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Abstract: Fragmentation is a disruption in the connectivity of landscapes. The aims of this paper are
(i) to quantitatively assess the fragmentation rates in three landscape units located in a hydrocarbon
basin, and (ii) to model their behavior between 2001 and 2013 using landscape metrics at different
scales of resolution. The following metrics were selected using principal component analysis (PCA):
The Clumpiness Index (CLUMPY), patch density (PD), perimeter-area fractal dimension (PAFRAC)
and effective mesh size (MESH). Results from our investigations pointed out that hydrocarbon activity
increased the fragmentation at the sites. In particular, the CLUMPY index increased in all three
landscape units, the average of PD decreased from 60 to 14 patches per 100 hectares, whereas the
mean of MESH was quite constant, however, due to oil production, it decreased mainly in the coastal
valleys. Finally, the PAFRAC also decreased at sites with oil production, being more evident in
the plateau and coastal canyons. As a whole, outputs from our analyses clearly pointed out that
the monitoring of landscape fragmentation trends in arid and semi-arid zones can be successfully
achieved using metrics derived from satellite spectral information.
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1. Introduction

Oil resources are geographically unevenly distributed throughout the world. The concentration of
reserves does not coincide with the main consumption areas, being that, in general, the concentration
of reserves is in developing countries, whereas, most of the industrialized countries are importers of
oil. The main oil consumers are as follows: The United States of America, Japan and Germany, while
the main producers are Saudi Arabia, the United States of America and the countries of the North Sea
(such as Norway and the United Kingdom). In terms of the ranking of producing countries, Argentina
is positioned in 25th place [1]. In Argentina, the oil exploitation started in 1907 in the San Jorge Gulf
basin (Chubut and Santa Cruz provinces). This basin has a total area estimated at around 200,000 km2

and currently produces around 37,000 m3 of oil per day, obtained from more than 6000 oil wells (9000
are inactive) [2].

The oil industry has significant economic importance in both producing and consumer countries,
being that it is a crucial element of national and international economic policies. According to the
cycles that characterize this economic activity, the oil industry had a production crisis that declined
during the years of 2009 to 2014. Future exploration projects will focus on obtaining oil through
non-conventional techniques in mature fields where the application of assisted recovery techniques is

Sustainability 2019, 11, 5956; doi:10.3390/su11215956 www.mdpi.com/journal/sustainability

http://www.mdpi.com/journal/sustainability
http://www.mdpi.com
https://orcid.org/0000-0002-2914-8768
http://dx.doi.org/10.3390/su11215956
http://www.mdpi.com/journal/sustainability
https://www.mdpi.com/2071-1050/11/21/5956?type=check_update&version=2


Sustainability 2019, 11, 5956 2 of 20

mandatory [3]. These techniques are carried out by injecting water or natural gas or steam, polymers
and bacteria into injection wells, in order to extract oil [4].

This paper focuses on the estimation of the impact of the oil industry in the landscape of San
Jorge Gulf. Therein, the oil industry is one of the main anthropic disturbances that alters landscape
patterns and generates new patches and corridors extensively used as sheep farming. In the proposed
approach, the first step (prospecting) is to identify oil reserves using remote sensing with seismic
and geological information. Companies build extraction facilities, roads, and pipelines as logistic
infrastructures necessary for exploitation activities. The techniques of oil extraction require the use of
explosives to rupt the rock [5] and extract hydrocarbon, that is later transported to the refineries and,
finally, to the places where it is sold. Potential environmental impacts can occur along the diverse steps
of exploration, exploitation and transportation, including the following, for example; (i) potential soil
contamination due to losses caused by ruptures of pipelines, (ii) soil salinization produced by purge
waters, (iii) loss of top-soil, (iv) soil compaction, (v) modification of topography, (vi) alteration of water
dynamics in prairies (known locally as “mallines”) and coastal valleys for the construction of roads
and extraction facilities [6].

Landscape ecology provides tools for the analysis of the landscape pattern, i.e., discrete
characteristics, composition and spatial layout. For example, in North Dakota, Christie et al. [7] focused
on the inverse relationship between the index of pronghorn (Antilocapra americana) abundance and oil
well density; in Texas (USA) Pierre et al. [8] quantified direct landscape alteration and fragmentation,
along with the effects on biodiversity resulting from oil/gas infrastructure and wind energy development.
Birdsall et al. [9] focused on the propagation of exotic species and the oil industry, and Milt et al. [10]
investigated multiple environmental impacts associated with shale gas infrastructure development.

This paper is focused on the study of causes and consequences of land use changes that generate
processes of landscape fragmentation, loss of connectivity and interruptions in ecological flows [11].
Fragmentation is defined as a disruption in landscape connectivity [12], that facilitates (to a greater or
lesser extent) the ecological flows of matter and energy across the territory [13]. To quantify functional
connectivity, it is necessary to consider the impacts and constraints imposed by the increasing rate of
changes in the landscape and the environment. These changes are mainly driven by socio-economic
factors that in turn put pressure on natural landscapes [14]. Structural connectivity is a measure of
the size, shape and configuration of the habitats in a landscape’s mosaic [15] and it is one of the best
responses for mitigating the negative effects of habitat fragmentation [16]. The consequences of habitat
fragmentation and the associated loss of connectivity have been studied in the light of the theory of
island biogeography [17] and the patch-matrix-corridor model [11]. The latter has been used in habitats
modified by agriculture [18–21], in wooded [22,23], arid [24] and semi-arid areas [25]. Nevertheless,
studies of landscape fragmentation produced by oil activity in arid and semi-arid zones are still today
quite scarce, especially in vulnerable arid and semi-arid zones as in the case of the Chubut and Santa
Cruz provinces of Argentina, where a severe desertification process is currently ongoing.

One of the most important factors in conservation and restoration plans is the knowledge and
quantification of how human activities impact on landscape structure and dynamics, which may
be highly variable in time and space [26]. Numerous landscape metrics have been developed from
thematic maps generated from satellite information to improve the understanding of the spatial
arrangement between different classes of land use land cover, especially for assessing fragmentation
rates [27]. These metrics provide valuable information for monitoring ecological processes and
their evolutions mainly because they simultaneously measure landscape structure and configuration.
However, inadequate selections of metrics can lead to conceptual errors [28], since there are several
alternatives for representing landscapes; for example, mean size and patch density provide redundant
information. To overcome this drawback, statistical analyses, such as clusters, and multivariate
principal component analysis (PCA) are commonly used to effectively select representative metrics,
reducing the number of indicators and avoiding redundancy [28–30]. In particular, PCA is a technique
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that reduces variable redundancy and extracts uncorrelated information represented by a new set of
orthogonal (uncorrelated) variables [29–32].

In the hydrocarbon basin under investigation in this paper, the main anthropogenic disturbances
that alter landscape patterns and generate new patches and corridors are mainly sheep farming and
the petroleum industry. In particular, the latter generates roads, extraction facilities, machinery service
areas, and pipelines built during the different stages of exploration, exploitation and transportation,
thus producing specific disturbances such as the removal of vegetation cover and soil compaction [33].
In extra-Andean Patagonia, sheep were introduced at the beginning of the 20th century through a
system of farms with sizes ranging from 10,000 to 50,000 ha [34,35]. Sheep grazing is considered one
of the largest consumers of natural vegetation at a global level [36,37] since it generates changes in
vegetation communities [38] and affects soil structure and resources.

In 2003, Latin America entered the Commodities Consensus [39], that underlines the consolidation
of a new economic, political and ideological order, sustained by the boom in international prices of
raw materials and consumer goods demanded by wealthier nations and emerging powers, which
generates undoubted comparative advantages in economic growth, but at the same time, produces new
asymmetries and deep inequalities in Latin American societies. Oil exploitation has been characterized
by cyclical behaviors with ups and downs, as for example, in the boom of the last decade and the
crisis currently ongoing today. In 2015, the price of an oil barrel fell by 41% in relation to the previous
year, and according to the International Energy Agency, the price remained low throughout the whole
2016 year.

The aim of this study is to quantitatively evaluate landscape fragmentation in the hydrocarbon
basin located in the arid and semi-arid zones of Patagonia (Argentina) over a period of 12 years. To this
aim, the smallest package of metrics that best explain the fragmentation process in the study area has
been herein selected, analyzed and discussed. In particular, we sought to quantify the fragmentation
rates in three landscape units and to explain their behavior between 2001 and 2013, using landscape
metrics at different scales of resolution. This enabled us to quantify the effects of fragmentation and
support a mitigation strategy to reduce the environmental impacts produced by the oil industry.

2. Materials and Methods

2.1. The Study Was Performed in the Hydrocarbon Basin Located in the Chubut and Santa Cruz Provinces

The hydrocarbon basin of San Jorge Gulf covers an area of approximately 170,000 km2, and
is located in Patagonia, Argentina (Figure 1). The most important city in the region is Comodoro
Rivadavia with a total of 186,583 habitants [40]. This region is divided into three landscape units
that from east to west are as follows: The western valleys, the plateaus and the coastal valleys. The
western valleys have an area of 532 km2 and are located in the phytogeographic region of the Central
District, Subdistrito Chubutense [41], which is the most widespread unit in Central Patagonia. The
plateaus have an area of 628 km2, among them, the main ones are as follows: Pampa del Castillo
and Pampa Salamanca, with an average height of approximately 750 m, constituting one of the most
important topographic features of the zone. It has a southwest–northeast orientation, from where
many canyons originate, sloping towards the Atlantic. The coastal valleys have a surface area of
approximately 300 km2, the boundary is the supra-tidal line on San Jorge Gulf (Mar Argentino), the
northern and western boundaries are at the maximum level of the plateaus of Castillo and Salamanca;
the southern limit is at latitude 45◦48′ S. In this region the climate is semi-arid and cold. The mean
annual temperature is 13 ◦C and precipitation is concentrated during the coldest months of the year
(June and July). The average precipitation is 247.50 mm (1981–2010) [42].
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The analysis herein performed was based on the following steps: (i) Selection of sampling sites 
with and without hydrocarbon activity in the landscape units (Figure 2), (ii) digitization of 
landscape elements, (iii) calculation of metrics, (iv) running PCA and selection of the most 
representative landscape metrics; (v) re-sampling of the satellite images; and (vi) analysis of the 
obtained results. A summary of these methods is shown in Figure 3. 

 

Figure 2. Oilfields (rectangular clearings) with hydrocarbon activity on coastal valleys (courtesy of 
Alejandro Tula). 

Figure 1. (A): Location of Argentina (in red study area). (B): Location of the study area and the selected
sampling sites with and without hydrocarbon activity.

2.2. Methods

The analysis herein performed was based on the following steps: (i) Selection of sampling sites
with and without hydrocarbon activity in the landscape units (Figure 2), (ii) digitization of landscape
elements, (iii) calculation of metrics, (iv) running PCA and selection of the most representative
landscape metrics; (v) re-sampling of the satellite images; and (vi) analysis of the obtained results. A
summary of these methods is shown in Figure 3.
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Figure 3. Diagram of the methodology used.

A grid was drawn in vector format to randomly select five sampling sites for each landscape unit
with hydrocarbon activity and (three) control sites without hydrocarbon activity.

High resolution multispectral SPOT 5 satellite images (19 February 2013) were used along with
Landsat 7 Enhanced Thematic Mapper Plus (ETM +) of medium spatial resolution (19 December 2001).
The data pre-processing consisted in rectification, co-registration and resampling of the different spatial
resolutions (10, 30, 60 m) made using the closest neighbor (with an error less than 0.5) [43]. Both of the
two images were rectified to the plane coordinate system POSGAR 1994.

A mesh of 77 polygons were placed on the satellite images in a vector format with a resolution
of 2500 ha. Five random sites were selected in each of the landscape units where both the linear
(roads, tracks, pipelines and seismic lines) and nonlinear elements (oilfields) were digitized. Then
the transformation of the vector files to raster images was carried out. The rasterization of the initial
maps was generated using a binary code: Anthropogenic activity (linear + nonlinear elements) and
the matrix (natural vegetation) (Figure 4). The process was carried out using QGIS v. 2.14 [44].
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Figure 4. (A) Natural vegetation in coastal valleys (Colliguaja intergerrima and Retanilla patagonica). (B)
Natural vegetation in plateaus (Pappostipa speciosa, Pappostipa humilis and Poa spiciformis). (C) Natural
vegetation in eastern valleys (Nassauvia glomerulosa and Chuquiraga avellanedae).

Some studies suggest that the most suitable and representative metrics may differ at class and
landscape levels [28], therefore, in this study, a large number of metrics were obtained and calculated
at patch, class and landscape levels. This set gave measurements of the landscape spatial structure in
terms of form, complexity, connectivity and fragmentation. The landscape metrics were calculated
using the FRAGSTATS 4.2 program. It is a computer software program designed to compute a wide
variety of landscape metrics for categorical map patterns [32], which is the program most used to
calculate landscape metrics [45]. The cartography used as input for the calculation of the metrics was
a rasterized image reclassified into a binary code. The landscape metrics were computed using the
four-cell rule with nearest neighbor and those used for PCA. The list of landscape metrics used in the
study is shown in Appendix A.

A correlation analysis was performed to assess whether there are any differences between the
metrics calculated at the class and landscape levels. Nine metrics were selected at the landscape level
and eleven at the class level. The selection was based on some previous studies [27,29]. In order to
obtain the minimum set of metrics that most adequately describe the landscape pattern, PCA was
performed. Following this, a correlation analysis of each metric was undertaken at both class and
landscape levels to evaluate if the spatial scale affects the metric.

To evaluate the fragmentation, 20 landscape metrics were analyzed and after a redundancy
analysis, only four were selected: Patch density (PD), effective mesh size (MESH), the Clumpiness
Index (CLUMPY) and the fractal dimension of the perimeter-area (PAFRAC).

The minimum package of metrics obtained in this study includes those that express form, like
PAFRAC, aggregation such as CLUMPY and PD, and contagion and interspersion such as MESH. Form
metrics measure the geometric complexity of a landscape, as well as the influence of the interaction
between the shape and size of the patch on ecological processes. In more detail, the PD measures the
number of patches present in 100 hectares [32], and it is characterized, as all of the selected indicators,
by the fact that it is not affected by the scale of the analysis [28]. The MESH is based on the probability
that two points randomly selected in a region are connected within a unit without encountering a
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physical barrier [46,47]. The MESH is a measure of fragmentation, it may be influenced by the value
of the metric at the patch level [48] but it has a high capacity for determining temporal changes [49]
and is one of the most frequently used [38,49,50]. The PAFRAC is a metric that informs us about the
complexity of the form (it is binary and provides one for shapes with simple perimeters and two for
complex perimeters). It is a sound metric that is not influenced by the scale of the analysis [51]. Finally,
CLUMPY isolates the configuration and area components, giving an effective index of fragmentation
calculated using an adjacency matrix, which shows the frequency at which different types of patch
pairs appear side by side on the map [52].

To evaluate the effect of the pixel size of the Landsat and SPOT satellite images, spatial resampling
was performed using the nearest neighbor method. This data processing was carried out using QGIS v.
2.14 and GRASS software (resampled tool). The spatial resolution was 10, 30 and 60 m for both of the
images used. Following this, these classified images were incorporated into the FRAGSTATS program
to calculate landscape metrics.

3. Results

The results are presented in two sections: (i) Analysis of landscape metrics, and (ii) analysis of the
temporal change in fragmentation.

3.1. Analysis of Landscape Metrics at the Class Level

Figure 5 shows an example about elements on the landscape. This is a representative example
about the impact of hydrocarbon activity on plateaus in the years 2001 and 2013.
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Based on the obtained results, the CLUMPY metric was selected at the class level which explains
93.44% of the total variance (Figure 6, Table 1).
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Table 1. Total variance explained analysis at the class level.

F1 F2 F3 F4 F5

Eigenvalue 7.99 2.28 0.56 0.10 0.05
Variability (%) 72.67 20.76 5.15 0.94 0.46

F: Factor analysis.

At the landscape level, PCA showed that factors 1 and 2 explain more than 95% of the total
variance of the metrics analyzed (Figure 7, Table 2). From this analysis, the metrics selected were as
follows: PD, MESH and PAFRAC, which are the ones that best explain the total variability in this case.
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Table 2. Total variance explained analysis at the landscape level.

F1 F2 F3

Eigenvalue 5.13 2.84 0.02
Variability (%) 64.19 35.51 0.29

F: Factor analysis.

The correlation between the levels of analysis (class vs. landscape) was high and significant in all
the analyzed metrics (Figure 8).
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When resampling the satellite images, the ratio of the PD calculated with Landsat and SPOT
images was significant and higher than 69% for the spatial resolutions of 10, 30 and 60 m. The PAFRAC
showed a significant relationship higher than 82% for all the scales analyzed, and eventually, the MESH
showed a relationship of 71% with a spatial resolution of 10 m, while when the resolution was 30 and
60 m the ratio was 95% and 74%, respectively (Figure 9).

3.2. Analysis of the Temporal Change in Fragmentation

Between 2001 and 2013, fragmentation was greater at the sites with hydrocarbon activity than
without (Figure 10). The average density of the patches in the landscape units went down from 60 to
14 patches per 100 hectares at the sites without any hydrocarbon activity between the years 2001 and
2013, whereas the mean density of patches increased from 309 to 444 patches at the sites with activity.
The mean mesh size (MESH) remained constant between years in all three landscape units, whereas at
the sites with oil production they decreased, mainly in the coastal valleys. The PAFRAC decreased in
all three landscape units with hydrocarbon activity in the period analyzed, this decrease being more
evident in the plateaus and the coastal valleys. On the other hand, this metric did not show a common
pattern in the landscape units at the sites without any activity. CLUMPY showed an increase in all
three landscape units between 2001 and 2013 at the sites with hydrocarbon activity. This increase was
more evident in the coastal valleys. This metric did not show a common pattern of behavior in the
landscape units at the control sites over time.
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perimeter-area fractal dimension (PAFRAC), and effective mesh size (MESH) metrics with different
spatial resolution. PD (number of patches/100 ha), PAFRAC (proportion), MESH (ha).
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4. Discussion

Understanding and assessing trends in landscape fragmentation in arid and semi-arid zones can
be achieved using metrics derived from spectral information. However, selecting and interpreting the
minimum set of metrics that represent change most effectively is a challenge, since all metrics have
limitations that restrict their use and application [52]. Multivariate analysis enables a reduction in
the number of metrics by showing the redundancy between them. In this study, the metrics that best
expressed the pattern of change in a Patagonian hydrocarbon basin were reduced to four from fourteen;
several papers have focused on explaining the reduction of metrics for avoiding redundancy between
them (e.g., [28–31]). The minimum package of metrics obtained in this study includes those that
express form, like PAFRAC, aggregation such as CLUMPY and PD, and contagion and interspersion
such as MESH. Form metrics measure the geometric complexity of a landscape, as well as the influence
of the interaction between the shape and size of the patch on ecological processes. Aggregation metrics
measure the tendency of patch types to be spatially aggregated which refers to the texture of the
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landscape. The contagion and interspersion metrics are based on adjacent patch types, considering
information about border segments [46]. Numerous studies in the last two decades have reported on
the behavior of landscape metrics; however, few have focused on changes in resolution [28]. Li and
Wu [53] have shown that changes in the level of analysis could affect the behavior of the metrics. In
this study, we show a high relationship between the metrics analyzed at both class and landscape
levels (r2 > 0.97) and the scales (r2 > 0.69). This could be due to the fact that a binary classification was
analyzed between an anthropogenic activity and a matrix without any disturbance, the latter being
dominant in the landscapes irrespective of the scale.

Our results showed that the landscape units in the Patagonian hydrocarbon basin have undergone
an important fragmentation process between 2001 and 2013. This loss of connectivity was more evident
in the coastal valleys than in the rest of the landscape units. The first oil deposits in the region were
located near to the coast at the beginning of the 20th century, in the costal valleys that descend to the
sea from the upper terraced levels. The loss of connectivity was a consequence of hydrocarbon activity,
since the applied metrics showed a tendency to fragmentation when compared with the control sites
without any activity. This loss of connectivity, intensified in the analyzed period, facilitated the serious
desertification process, caused by the mismanaging of the sheep grazing that occurred in the last
century. The advance of desertification in the arid and semi-arid zones of Patagonia is one of the main
socioecological and environmental problems present. The fragmentation of the plant cover matrix in
the hydrocarbon basin under study can affect ecosystem functional and structural attributes such as
increased runoff, diminished above-ground net primary productivity (and, consequently, secondary
production), and increased physiognomic changes (e.g., replacement of grasslands by shrub-lands).
This last aspect was already observed and measured in arid and semi-arid Patagonia were plant
communities showed changes in land cover; in the western valleys the shrub-lands increased their
coverage demonstrating the process of expansion of thickets of shrub plants in environments dominated
by grasses or other herbaceous plants.

The probability that two animals located at two different points within the study area can be found
without having to cross a barrier, such as a road or an urban area [49], decreased as a result of the oil
activity; the MESH had a value close to 2500 ha in the control sites and of 1957 ha in the disturbed sites.
The PD increased from 37 to 376 patches per 100 hectares at sites with hydrocarbon activity and it was
observed that over time the forms had been simplified, as shown by PAFRAC, which decreased from a
value of 1.38 to 1.31, possibly due to the increase in infrastructure and roads required by the petroleum
industry. In the control sites, the temporal difference of the shape was not so marked, showing that
there have been no modifications in the landscape configuration by the petroleum industry. CLUMPY
showed that the patches are more aggregated in sites with hydrocarbon activity, which increased during
the period analyzed. In the control sites, the aggregation between patches presented a random pattern.
It should be noted that CLUMPY isolates the configuration component from the area component, thus
giving an effective index of fragmentation that is not confused with changes in the area [21]. Between
2003 and 2004 there was an increase in the international price of a barrel of crude oil, and a consequent
increase in oil exploitation, which is reflected in the opening of new locations, roads and tracks. This is
due to the oil boom that has occurred since 2003 in the hydrocarbon basin in the Chubut province, as
part of neo-extractivism and an era of well-being and prosperity that has had repercussions on the
configuration of the regional landscape [54].

5. Conclusions

As a whole, this study showed that landscape is a complex system, with dynamics, spatial
configuration, structure and functionality that are the result of the interaction between natural,
economic and socio-cultural factors. In particular, in this paper, landscape fragmentation rates were
quantitatively assessed in the hydrocarbon basin, located in the Chubut and Santa Cruz provinces
of the arid and semi-arid zones of Patagonia (Argentina). It is important to measure and document
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fragmentation in the landscape, to support mitigation strategies, sustainable planning and policy
development for hydrocarbon activity.

The fragmentation rates were herein evaluated over a period of twelve years, in three landscape
units, using PCA to select the smallest package of metrics that best explain the fragmentation process.
The minimum package of metrics obtained in this study includes those that express form, like PAFRAC,
aggregation such as CLUMPY and PD, and contagion and interspersion such as MESH. The advantages
of the methodology herein adopted is the use of a supervised classification to evaluate and categorize
the impacts produced by the oil industry. The disadvantage is mainly linked with the binary approach
which does not allow the inclusion of different land use and land cover types. As a future project, it
would be interesting to include information on the combination of different land uses and land covers
and, moreover, further research should be extended to consider the fragmentation of the landscape from
an interdisciplinary perspective including the relationship between cultural and natural landscapes.
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Appendix A

Table A1. Definition and description of FRAGSTATS metrics [29].

Landscape Metric Description Range Units Formula

Total Area (TA)

TA equals the sum of the areas
(m2) of all patches of the
corresponding patch type,
divided by 10,000 (to convert to
hectares); that is, total class area.

TA ≥ 0 Ha. TA =
n∑

j=l
aij

Clumpiness Index (CLUMPY)

Equals the proportional
deviation of the proportion of
like adjacencies involving the
corresponding class from that
expected under a spatially
random distribution.

−1 ≥ CLUMPY ≤ 1 None.

Gi =
(

Gii∑m
k=l gik

)
CLUMPY =


Gi−Pi
1−Pi

si Gi≥ Pi
Gi−Pi
1−Pi

si Gi < Pi; Pi ≥ 0, 5
Pi−Gi
−Pi

si Gi < Pi; Pi < 0, 5


Gii = Number of like adjacencies (joins) between
pixels of patch type (class) i based on the
double-count method.
gik = Number of adjacencies (joins) between pixels
of patch types (classes) i and k based on the
double-count method.
Pi = Proportion of the landscape occupied by
patch type (class) i.

Aggregation Index (AI)

Aggregation index is calculated
from an adjacency matrix,
which shows the frequency with
which different pairs of patch
types (including like adjacencies
between the same patch type)
appear side-by-side on the map.

0 5 AI 5 100 Percent.

AI =
[

gii
maxgii

]
(100)

gii = Number of like adjacencies (joins) between
pixels of patch type (class) i based on the
single-count method.
max-gii = Maximum number of like adjacencies
(joins) between pixels of patch type (class) i based
on the single-count method.
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Table A1. Cont.

Landscape Metric Description Range Units Formula

Percentage of Landscape
(PLAND)

PLAND equals the sum of the
areas (m2) of all patches of the
corresponding patch type,
divided by total landscape area
(m2), multiplied by 100 (to
convert to a percentage).

0 ≥ PLAND ≤ 100 Percent.

PLAND = Pi =

∑n
j=i aij

A (100)
Pi = Proportion of the landscape occupied by
patch type (class) i.
aij = Area (m2) of patch ij.
A = Total landscape area (m2).

Total class area (CA)

Equals the sum of the areas (m2)
of all patches of the
corresponding patch type,
divided by 10,000 (to convert to
hectares).

CA > 0 Ha
CA =

n∑
j=l

aij
(

1
10000

)
aij = Area (m2) of patch ij.

Largest Patch Index (LPI)
LPI equals the percentage of the
landscape comprised by the
largest patch.

0 < LPI ≤ 100 Percent
LPI =

max
j=l

(aij)

A (100)
aij = Area (m2) of patch ij.
A = Total landscape area (m2).

Effective Mesh Size (MESH)

Equals the sum of patch area
squared, summed across all
patches of the corresponding
patch type, divided by the total
landscape area (m2), divided by
10,000 (to convert to hectares).

Ratio of cell size to
landscape area ≤

MESH ≤ total
landscape area.

Ha
MESH =

∑m
i=l

∑m
j=l a ij2

A
aij = Area (m2) of patch ij.
A = Total landscape area (m2).

Perimeter-Area Fractal
Dimension (PAFRAC)

PAFRAC approaches one for
shapes with very simple
perimeters such as squares, and
approaches 2 for shapes with
highly convoluted, plane-filling
perimeters.

1 ≤ PAFRAC ≤ 2 None

PAFRAC =
2[

N
∑m

i=l
∑m

j=l(lnpij ×lnaij )
]
−

[(∑m
i=l

∑m
j=l(lnpij )

(∑m
i=l

∑m
j=l(lnaij )

))]
(
N

∑m
i=l

∑m
j=l lnpij

2
)
−

(
N

∑m
i=l

∑m
j=l lnpij)

2

aij = Area (m2) of patch ij.
pij = Perimeter (m) of patch ij.
N = Total number of patches in the landscape.
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Table A1. Cont.

Landscape Metric Description Range Units Formula

Splitting Index (SPLIT)

SPLIT equals the total landscape
area (m2) squared divided by
the sum of patch area (m2)
squared, summed across all
patches in the landscape.

1 ≤ SPLIT ≤
number of cells in

the landscape
squared

None. SPLIT = A2∑n
j=1 aij

2

Landscape Division Index
(DIVISION)

DIVISION equals one minus the
sum of patch area (m2) divided
by total landscape area (m2),
quantity squared, summed
across all patches of the
corresponding patch type.

0 ≤ DIVISION < 1 Proportion.

DIVISION =

1− n∑
j=l

( aij

A

)2


aij = Area (m2) of patch ij.
A = Total landscape area (m2).aij = Area (m2) of
patch ij.
A = Total landscape area (m2).

Number of Patches (NP) NP is the total number of
patches in the landscape. NP ≥ 1 None.

NP = ni
ni = Number of patches in the landscape of patch
type (class) i.

Patch Density (PD)

PD equals the number of
patches in the landscape,
divided by total landscape area
(m2), multiplied by 10,000 and
100 (to convert to 100 hectares).

PD > 0 Number per 100
hectares.

PD = ni
A (100)

N = Total number of patches in the landscape.
A = Total landscape area (m2).

Percentage of Like Adjacencies
(PLADJ)

PLADJ equals the number of
like adjacencies involving the
focal class, divided by the total
number of cell adjacencies
involving the focal class;
multiplied by 100 (to convert to
a percentage).

0 ≤ PLADJ ≥ 100 Percent.

PLADJ =
(

gii∑m
k=l gik

)
(100)

gii = Number of like adjacencies (joins) between
pixels of patch type (class) i based on the
double-count method.
gik = Number of adjacencies (joins) between pixels
of patch types (classes) i and k based on the
double-count method.
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Table A1. Cont.

Landscape Metric Description Range Units Formula

Contagion Index (CONTAG)

The observed contagion over
the maximum possible
contagion for the given number
of patch types. Note, CONTAG
considers all patch types
present on an image, including
any present in the landscape
border, if present, and considers
like adjacencies (i.e., cells of a
patch type adjacent to cells of
the same type). CONTAG
considers all patch types
present on an image, including
any present in the landscape
border, if present, and considers
like adjacencies (i.e., cells of a
patch type adjacent to cells of
the same type).

0 < CONTAG ≥
100 Percent.

CONTAG =1 +
∑m

i=l
∑m

k=l

[
Pi∗

gik∑m
k=l gik

]
∗

[
ln

(
Pi∗

gik∑m
k=l gik

)]
2 ln(m)

(100)

Pi = Proportion of the landscape occupied by
patch type (class) i.
gik = Number of adjacencies (joins) between pixels
of patch types (classes) i and k based on the
double-count method.
m = Number of patch types (classes) present in the
landscape, including the landscape border if
present.
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