspects and life phases
considered in the LCA is shown in Figure 1, and further described in the section below. The spreadsheet
is structured to allow for the comparison of sets of five scenarios, allowing a comparison of the BAU
scenario with four alternatives. Appendix A contains tables of the input values used in the LCA.



Sustainability 2019, 11, 6332 5 of 31

Sustainability 2019, 11, x FOR PEER REVIEW 5 of 32 

 

 
Figure 1. Schematic of the life-cycle analysis (LCA) methodology. WtT: well to tank; TtW: tank to 

wheel. 

2.1. Vehicle Use and Characteristics 

2.1.1. Total National Vehicle Use 

To allow free selection of various powertrain types (see below) in the scenarios, the total distance 
driven in Brazil by all vehicles of each mode (cars, urban buses) (Figure 2) per year in vehicle 
kilometers (vkm) must be calculated. It is calculated from the total projected vehicle stock of each 
mode multiplied by the corresponding average distance driven per vehicle, using figures for both 
from International Energy Agency (IEA) modeling [47,48] (Table A4 and Table A5). 

  
Figure 2. Total distance driven by the respective modes annually (billion vkm). Cars (green) are 
shown on left y-axis, while urban (red) and bus rapid transit (BRT) buses (blue) are shown on the 
right y-axis. 

0 

2 

4 

6 

8 

10 

12 

0 

200 

400 

600 

800 

1,000 

1,200 

2015 2020 2025 2030 2035 2040 2045 2050 

Di
st
an

ce
 (b

ill
io
n 
km

) -
 u
rb
an

 b
us
es

 &
 B
RT

 
bu

se
s 

Di
st
an

ce
 (b

ill
io
n 
km

) -
 ca

rs
 

Total na onal distance driven annually (billion vkm) - by mode 

Cars Urban buses BRT 

Figure 1. Schematic of the life-cycle analysis (LCA) methodology. WtT: well to tank; TtW: tank to wheel.

2.1. Vehicle Use and Characteristics

2.1.1. Total National Vehicle Use

To allow free selection of various powertrain types (see below) in the scenarios, the total distance
driven in Brazil by all vehicles of each mode (cars, urban buses) (Figure 2) per year in vehicle kilometers
(vkm) must be calculated. It is calculated from the total projected vehicle stock of each mode multiplied
by the corresponding average distance driven per vehicle, using figures for both from International
Energy Agency (IEA) modeling [47,48] (Tables A4 and A5).
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Figure 2. Total distance driven by the respective modes annually (billion vkm). Cars (green) are shown
on left y-axis, while urban (red) and bus rapid transit (BRT) buses (blue) are shown on the right y-axis.
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2.1.2. Fleet and Fuel Composition

In each scenario, for each year (Tables A2 and A3), the composition of the fleets (cars and
urban buses) is defined from the following powertrain types: flex, flex hybrid, diesel, diesel hybrid,
compressed natural gas (CNG) and electric. Hybrids are assumed to be ‘standard’ hybrids without the
facility to be charged from external sources, while electric is assumed to mean fully electric vehicles
with only onboard batteries as energy storage. In parallel, for each year, the proportion of biofuels sold
is defined from 0%–100% (Table A1). Values for the volume of fuels sold are available for 2015 and
2018 [49,50]; the 2020 values are calculated by extrapolating the development from 2015 to 2018. For
ethanol, both hydrated and anhydrous are considered together; hence, the proportion in 2015 (49.6%)
being significantly greater than the 27% ethanol as mandated in pump petrol (‘gasohol’). For biodiesel,
the extrapolated 2020 value was above the mandated 10%; so, 10% has been used from 2020 onwards
under the assumption that there would be no overshoot.

This model assumes all relevant vehicles are able to run on any proportion of bio or fossil fuel.
For petrol, flex vehicles are near ubiquitous in new registrations in Brazil [41] (and ethanol is sold in
similar volumes to petrol in 2015) and so this assumption is almost already reality. For diesel, however,
Brazil’s pump diesel currently contains only 10% biodiesel, so this assumption must be considered
more speculative, though it is assumed to be possible given sufficient research and development for
the purposes of this LCA.

2.2. Fuel Production and Use Phase

2.2.1. Total Fuel Use Per Vehicle Type and Fuel Type

The total vkm per mode and powertrain type is calculated based on the overall vkm per mode
and the powertrain proportions as entered in the scenarios. The total use-phase energy, and thus fuel,
consumed by each vehicle type is calculated from the vkm and the corresponding on-road average
fuel economy for each type. All relevant values here are provided by the IEA [47] (Tables A4 and A5).
The total amounts of fuel used are multiplied by emission factors for well-to-tank (WtT) (including
electricity) and tank-to-wheel (TtW) emissions (more details of both below) to determine the emissions
of each vehicle (and fuel) type and thus scenario. For electric vehicles, the round-trip efficiency for
electric vehicles (buses) of 88%, from Lajunen [51], is applied to the stated fuel economy to reflect the
inefficiency in charging and discharging the battery.

2.2.2. Well-to-Tank (WtT) Emissions

For each fuel type, the well-to-tank CO2 emissions (per liter) are given by Edwards et al. [52]
(Table A7). The figures provided are calculated for Europe and modified for Brazil (see below), as
consistent figures for all fuel types for Brazil could not be found. For fossil fuels, the figures have been
used as found. For biofuels, the European figures for Brazilian-produced ethanol and biodiesel are
modified by deducting the value listed for ‘transport to Europe’. These figures do not contain land-use
emissions. The WtT factor for electric vehicles is provided by the relevant average emission intensity
of the electricity system in that year (see below).

2.2.3. Tank-to-Wheels (TtW) Emissions

TtW emissions are calculated using the energy and CO2 content of each fuel type [47,53], along
with NOx and PM exhaust emissions intensities from Agência Nacional de Transportes Terrestres [54],
supplemented with NOx exhaust emissions intensities for LPG/CNG vehicles from Murrells and
Pang [55] (Table A7). The TtW CO2 exhaust emission intensity of ethanol and biodiesel is considered to
be zero as this carbon is considered to have been sequestered in the production phase. For NOx and PM,
the values for 2012 (the latest year available) are applied for all years (Table A6), or an annual reduction
in air pollution emission intensity of 8.67% (from 2012), derived from Miller et al. [56] is applied.
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2.2.4. Electricity System

Best- (mostly renewables) and worst-case (mostly fossil fuels) scenarios for both total generation
(in TWh) and CO2 emission intensity (in kilotonne/TWh) are provided by the online calculator provided
by the Energy Research Office [57] (EPE in Portuguese) for decadal years (2020, 2030, etc.) (Table A8),
extrapolated to other years. The worst-case scenario is the default used in the scenarios. The model
does not account for any effects of large additional loads in the short or long term, and the total
generation capacity is used only as a comparison; a more complicated model accounting for the
characteristics of the electricity generation system is beyond the scope of this study.

2.2.5. Land-Use Change Emissions

A direct land-use change (LUC) emission model is used to calculate the LUC emissions. It is
assumed that the land area for all other crops remains the same, with all changes in biofuel use directly
affecting the land used to grow the feedstocks, and that this land comes from (or returns to) various
forest types or Cerrado/savannah according to the volume of biofuel needed in each year. A more
complicated model involving intermediate steps and economic elasticities is beyond the scope of
this analysis.

Firstly, the land area required to grow the requisite fuel feedstocks is calculated using figures for
the yield of ethanol (sugarcane) or biodiesel (assumed to be all derived from soyabeans) per land area,
using values from Valin et al. [58] (Table A10). The values used are constant for all land types and
locations. From this and the volume of fuel required each year, the yearly change in cropland area
from the previous period is calculated.

The National Energy Policy Council (CNPE) has mandated, as part of the RenovaBio programme,
a decrease in the CO2 emissions of each unit of energy consumed by Brazilians from 74.3 g/MJ (2017)
to 66.1 g/MJ in 2029; 1.07% per year [59], assumed to be achieved through increased biofuel yields
(L/ha) and from increasing the proportion of biofuels used in fuels, though no statement of how much
each contributes is given, and so it is assumed that each contributes half of the 1.07% (0.535% pa). The
improved biofuel yields are thus increased at the rate of 0.535% per annum, although even this may be
overly favorable to biofuels as the possibility of increased yields is questioned by Bernardo, Lourenzani,
Satolo, and Caldas [60]. Furthermore, this would almost certainly cause the embedded CO2 in biofuel
to increase through, e.g., increased tractor and fertilizer use, and because these changes cannot be
quantified, they are assumed to be negligible. The assumption that increased biofuel use decreases
emissions presents a difficulty, as this is the opposite finding to this LCA, and so must be assumed to
be based on a different methodology; as such, the other half of the mandated 1.07% decrease from
increased biofuel use is omitted.

For biodiesel, 20% of the land-use change emissions are attributed to transport use, according
to the ≈20% oil portion of the beans which can be used to make biodiesel: the other 80% would be
attributed to the other uses of the soyabeans (e.g., soyameal for animal feed), outside this LCA.

Secondly, the carbon dioxide emitted (or absorbed) from the change in land-use is calculated
using values of the carbon content of various Brazilian forest types (including plantation) and Cerrado
(Brazilian Savannah) (Table A9). The values for plantation forest and Cerrado are used as found,
whereas a numerical mean and standard deviation is calculated for the forest values, with the low and
high values representing one standard deviation from the mean value. The conversion from biomass
carbon to CO2 emissions is performed using the average ratio between “Average forest AGB [Above
Ground Biomass]” and “Primary forest (instantaneous, non-process) emissions” (primary is selected
assuming that the recropping of the land for biofuel is part of the secondary stage), from Aguiar et
al. [61], giving a value for CO2 emissions for each hectare of land changed.

The emissions from land-use change are spread over a 20 year period. LUC emissions in 2015 are
zero as the LCA captures only change in biofuel use (and thus land use) to generate LUC emissions,
and so for example the 2020 value includes any change from 2015 to 2020.
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2.3. Vehicle and Battery Manufacturing Phase

For computational efficiency and because of a lack of equivalent model data pre-2015, a fleet model
could not be implemented, so the number of vehicles manufactured per year is calculated by assuming
each year is closed regarding vehicles, i.e., all vehicles used in a year would be manufactured in that
year and disposed of at the end of the same year. The scenarios thus prescribe a fleet proportion, not
sales proportions of the various powertrain types. The number of vehicles for each year is calculated
by dividing the total vkm for each powertrain type by the total lifetime (in km) of that type. The
emissions for vehicle manufacturing are constant per vehicle, independent of changes to the electricity
emission intensity applied elsewhere in the LCA. In addition, the values are accounted for in Brazil,
even if the parts actually originate elsewhere.

For cars, the lifetime (200,000 km) is provided by Messagie [14] and assumed to be the same for
all vehicle types (see Table A11). In addition, with the exception of the batteries for hybrid and electric
vehicles, the non-battery components are assumed to result in the same CO2 emissions (≈3.2 tonnes);
see Table A12. For buses, the lifetimes (different by powertrain type) are provided by Lajunen [51]
with a correction factor for the lifetime of non-diesel buses in line with the calculations by WRI [62]
(Tables A13 and A14).

Battery manufacturing emissions are calculated from the overall capacity of batteries required
for all hybrid and electric vehicles and their respective battery capacities (and the rate of battery
replacement) as shown in Tables A11 and A13. A range of current battery manufacturing emissions
intensities (in g/kWh) is provided in Hall and Lutsey [16], from which the average (default) minimum
or maximum values (see Table A15) can be applied. The default assumption for the battery and vehicle
manufacturing calculations is that both are manufactured from raw materials and disposed of without
reuse or recycling at the end of life. As such, if the scenarios dictate that the materials (and thus CO2

emissions) are recovered or reused at the end of life, this results in a ‘credit’, covered in more detail in
the end-of-life section, below.

2.4. End-of-Life Phase

As mentioned above, the LCA treats each year as a closed system, so all vehicles used in any year
also come to the end of their lives in that year. Five aspects of the end of life are considered: non-battery
recycling emissions, non-battery materials credit, battery recycling emissions and materials credit
and a battery reuse credit (values and sources given in Table A16). Reusing batteries and recovering
materials through recycling effectively reduces the manufacturing emissions, but they are considered
as credits in this manner to allow separate (calculation) and presentation of these and the default
manufacturing emissions.

Recycling emissions considers the energy required to recycle the respective parts and is calculated
by multiplying the total mass of vehicles and capacity of batteries to be recycled by the respective factors
for the energy required to recycle them. It is assumed the energy for this comes from the electricity
network, so the relevant CO2 emission intensity of the electricity system for that year is applied.

The vehicle recycling materials credit is included at current levels of recycling and use of recycled
materials. The credit is zero as it is assumed to be included in current calculations of vehicle
manufacturing emissions.

The battery recycling materials credit is calculated according to the 10%–17% and 23%–43%
reductions (Table A16) given for the use of recycled materials in battery manufacturing. The base
assumed reduction is 26.5%—the mid-point between the 10% and 43% outer figures. The actual
emission credit figure is calculated from the total battery manufacturing emissions in the relevant year,
multiplied by the 26.5% and the assumed proportion of battery recycling (details below).

The battery reuse credit is calculated using the assumed extra life (72%) batteries can be used
for after their vehicular use, i.e., they are used for 58.1% of their lives in vehicles and, as such, the
remaining 41.9% counted as a credit for this LCA, as that proportion of the manufacturing emissions
can be attributed to subsequent use.
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The calculation of end-of-life credits applies an assumed proportion of battery reuse and recycling.
Both are assumed to increase linearly to 100% by 2050, from 5% and 0% in 2015 for recycling and reuse,
respectively (see Table A17). This assumes that the greater use of batteries as per the scenarios will
create an ever-greater economic and environmental imperative on the more efficient use of batteries
and materials. As batteries can be both reused and recycled, both credits can be applied.

3. Scenarios Tested

Figure 3 shows the sets of scenarios examined (for each mode), consisting of a main LCA and four
sensitivity analyses, considering LUC emissions, battery manufacturing emissions, vehicle and battery
lives and electricity system developments vs. a best-case biofuel scenario, respectively. The content of
the scenarios was defined based on a combination of the primary purpose of the study (comparing
biofuels to electrification), the main factors affecting the results as described in the introduction and the
intermediate results of the LCA itself. These are outlined in the following section, and the component
parts are described in detail in Appendix A.
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For all scenario values, where the user-input (i.e., non-modeled) values change between 2015 and
2050, the values for intervening years are changed linearly. All parameters for all scenarios in 2015 are
set to the 2015 BAU values. All sub-LCAs contain the BAU as described in the main LCA.

3.1. Main LCA

An overview of the scenarios used for the LCA of cars is shown in Table 2 (details in Tables A1–A3).
The main LCA compares BAU to biofuel scenarios with and without hybridization, and electrification
for the best- and worst-case electricity system development.

Table 2. Overview of the scenarios tested in the main LCA (values for 2015/20–2050, interpolated for
intermediate years).

BAU Biofuel with
Hybrid

Biofuel without
Hybrid

Electrification,
Best Case

Electrification,
Worst Case

Fuels *
Ee50/56-Ee56 Ee50/57-Ee100 Ee50/56-Ee56

B0/10-B10 B0/14-B100 B0/10-B10

Vehicles Model 0%–100%
hybrid 0%–0% hybrid 0%–100% electric

Electricity Worst case Best case Worst case

Battery manuf. Average

LUC Average forest

* Analogous to the common naming convention whereby, e.g., E85 represents an 85%/15% ethanol/petrol mix as
sold; ‘Ee’ (ethanol effective) represents the overall proportion of ethanol (hydrated and anhyrdous) to petrol, as if
these were sold as a single mixed fuel, though in fact hydrated ethanol is sold from separate pumps by itself. B10
denotes 10% biodiesel, 90% fossil-diesel.

For the BAU scenario, the 2015/2020 proportions of ethanol (50% in 2015, 57% subsequently) and
biodiesel (0% in 2015, 10% from 2020 onwards) are applied, while the vehicle proportions are provided
from the IEA model [47].

The biofuel scenarios are based on the complete conversion of cars to ethanol and buses to
biodiesel by 2050. As such, the proportions of biofuel in pump fuels are linearly increased to 100%
in 2050 from the 2020 values: 57% for ethanol and 10% for biodiesel. In addition, the proportion of
flex vehicles (for cars) or diesels (for buses) is linearly increased to 100% by 2050. Furthermore, the
proportion of hybrid vehicles is increased to 100% in the biofuel and hybrid scenario but maintained at
0% in the biofuel without hybrid scenario. The few other vehicles are phased out by 2020.

Both electrification scenarios are based on the gradual shift toward complete electrification of cars
and buses by 2050. The biofuel components of pump fuels as per BAU are used. The proportion of
flex or diesel vehicles is linearly decreased to 0% by 2050, with hybrids contributing an ever-greater
proportion of the total proportion allocated to flex or diesel vehicles. Other vehicle types (CNG,
non-diesel buses) are phased out by 2020. Fully electric vehicles make up the remainder. The sole
difference in the two electrification scenarios is the use of either the EPE best- or worst-case scenarios
concerning total electricity generation and CO2 emission intensity.

3.2. Sensitivity Analysis #1: Land-Use Change Emissions

This sensitivity analysis (Table 3) considers the effect of the biome used as the basis of land-use
change (LUC) emissions on biofuel scenarios, i.e., the source of land used for extra land for biofuel
feedstocks (or the inverse for diminishing demand). The scenarios are calculated (and presented) in
two halves due to scenario-number limitations of the calculation tool.
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Table 3. Overview of the scenarios tested in the sensitivity analysis on LUC (values for 2015/20–2050,
interpolated for intermediate years).

BAU Biofuel 1
2 Hybrid

with
LUC

without
LUC

No
LUC Cerrado

Forest Density

Plantation Low Avg High

Fuels
Ee50/56-Ee56 Ee50/57-Ee100

B0/10-B10 B0/14-B100

Vehicles Model 0%–50% hybrid

Electricity Worst case

Battery manuf. Average

LUC Avg
forest None None Cerrado Plantation

forest
Low

forest *
Avg

forest *
High

forest *

* Refers to the carbon density of the forest per hectare.

The BAU scenario is used as per the main LCA, along with a BAU without LUC scenario, in which
the LUC component is omitted. These are shown on both graphs for comparison.

Otherwise, six biofuel scenarios are calculated assuming the use of the biomes Cerrado, plantation
forest, and low-, average- and high-density virgin forest, along with a scenario in which LUC emissions
are omitted. These latter six LUC biome scenarios are applied to a biofuel scenario, splitting the
difference between the ‘with’ and ‘without hybrid’ scenarios from the main LCA: the proportion of
hybrids is increased linearly to 50% in 2050 (see Tables A2 and A3).

3.3. Sensitivity Analysis #2: Battery Manufacturing Emissions

This sensitivity analysis (see Table 4) considers the effect on the electrification scenario of different
values for battery manufacturing emissions. The values used are the average, minimum and maximum
as presented in Hall and Lutsey [16]. These are applied to the (worst-case) electrification scenario from
the main LCA and compared to the BAU and biofuel 1

2 hybrid scenarios from the main LCA and the
sensitivity analysis, respectively.

Table 4. Overview of the scenarios tested in the sensitivity analysis on battery manufacturing emissions
(values for 2015/20–2050, interpolated for intermediate years).

BAU Biofuel, 1
2 Hybrid

Electrification

Avg Battery
Manuf.

Min Battery
Manuf.

Max Battery
Manuf.

Fuels
Ee50/56-Ee56 Ee50/57-Ee100 Ee50/56-Ee56

B0/10-B10 B0/14-B100 B0/10-B10

Vehicles Model 0%–50% hybrid 0%–100% electric

Electricity Worst case

Battery manuf. Average Average Average Min Max

LUC Avg forest

3.4. Sensitivity Analysis #3: Vehicle and Battery Lives

This sensitivity analysis (see Table 5) considers the effect on the electrification scenarios of changes
to the effective life of both vehicles and batteries. Specifically, the lifetime of the vehicles and batteries
(both expressed in km) is increased or decreased by 20%.
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Table 5. Overview of the scenarios tested in the sensitivity analysis on battery manufacturing emissions
(values for 2015/20–2050, interpolated for intermediate years).

BAU Biofuel, 1
2 Hybrid

Electrification

Default Lives −20% Lives +20% Lives

Fuels
Ee50/56-Ee56 Ee50/57-Ee100 Ee50/56-Ee56

B0/10-B10 B0/14-B100 B0/10-B10

Vehicles Model 0%–50% hybrid 0%–100% electric

Electricity Worst case

Battery manuf. Average Average Average Min Max
LUC Avg forest

Vehicle and battery lives Default Default Default −20% Default +20%

3.5. Sensitivity Analysis #4: Best-Case Biofuel Vs. Electricity System Development
This sensitivity analysis (see Table 6) compares a best-case biofuel scenario (full hybridization,

no LUC emissions) with electrification scenarios under different electricity system developments
regarding CO2 emission intensity.

Table 6. Overview of the scenarios tested in the sensitivity analysis on the best-case biofuel scenario vs.
electrification under electricity system development scenarios (values for 2015/20–2050, interpolated
for intermediate years).

BAU Biofuel with Hybrid
Electrification

2015/17 Best Case Worst Case

Fuels
Ee50/56-Ee56 Ee50/57-E100 Ee50/56-Ee56

B0/10-B10 B0/14-B100 B0/10-B10

Vehicles Model 0%–100% hybrid 0%–100% electric

Electricity Worst case 2015/17 Best case Worst case

Battery manuf. Average

LUC Avg forest None Avg forest

4. Results

The following contains an overview of the results of the various LCAs tested as described above.
First, the main LCA results are shown, split into separate sections for cars and urban buses. This is
followed by a section for the relevant results of each of the sensitivity analysis for both modes combined.

4.1. Main LCA
Figure 4 shows the CO2 emissions of the BAU scenarios of cars, urban buses and BRT buses,

respectively, in the main LCA. Cars are by far the dominant mode, while BRT buses are insignificant.
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Figure 4. Annual and average (for all years) CO2 emissions for the BAU scenarios in the main LCA
by mode.
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4.1.1. Cars

The results for the main LCA scenarios in Figure 5 show that the biofuel scenario without
hybridization of the fleet has greater emissions than BAU on average, while biofuel with hybrid
is approximately equal on average. Both electrification scenarios (best and worst case) have lower
emissions than BAU throughout and on average.
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Figure 5. Annual and average (for all years) CO2 emissions for the scenarios examined for cars in the
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Figure 6 shows the composition of the scenarios in the main LCA according to the different life
phases in 2020, 2035 and 2050. The BAU scenario is predominated by exhaust emissions (grey), while
the biofuel scenarios have large portions from LUC emissions (red), especially in 2035 and 2050. The
electrification scenarios have large portions for manufacturing emissions (blue) in 2050, but in the
best-case scenario, a great deal of those would be offset by the end-of-life credit for increased reuse and
recycling of the parts and materials (black). In addition, this scenario is notable for the large negative
portion of LUC emissions as the use of biofuel decreases and the land is switched to sequestration. In
the worst-case electrification scenario, electricity generation (green) is a significant contributor to the
overall emissions in 2050 due to the greater emission intensity of electricity generation in this scenario.
For the same reason the end-of-life credit is diminished.Sustainability 2019, 11, x FOR PEER REVIEW 14 of 32 
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Figure 6. Composition of the main LCA scenarios according to life-phase for the years 2020, 2035
and 2050.
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Figure 7 shows the result for air pollutant emissions in the main LCA scenarios. It shows
electrification has a clear advantage over BAU. For NOx, the biofuel scenarios have similar emissions to
the (fossil-dominated) BAU scenario, while the air pollutant emissions for the electrification scenarios
reduce to zero. For PM emissions, all alternatives to BAU have lower emissions. However, as shown in
Figure 8, if policies and technologies are applied which contribute to an 8.67% annual improvement, as
suggested by Miller et al. [56], the differences in powertrain technology become much less pronounced
and all scenarios reduce to much lower levels by 2050.
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Figure 7. Total air pollutant (nitrous oxides (NOx) and particulate matter (PM)) emissions (2012 levels)
of cars in the main LCA scenarios.
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Figure 8. Total air pollutant (NOx and PM) emissions (2012 levels, 8.67% annual reduction) of cars in
the main LCA scenarios.

Figure 9 shows the results of the electricity consumption (left) and land use (right). The amount
of electricity consumed steadily increases, approaching 9% of the worst-case generation capacity. The
proportion of the arable land area required to meet the demand for ethanol increases steadily to over
13% and 16% in 2050 for the hybrid and non-hybrid scenarios, respectively.
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Figure 9. Proportion of worst-case electricity generation consumed (left) and the proportion of
2016-level arable land required to grow biofuel feedstocks (right) for the scenarios in the main LCA for
cars. BEVs: battery electric vehicles.



Sustainability 2019, 11, 6332 15 of 31

4.1.2. Urban Buses

The results of the main LCA for urban buses (Figure 10) follow a similar pattern (between scenarios)
as for cars, above. The electrification of urban buses would result in the lowest CO2 emissions, with
the two biofuel scenarios resulting in the greatest emissions. However, on a yearly basis, the hybrid
biofuel scenario becomes lower than BAU by 2050, as the overall use of fuel reduces and much of the
land previously used to grow biofuel feedstocks switches to sequestration. The biofuel scenarios are
sensitive to the gradient of vehicle use. This holds for cars also, but there are several differences which
account for the greater variation for urban buses.

• Urban bus use increases in the early stages of the analysis, where car use does not.
• Biodiesel results in greater LUC emissions per liter because of the lower yield per hectare of land.
• The scenarios dictate a greater increase per slot for biodiesel, which starts at zero and increases to

100% (≈14% per 5-year slot), whereas ethanol starts from ≈50%.
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Figure 10. Annual and average (for all years) CO2 emissions for the scenarios examined for urban
buses in the main LCA.

The composition of the total emissions according to life phases for urban buses (Figure 11) is also
similar in pattern to cars. The biofuel scenarios have large land-use change emissions, especially in 2035,
and the worst-case electrification scenario has large electricity generation emissions. Manufacturing
and end-of-life emissions make only very small or insignificant contributions. This figure also shows the
source of the negative overall emissions calculated for the best-case electrification scenario: primarily,
the large negative emissions from LUC, as biofuel use is reduced.

Also regarding air pollutant emissions, the same pattern emerges as for cars, as shown in Figure 12.
The results and expected trends are similar to those of the car scenarios, with the biofuel scenarios
without and with hybrid close to, but above and below, BAU, respectively, while the electrification
scenarios steadily decrease to zero. However, as shown in Figure 13, if policies and technologies
are applied which contribute to a 8.67% annual improvement, as suggested by Miller et al. [56],
the differences in powertrain technology become much less pronounced and the emissions from all
scenarios diminish to much lower levels by 2050.
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Figure 11. Composition of the main LCA scenarios according to life-phase for the years 2020, 2035
and 2050.
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Figure 12. Total air pollutant (NOx and PM) emissions (2012 levels) of urban buses in the main
LCA scenarios.
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Figure 13. Total air pollutant (NOx and PM) emissions (2012 levels, 8.67% annual reduction) of urban
buses in the main LCA scenarios.

Figure 14 shows the results of proportional electricity consumption (left) and proportional land
use (right). Regarding electricity use, electric urban bus electricity consumption peaks at below 0.5%,
presumably an irrelevant amount from a grid-operational perspective. The amount of land required to
grow sufficient biofuel feedstocks for urban buses peaks at below 1% for the highest scenario: biofuels
without hybrid, while the biofuel with hybrid scenario peaks at below 0.8%.
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Figure 14. Proportion of worst-case electricity generation consumed (left) and the proportion of
2016-level arable land required to grow biofuel feedstocks (right), both for the scenarios in the main
LCA for urban buses.

4.2. Sensitivity Analysis #1: Land-Use Change Emissions (Biofuel)

The total annual CO2 emissions for the sensitivity analysis of various LUC emission scenarios are
shown in Figure 15, below. Also included, for perspective, are the results for BAU if the LUC emissions
were disregarded.
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Figure 15. Annual and average (for all years) CO2 emissions for the scenarios examined for cars (left)
and urban buses (right) in the sensitivity analysis regarding LUC emissions.

For both cars and urban buses, the results are quite sensitive to the LUC scenario selected, with a
considerable difference between the biofuel scenarios with no-LUC (blue, left) and high-density forest
(grey, right), in line with the overall contribution of LUC emissions to the overall result and the CO2

embedded in the various biomes (values in t/ha), Cerrado (122, green, left), plantation forest (212, grey,
left), then low- (284, blue, right), average- (459, green, right) and high-density forest (635, grey, right).

For cars, on average, the plantation forest, Cerrado and low-density forest biomes result in lower
overall emissions than BAU; the average- and high-density forest biomes result in greater overall
emissions than BAU.
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For buses, if the land for biofuel feedstocks is assumed to come from/return to Cerrado or
plantation forest, on average, the results are lower than BAU, with all remaining forest biomes resulting
in greater emissions than BAU.

Furthermore, the difference between BAU with (black) and without (red) LUC emissions can be
seen; for cars, BAU without LUC is consistently below BAU, but for urban buses, the same holds until
between 2035 and 2040, where the lines cross due to the LUC emissions switching to sequestration in
the BAU scenario.

In addition, in general, it can be seen that the results are also quite sensitive to year-to-year changes
of fuel use.

4.3. Sensitivity Analysis #2: Battery Manufacturing Emissions

This sensitivity analysis examines the effect of battery manufacturing emissions on a CO2 per
kWh of battery capacity basis. The results are shown in Figure 16, showing that the overall results are
not particularly sensitive to this change for cars, and practically not at all for urban buses.
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Figure 16. Annual and average (for all years) CO2 emissions for the scenarios examined for cars (left)
and urban buses (right) in the sensitivity analysis regarding battery manufacturing emissions.

4.4. Sensitivity Analysis #3: Vehicle and Battery Lives

This sensitivity analysis examines the effect of a this change in the life-length (both expressed
in km) of both vehicles and their batteries in the electrification scenarios. For example, in the −20%
scenario, the life of a car is reduced from 200,000 km to 160,000 km, in conjunction with a decrease
in battery life from ≈133,000 km to ≈107,000 km. This has the effect of needing a greater (or lower)
number of vehicles and batteries to be manufactured each year, with a corresponding change in the
overall proportion of manufacturing emissions. Figure 17 shows the results for CO2 emissions with a
±20% change in the assumed vehicle and battery life. For cars, this has a comparatively small effect,
especially when compared to the difference to the BAU and biofuel scenarios shown. For urban buses,
the effect is even smaller; it is practically invisible.
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Figure 17. Annual and average (for all years) CO2 emissions for the scenarios examined for cars (left)
and urban buses (right) in the sensitivity analysis regarding vehicle and battery lives.
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The final sensitivity analysis compares a best-case biofuel scenario with the three electrification
scenarios, the results of which are shown in Figure 18. As this shows, all alternative scenarios
have lower emissions than BAU, throughout and on average. Furthermore, on average, for cars the
worst-case electrification scenario results in lower emissions than the best-case biofuel scenario, though
the two do converge somewhat by 2050. For urban buses, all electrification scenarios initially rise
above the best-case biofuel scenario but subsequently drop below.
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Figure 18. Annual and average (for all years) CO2 emissions for the scenarios examined for cars (left)
and urban buses (right) in the sensitivity analysis regarding electricity system development.

4.5. Sensitivity Analysis #4: Best-Case Biofuel vs. Electricity System Development

Overall, this sensitivity analysis shows the advantage of the electrification scenarios over biofuels:
even in what could be regarded as extreme and unrealistic scenarios, (biofuel disregarding LUC
emissions altogether, and electrification dominated by fossil fuels), for cars, electrification still has
lower emissions on average and throughout, and for urban buses, on average the result is only slightly
in favor of the biofuel scenario. As such, under more realistic scenarios, it could be expected that
electrification would have lower emissions.

Finally, the results presented here show that if the current overall CO2 emission intensity of
Brazilian electricity generation is maintained into the future (i.e., as per the 2015/17 scenario), the
resulting emissions would be between the EPE scenarios, but closer to the best case, i.e., the worst-case
scenario is significantly more CO2 emission-intensive than the current scenario, and the best-case
scenario is somewhat less CO2 emission-intensive.

5. Findings and Discussion

1. Cars are the largest contributor to the effects examined in this LCA

Overall, of the modes examined in this LCA, cars have the greatest effect on the results—CO2

emissions, air pollutant emissions, electricity consumption and land-use for biofuel feedstocks—albeit
to differing degrees: the results for air pollutant emissions, for example, between cars and urban buses
are comparatively close. Despite cars being smaller and having lower emissions per distance driven
than buses, their collective total distance driven is much, much higher, accounting for their greater
overall effect.

2. Electrification results in the lowest CO2 emissions

This LCA finds that the lowest CO2 emissions would be reached in the electrification scenarios
examined. Even if the worst-case electrification scenario is compared to the best-case biofuel
scenario—both of which are probably unlikely given the extremity of their underlying premises—the
electrification scenario results in lower (cars) or only slightly higher (urban buses) emissions. In the
main LCA, the electrification scenarios offer 65%–89% CO2 savings over BAU on average (note that
the electrification scenarios include negative LUC emissions). A comparison of this finding with
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the other electrification-biofuel comparison found [34] is near-impossible due to the very different
methodologies applied (including an apparent exclusion of LUC emissions) and the different countries
in question.

Not shown above is a further expansion of sensitivity analysis #4, in which the electrification
scenarios were calculated without LUC emissions. For cars, the average CO2 emissions were almost
identical between the biofuel (with hybrid) and electrification (2015/17) scenarios. For urban buses, the
biofuel scenario resulted in near-identical CO2 emissions to the worst-case electrification scenario, i.e.,
without LUC at all, the BEVs offer improved CO2 emissions, assuming the overall generation profile
remains similar to the present. While there is controversy regarding the methodology of including
LUC emissions, we consider it unlikely that LUC would be zero; however, even if it were, BEVs under
reasonable assumptions would result in similar CO2 emissions to biofuel with full hybridization.

3. Electrification results in lower air pollutant emissions

As with the CO2 emissions, the results suggest that the electrification of cars and buses would
be the ideal path as it would lead to the highest reduction in both NOx and PM emissions. Biofuels,
on the other hand, in most cases, do not reduce air pollution significantly from BAU (except for car
PM emissions from ethanol). The magnitude of this result is greatly diminished; however, if a yearly
improvement of ≈9% in emission intensity is achieved, the difference between scenarios becomes
much smaller.

4. Land-use change emissions are a major contributor to the results for the biofuel scenarios

LUC emissions as calculated here are a major contributor to the overall CO2 emissions of the
biofuel scenarios, and there is a great difference between the carbon content of the biomes selected,
making the results very sensitive to whether LUC emissions are included or how they are calculated,
and the rate of change of vehicle/biofuel use. If the Cerrado or plantation forest biomes are used to
calculate LUC emissions, the result is emissions below BAU level, while using average- or high-density
forest results in higher-than-BAU emissions, with low-density forest being below BAU for cars, above
for urban buses.

LUC emissions are delayed and for a limited time (20 years), but the other emissions occur on a
year-by-year basis. An interesting aspect of this analysis, covering a long timeframe, is that it shows the
way in which LUC emissions fluctuate in relation to the other emissions that occur on a year-to-year
basis, which LCAs of a single point in time would be unable to show well.

Related to this point is the land that would be required to grow sufficient feedstocks for biofuels.
For cars, assuming the worst case of the full use of biofuels (without hybridization), up to 16% of
Brazil’s arable land would be required to grow sufficient sugarcane.

5. Electrification is sensitive to electricity system characteristics

While the electrification scenarios can potentially yield significant benefits in terms of emission
reduction, the amount of benefit depends greatly on the electricity system’s average emission intensity.
However, the analysis suggests capacity can be added with higher than current emission intensity (as
per the EPE worst case) while still maintaining a significant benefit over BAU. This is in line with the
findings of previous studies described in the introduction.

Another characteristic of the electricity system of note is the total generation capacity. This analysis
shows that cars would result in significant electricity demand: the full-scale electrification of cars is
calculated to require up to ≈9% (in 2050) of the projected total generation capacity of Brazil (38% of
2017-level generation capacity). Intuitively, this would also be significant in terms of peak loads. The
electrification of urban buses is calculated to result in urban bus electricity demand that would remain
below 0.6% of the total expected national generation capacity.
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Other aspects

Similar patterns were found for the sensitivity of the results to battery manufacturing emission
factors and the lifetime of vehicles and batteries. Namely, for cars, the overall result was not particularly
sensitive to changes, while for urban buses, the overall result was hardly sensitive at all. Presumably,
this is due to the relatively lower proportion of the manufacturing phase for urban buses. This is
particularly interesting because it is in contrast to many sources in the introduction, suggesting both of
these factors are strong determinants of the overall result.

The other effects listed in the literature review: charging time of day, noise, and other effects were
beyond the scope of this study.

5.1. Policy Recommendations

Cars

From a CO2 and air pollutant emissions standpoint, ideally, Brazil should implement policies to
encourage the increased adoption of electric cars. These could include taxation or feebate schemes
based on exhaust CO2 emissions, subsidies on the purchase of electric vehicles, or free parking or use
of carpooling lanes. As included in Rota 2030, manufacturers could be forced to include and encourage
EVs by setting average emission levels targets (which decrease year by year) for all vehicles they sell
each year, such as applies in the EU. Subsidies on locally manufactured fuels (including biofuels)
should be removed or reduced

If electrification is not pursued, the use of ethanol should not be increased, by (at least) maintaining
the current ≈50% proportion of ethanol (to petrol) sold.

Urban buses

The recommended course of action for urban buses is, superficially, the same as for cars: from a
CO2 and air pollution emissions standpoint, urban buses should be electrified. Electrification of urban
buses may be easier than cars because biodiesel is not as well established or widespread in Brazil, and
there are far fewer vehicles, and those vehicles tend to be owned and operated by organizations with
many vehicles each, limiting the number of affected stakeholders. Given the far lower consumption of
urban buses combined, less regard needs to be paid to considerations of the grid or overall generation
capacity; though given that buses may need (very) high power, some local improvements may be
necessary. Electrification of urban buses could be encouraged by providing direct funding to operators
or local authorities to buy electric buses or the necessary charging infrastructure. Furthermore, where
routes are put to tender, these could have the condition of being operated by electric vehicles.

General

Several aspects not covered directly by this LCA are nevertheless important regarding the
discussion on reducing the emissions from the transport sector. These include measures to reduce
the per km fuel consumption (and air pollution emissions) of individual vehicles, reducing the use
of vehicles through improved urban planning and improved cycling and walking infrastructure and
encouraging public transport use rather than individual vehicles, which would have positive effects
on all aspects considered in this LCA, as well as in other dimensions not covered (e.g., health, noise,
economics, etc.).

Another aspect to consider is the international aspect of technological development. Brazil’s
biofuel system is very well developed, with arguably significantly better environmental outcomes than
other countries, especially those using corn-ethanol. If all other countries shift away from liquid-fueled,
internal-combustion vehicles to electric vehicles, this could make Brazil a technology island; potentially
cut off from foreign sources of major developments such as autonomous vehicles, forcing Brazil to
either develop those technologies themselves or adapt them to local vehicles.
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Moreover, it is important to bear in mind the economic relevance of the biofuel industry in Brazil
and its linkages to other sectors such as automotive. As such, if an electrification strategy for the
automotive sector were implemented, consideration should be paid to the associated conversion of the
biofuel industry.

Biofuel feedstocks and land

In all cases, but especially where the policy focus remains on biofuels, it should be ensured that
any additional land used to grow biofuel feedstocks should not have high stored carbon, i.e., should be
Cerrado or plantation forest, or similar biomes, or even better that it must come from already cleared
land, such as farmland used for other crops, degraded pastureland or brownfield sites. However, steps
must be taken to ensure any resulting pressure on farmland does not result in land cleared for other
crops, and thus indirect land-use change emissions and productive ecosystems and the services they
offer are not degraded.

As included in the yearly increase in biofuel feedstock yields, efforts to increase the yield of
biofuels per area of land should be undertaken, such as investing in technological and capacity building.
It must be noted though that this study does not include the assessment of impacts on other parameters
such as soil biodiversity and sustainability, which might be important to consider if higher yield
intensities are sought for existing areas of feedstock cultivation.

Electricity system

If electrification is pursued, especially for cars, the country’s electricity generation capacity should
be increased in line with the consumption of BEVs. This added capacity should be as low emission
as possible. Additionally, policies to address the possible high load on the grid of vehicles being
charged should be implemented. At their simplest, these could involve simple grid/generation capacity
upgrades. Preferential tariffs for off-peak charging could be introduced, possibly also in conjunction
with technologies to allow vehicles to take advantage of those tariffs and also potentially for them to be
utilized for grid balancing. Furthermore, the availability of charging infrastructure away from home
would encourage people to buy EVs in the first place by easing their range anxiety, but also to charge
their cars during the day away from the morning and evening peaks.

5.2. Suggested Improvements to the LCA Methodology Applied

The following areas have been identified as areas that would improve the LCA.

• A more complicated LUC calculation including the agricultural land-use elasticities and yields of
biofuels differentiated by land type.

• Inclusion of modal/behavioral shift aspects to allow the effects of reduced travel or modal shifts to
be included in scenarios.

• Inclusion of electricity emissions intensities in all aspects of the LCA (e.g., manufacturing) to
better reflect changes to the system, along with better representation of the place of manufacture
(and CO2 emissions) of vehicle components.

• Consideration of the economic effects of hybrids and BEVs in Brazil, and of the expansion in
electricity generation necessary for the electrification scenarios.

• Include a fleet model for vehicles.
• Inclusion of further effects such as water use (especially for biofuel feedstock production), toxicity,

and the use of other key materials
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Appendix A. Inputs and Assumptions

Table A1. Proportion of biofuels sold in Brazil in the various scenarios [49,50]. Fossil diesel and petrol
make up the remaining portion.

2015 2020 2025 2030 2035 2040 2045 2050

Proportion of biodiesel

BAU/electrification 0.100 0.100 0.100 0.100 0.100 0.100 0.100
Biofuel 0.143 0.286 0.429 0.571 0.714 0.857 1.000

Proportion of ethanol

BAU/electrification 0.496 0.560 0.560 0.560 0.560 0.560 0.560 0.560
Biofuel 0.496 0.568 0.640 0.712 0.784 0.856 0.928 1.000

Table A2. Proportion of cars in the fleet by powertrain type for the various scenarios.

2015 2020 2025 2030 2035 2040 2045 2050

BAU

Flex internal combustion engine (ICE) 0.95 0.96 0.98 0.97 0.95 0.92 0.88 0.82
Flex hybrid 0.01 0.03 0.05 0.07 0.11 0.16
Compressed natural gas (CNG) 0.05 0.04 0.01
BEV 0.01 0.01 0.02

Biofuel w/o hybrid

Flex ICE 0.95 1 1 1 1 1 1 1
Flex hybrid
CNG 0.05
BEV

Biofuel 1
2 hybrid

Flex ICE 0.95 0.9 0.84 0.77 0.7 0.63 0.56 0.5
Flex hybrid 0.1 0.16 0.23 0.3 0.37 0.44 0.5
CNG 0.05
BEV

Biofuel with hybrid

Flex ICE 0.95 0.81 0.68 0.54 0.4 0.26 0.12
Flex hybrid 0.19 0.32 0.46 0.6 0.74 0.88 1
CNG 0.05
BEV

Electrification

Flex ICE 0.95 0.82 0.67 0.54 0.4 0.27 0.14
Flex hybrid
CNG 0.05
BEV 0.18 0.33 0.46 0.6 0.73 0.86 1



Sustainability 2019, 11, 6332 24 of 31

Table A3. Proportion of urban buses in the fleet by powertrain type for the various scenarios.

2015 2020 2025 2030 2035 2040 2045 2050

BAU

Diesel ICE 1 1 1 0.98 0.95 0.89 0.8 0.7
Diesel hybrid 0.01 0.03 0.06 0.1 0.15
CNG 0.01 0.01 0.01
BEV 0.01 0.02 0.04 0.09 0.14

Biofuel w/o hybrid

Diesel ICE 1 1 1 1 1 1 1 1
Diesel hybrid
CNG
BEV

Biofuel 1
2 hybrid

Diesel ICE 1 0.93 0.85 0.78 0.71 0.64 0.57 0.5
Diesel hybrid 0.07 0.15 0.22 0.29 0.36 0.43 0.5
CNG
BEV

Biofuel with hybrid

Diesel ICE 1 0.86 0.71 0.57 0.43 0.29 0.14
Diesel hybrid 0.14 0.29 0.43 0.57 0.71 0.86 1
CNG
BEV

Electrification

Diesel ICE 1 0.85 0.71 0.57 0.42 0.28 0.14
Diesel hybrid
CNG
BEV 0.15 0.29 0.43 0.58 0.72 0.86 1

Table A4. Overall annual distance driven and fuel economy (liters of gasoline equivalent (LGe), per
100 km) for cars. Data from [47].

2015 2020 2025 2030 2035 2040 2045 2050

Vehicle stock (million) 35.7 37.8 41.2 45.7 54.3 62,6 68.6 72.7
Average travel per vehicle 13,899 13,422 13,108 13,196 13,385 13,578 13,717 13,797

Total vkm (billion) 496.6 501.1 503.3 505.4 507.4 539.7 603.5 726.8

Fuel economy (LGe/100 km)

Diesel ICE 7.6 7.2 6.8 6.4 6.0 5.8 5.7 5.5
Diesel hybrid 6.1 4.8 4.9 4.9 4.9 4.9 4.8 4.8

Flex ICE 9.4 8.9 8.3 7.5 6.8 6.5 6.2 6.0
Flex hybrid 6.3 5.5 5.3 5.2 5.1 5.1 4.9 4.8
CNG/LPG 9.9 9.8 9.7 8.4 7.0 6.6 6.2 6.0

Electric 2.3 2.2 2.2 2.1 2.0 2.0 2.0 1.9
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Table A5. Overall annual distance driven and fuel economy (liters of gasoline equivalent (LGe), per
100 km) for urban buses. Data from [47].

2015 2020 2025 2030 2035 2040 2045 2050

Vehicle stock (thousand) 273.6 293.4 315.1 300.1 277.1 251.4 229.7 210.2
Average travel per vehicle 32,715 32,715 32,715 32,715 32,715 32,715 32,715 32,408

Total vkm (billion) 8.95 9.60 10.31 9.82 9.07 8.22 7.52 6.81

Fuel economy (LGe/100 km)

Diesel ICE 44.7 43.1 42.1 41.0 40.0 39.0 38.0 37.1
Diesel hybrid 34.7 33.6 32.7 31.9 31.1 30.3 29.6 28.8

Flex ICE 49.6 47.9 46.7 45.6 44.4 43.3 42.2 41.2
Flex hybrid 37.2 36.0 35.1 34.2 33.3 32.5 31.7 30.9
CNG/LPG 49.6 47.9 46.7 45.6 44.4 43.3 42.2 41.2

Electric 14.9 14.4 14.0 13.7 13.3 13.0 12.7 12.4

Table A6. NOx and PM emissions intensities (g/km) for 2012. [54].

Pollutant Petrol Ethanol Diesel CNG

NOx 0.0300 0.0300 2.1020 0.0310
PM 0.0011 0.0000 0.0200 0.0011

Table A7. Well to Tank (WtT) and Tank to Wheels (TtW) CO2 emission factors for various fuels.

Fuel Well to Tank (g/MJ) Tank to Wheels (g/MJ)

Petrol 13.8 69.8
Ethanol 18.1 0.0
Diesel 15.4 74.4

Biodiesel 34.6 0.0
CNG 19.6 62.2

Table A8. Total Brazilian electricity generation and CO2 emissions intensities for 2015/17 [46] and EPE
scenarios for the best and worst case [57] for 2020–2050.

Year Generation (TWh) CO2 Emissions Intensities
(kiloton/TWh)

2015/17 Best Case Worst Case 2015/17 Best Case Worst Case

2015 531 * 531 * 531 * 122 * 122 * 122 *
2020 547 ** 857 837 94 ** 88 147
2030 547 ** 1197 1246 94 ** 47 257
2040 547 ** 1656 1743 94 ** 37 317
2050 547 ** 2260 2298 94 ** 29 354

* Actual values from 2015; ** actual values from 2017.

Table A9. Description of various methods and sources of carbon (not CO2) content of Brazilian biomes.

Description Value (Mg/ha) Source

Author’s judgement of map of values for Amazon 360
[63]Average of given values for Atlantic forest 230.8

Author’s judgement of map of values for Cerrado 60
“national-level forest AGB [above-ground biomass] density” with errors. 306.79 ± 36.1 [64]
“Estimates of forest carbon stocks” per canopy cover threshold (10%, 25%
and 30%) 102, 116, 123 [65]

Plantation forest land area and AGB for 2016 104.3 [66]
Average forest AGB for four submodels (1990–2009 average) 199, 266, 200, 196 [61]
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Table A10. Biofuel yields [58] and applied values for LUC emissions of CO2 for various biomes (from
Table A9).

Aspect Value

Biofuel yields per land area of
cropland (L/ha)

Ethanol 5570
Biodiesel 530

CO2 emissions from LUC (g/ha)

Cerrado (savannah) 121,845,050
Plantation forest 211,755,493
Low forest 283,641,324
Avg forest 459,142,610
High forest 634,643,895

Table A11. Vehicle and battery life and number of batteries required in cars’ lives.

Vehicle Type Vehicle Life (km) Battery Size
(kWh)

Batteries in
Vehicle Life

Battery Round
Trip Efficiency

Flex ICE

200,000Flex hybrid 1.5 1.5
CNG
BEV 30.0 1.5 0.88

Table A12. Total lifetime CO2 emissions for cars (including fuel use) and the proportion of the total
from manufacturing of the glider and powertrain (i.e., everything but the battery).

Component Proportions Proportion CO2 (g)

Total lifetime emissions (estimated, incl. fuel use) − 17,680,000

Glider 0.15 2,652,000

Powertrain 0.03 530,400

Table A13. Vehicle and battery life and number of batteries required in urban bus lives.

Vehicle Type Vehicle Life
(km)

Battery Size
(kWh)

Battery Life
(km)

Batteries in
Life

Battery Round
Trip Efficiency

Diesel ICE 1,000,000
Diesel hybrid 1,200,000 14.5 190,000 6.3

Flex ICE 1,000,000
Flex hybrid 1,200,000 14.5 190,000 6.3
CNG/LPG 1,000,000

Electric 1,500,000 99.5 600,000 2.5 0.88

Table A14. Total manufacturing emissions for various bus types and their associated non-battery
component where applicable.

Vehicle Type Total Total Non-Battery

Diesel ICE 45,400,000 45,400,000
Diesel hybrid 48,600,000 45,600,000

Flex ICE 45,400,000 45,400,000
Flex hybrid 48,600,000 45,600,000

CNG 45,400,000 45,400,000
Electric 56,900,000 40,800,000
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Table A15. CO2 emissions intensities for battery manufacturing (in g/kWh).

Scenario Manufacturing CO2 Emissions (g/kWh)

Minimum 30,000
Average 152,063

Maximum 494,000

Table A16. End-of-life data and sources.

Aspect Figure Source

Energy for recycling Vehicle 0.43 MJ/kg [67]
Battery 469 MJ/kWh

Mass (kg) Car 1200 [40]
Bus 7491 [51]

Extra emissions for all-virgin materials vehicle production 15–20% [68]

Reduction in emissions by using recycled battery materials 23–43% [69]
10–17% [68]

Current battery recycling rate 5% [70]

Vehicle-use portion of battery life 58.1% [69]

Table A17. Battery recycling and reuse rates as applied in the LCAs.

Aspect 2015 2020 2025 2030 2035 2040 2045 2050

Battery recycling rate 0.05 0.19 0.32 0.46 0.59 0.73 0.86 1.00
Battery reuse rate 0.17 0.33 0.46 0.60 0.73 0.87 1.00

Table A18. Settings used to create the best- and worst-case scenarios in the EPE electricity system
characteristic calculator [57].

Portuguese English
Worst Case Best Case

Demanda de energia Energy demand

Transporte de
passageiros—escolha modal

Passenger transport—modal
choice 1 1

Transporte de
passageiros—veículos eficientes

Passenger transport—efficient
vehicles 1 3

Preferência de uso do etanol em
veículos flex

Preference to use ethanol in
flex-fuel vehicles 1 1

Transporte de carga—distribuição
modal Freight transport—modal split 1 1

Transporte de carga—eficiência Cargo transport—efficiency 1 1
Conteúdo de biodiesel no diesel Biodiesel content in diesel 1 1

Setor residencial—eficiência
energética

Residential sector—energy
efficiency 1 3

Setor comercial e
público—eficiência energética

Commercial and public
sector—energy efficiency 1 3

Composição da indústria Composition of the industry B C
Eficiência energética na indústria Energy efficiency in industry 1 3

Setor agropecuário—eficiência Agricultural sector—efficiency 1 1
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Table A18. Cont.

Portuguese English
Worst Case Best Case

Demanda de energia Energy demand

Oferta Interna de Energia
Elétrica Internal Electricity Supply

Termelétricas a gás
natural—potência instalada

Natural gas-fired power
stations—installed capacity 1 1

Termelétricas a gás natural—CCS Natural gas thermal power
plants—CCS 1 1

Termelétricas a carvão—potência
instalada

Coal-fired power plants—installed
capacity 3 1

Termelétricas a carvão—CCS Coal-fired power plants—CCS 1 1
Termelétricas a derivados de

petróleo
Thermal power plants using

petroleum products 3 1

Aproveitamento da biomassa e do
biogás Use of biomass and biogas 1 3

Aproveitamento do excedente de
bagaço Utilization of surplus bagasse 1 3

Prioridade de uso do biogás Priority of biogas use A A
Eficiência das usinas a

biocombustível Efficiency of biofuel plants 1 3

Energia nuclear Nuclear energy 1 3
Energia eólica onshore Onshore wind energy 1 3
Energia eólica offshore Offshore wind energy 1 2

Energia dos oceanos Ocean energy 1 3
Energia hidráulica Hydraulic power 1 3

Energia solar fotovoltaica Photovoltaic solar energy 1 3
Energia solar heliotérmica (CSP) Solar heliothermal energy (CSP) 1 3

Importação de hidrelétricas
binacionais

Importation of binational
hydroelectric plants 1 3

Segurança do sistema elétrico Electrical system safety 1 1

Produção de óleo e gás associado Production of oil and associated
gas D A

Produção de gás natural não
associado

Non-associated natural gas
production 1 1

Links to the calculator with settings:.Best case:.http://calculadora2050.epe.
gov.br/pathways/111111133133132333331111113111111131313311/electricity/comparator/
011011111111011111111110011101101010101101. Worst case:.http://calculadora2050.
epe.gov.br/pathways/111131311111111111111411111111111111112111/electricity/comparator/
011011111111011111111110011101101010101101.
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