
sustainability

Article

An Improved Style Transfer Algorithm Using
Feedforward Neural Network for Real-Time
Image Conversion

Chang Zhou 1, Zhenghong Gu 1, Yu Gao 1 and Jin Wang 2,3,*
1 College of Information Engineering, Yangzhou University, Yangzhou 225000, China;

zhouchangyz@163.com (C.Z.); guzhenghong@yzu.edu.cn (Z.G.); mx120170403@yzu.edu.cn (Y.G.)
2 Hunan Provincial Key Laboratory of Intelligent Processing of Big Data on Transportation, School of

Computer & Communication Engineering, Changsha University of Science & Technology,
Changsha 410000, China

3 School of Information Science and Engineering, Fujian University of Technology, Fuzhou 350000, China
* Correspondence: jinwang@csust.edu.cn; Tel.: +86-180-1484-9250

Received: 27 September 2019; Accepted: 11 October 2019; Published: 14 October 2019
����������
�������

Abstract: Creation of art is a complex process for its abstraction and novelty. In order to create those
art with less cost, style transfer using advanced machine learning technology becomes a popular
method in computer vision field. However, traditional transferred image still troubles with color
anamorphosis, content losing, and time-consuming problems. In this paper, we propose an improved
style transfer algorithm using the feedforward neural network. The whole network is composed of
two parts, a style transfer network and a loss network. The style transfer network owns the ability of
directly mapping the content image into the stylized image after training. Content loss, style loss,
and Total Variation (TV) loss are calculated by the loss network to update the weight of the style
transfer network. Additionally, a cross training strategy is proposed to better preserve the details of
the content image. Plenty of experiments are conducted to show the superior performance of our
presented algorithm compared to the classic neural style transfer algorithm.

Keywords: style transfer; convolution neural network; cross training; machine learning

1. Introduction

Advanced machine learning technology makes the automatically style transfer possible because
of its powerful fitting ability [1–5]. Style transfer as a popular method applicated in artistic creation
has attracted much attention. It commonly combines the style information from a style image with
the original content image [6–8]. The fused picture preserves the features of the content image
and style image simultaneously. The strong ability of features extraction using convolution neural
network improves the quality of the synthetic image by style transfer. By adopting style transfer,
people can create works of art easily and don’t need to care how to professionally draw a picture [9,10].
Additionally, much repetitive work can be omitted and the business costs can be reduced. The improved
quality and the automated process make style transfer popular in artistic creation [11–13], font style
transformation [14–16], movie effects rendering [17,18] and some engineering fields [19–22].

Traditional style transfer mainly adopts the following methods.

(1) Stroke-Based Rendering: Stroke-based rendering refers to the method of adding a virtual stroke
to a digital canvas to render a picture with a particular style [23–25]. The obvious disadvantage is
that its application scenarios are only limited to oil paintings, watercolors, and sketches and it’s
not flexible enough.

Sustainability 2019, 11, 5673; doi:10.3390/su11205673 www.mdpi.com/journal/sustainability

http://www.mdpi.com/journal/sustainability
http://www.mdpi.com
https://orcid.org/0000-0002-6516-6787
http://dx.doi.org/10.3390/su11205673
http://www.mdpi.com/journal/sustainability
https://www.mdpi.com/2071-1050/11/20/5673?type=check_update&version=2

Sustainability 2019, 11, 5673 2 of 15

(2) Image Analogy: Image analogy is used to learn the mapping relationship between a pair of source
images and target images. The source images are transferred by a supervised way. The training set
includes a pair of uncorrected source images and corresponding stylized images with a particular
pattern [26,27]. The analogy method owns an effective performance and its shortage is that the
paired training data is difficult to obtain.

(3) Image Filtering: Image filtering method adopts a combination of different filters (such as bilateral
and Gaussian filters) to render a given image [28,29].

(4) Texture Synthesis: The texture denotes the repetitive visual pattern in an image. In texture
synthesis, similar textures are added to the source image [30,31]. However, those texture
synthesis-based algorithms only use low-level features and their performance is limited.

Recent years, Gatys et al. [6] present a new solution for style transfer combined with the convolution
neural network. It regards the style transfer as the optimization problem and adopts iterations to
optimize each pix in the stylized picture. The pretrained Visual Geometry Group 19 (VGG19) network
is introduced to extract the content feature and style feature from the content image and style image,
respectively. Owing the greatly improved performance to the neural network, the method Gatys et al.
proposed is also called neural style transfer. Though neural style transfer performs much better than
some traditional methods, some drawbacks still trouble the researchers. Firstly, neural style transfer
needs to iterate to optimize each pix of the stylized image and it’s not applicable to some delay-sensitive
applications especially those needing real-time processing. Secondly, though the style features can be
well integrated into the stylized image, the content information is inevitable lost. For example, the
color in the content image will be mixed with the color in the style image and the lines in the stylized
image will show varying degrees of distortion.

In order to make up for the lack of the classic neural style transfer, an improved style transfer
algorithm adopting a deep neural network structure is presented. The whole network is composed
of two parts, style transfer network and loss network. The style transfer network conducts a direct
mapping between the content image and the stylized image. The loss network computes the content
loss, style loss, and TV loss between the content image, style image, and stylized image generated by
the style transfer network. Then the weight of the style transfer network can be updated according
to the calculated loss. The style transfer network needs to be trained while the loss network adopts
the first few layers of the pretrained VGG19. A cross training strategy is presented to make the style
transfer network to preserve more detailed information. Finally, numerous experiments are conducted
and the performances are compared between our presented algorithm and the classic neural style
transfer algorithm.

We outline the paper as follows. Section 1 introduces the background of style transfer. Some parallel
works are summarized in Section 2. Section 3 demonstrates the effects of feature extraction from
different layers of VGG19. Section 4 has a specific illustration of our proposed algorithm. Section 5
conducts the experiments and analyzes the experiment results. Merits and demerits are discussed in
Section 6. Section 7 makes a conclusion for the whole paper.

2. Related Work

A deep network structure with multiple convolutional layers is proposed for image
classification [32]. Small filters are introduced for detailed features extraction and less parameters need
to be trained simultaneously. Due to the favorable expansibility of the well trained VGG network,
many other researchers adopt it as a pretrained model for further training.

In order to solve the content losing problem, a deep convolution neural network with dual streams
is introduced for feature extraction and an edge capture filter is introduced for synthetic image quality
improving [33]. The convolution network contains two parts, detail recognizing network and style
transfer network. A detail filter and a style filter are respectively applied to process the synthesized
images from the detail recognizing network and style transfer network for detail extraction and color

Sustainability 2019, 11, 5673 3 of 15

extraction. Finally, a style fuse model is used to integrate the detailed image and the color image into a
high-quality style transfer image.

A style transfer method for color sketch synthesis is proposed by adopting dilated residual
blocks to fuse the semantic content with the style image and it works without dropping the spatial
resolution [34]. Additionally, a filtering process is conducted after the liner color converts.

A novel method combined with the local and global style losses is presented to improve the
quality of stylized images [35]. The local style preserves the details of style image while the global style
captures more global structural information. The fused architecture can well preserve the structure
and color of the content image and it reduces the artifacts.

An end-to-end learning schema is created to optimize both the encoder and the decoder for better
features extraction [36]. The original pretrained VGG is fine-tuned to adequately extract features from
style or content image.

In order to preserve the conspicuous regions in style and content images, the authors adopt a
localization network to calculate the region loss from the SqueezeNet network [37]. The stylized image
can preserve the conspicuous semantics regions and simple texture.

Advanced Generative Adversarial Networks (GAN) technology is introduced to style transfer
for cartoon images [38]. Network training using the unpaired images makes the training set easier
to build. To simulate the sharp edges of cartoon images, the edge loss is added to the loss function.
The Gaussian smoothing method is first used to blur the content image, and then the discriminator
determines the blurred image as a negative sample. A pre-trained process is executed in the previous
several epochs for the generator to make the GAN network converge more quickly.

A multiple style transfer method based on GAN is proposed in [39]. The generator is composed
of an encoder, a gated transformer, and a decoder. The gated transformer contains different branches
and different styles can be adopted by passing different branches.

3. Features Extraction from VGG19

In a pretrained convolution neural network, the convolution kernels own the ability to extract the
features from a picture. Therefore, similarly as the classic neural style transfer, we adopted VGG19 to
extract the features from content and style images. VGG19 is a very deep convolution neural network
trained with ImageNet dataset and has excellent performance in image classification, object positioning,
etc. VGG19 owns good versatility for features extractions and many works adopt it as the pretrained
model. Different from the classic neural style transfer, we first analyze the extracted features by the
VGG19 to select the suitable layers for feature extraction.

Since the features extracted by each layer of the VGG19 have multiple channels and cannot
be directly visualized, we adopt the gradient descent algorithm to reconstruct the original image
according to the features extracted by the different layer of the VGG19. The reconstructed images
are initialized with Gaussian noise and then we put the initialized images into the VGG19. Then the
extracted features are compared in the same layer and their L2 loss are calculated. Next, the L2 loss is
back propagated to the reconstructed image and the reconstructed image is updated according to the
gradient. When reconstructing the content image, we directly use the extracted features to calculate
the L2 loss, as shown in Formula (1).

L
j
c(y, ŷ) =

1
H jW jC j

‖ϕ j(y) −ϕ j(ŷ)‖22 (1)

where y and ŷ denote the original image and the reconstructed image, respectively. ϕ j denotes the
output value of the j-th layer of VGG19 network. H j, W j, C j denote the width, height, and number
of channels of the j-th layer of VGG19 network. ‖x‖2 denotes the Euclidean norm of the vector x.
When reconstruct the style image, the Gram matrix needs to be firstly calculated by Formula (2).

G j(y) = f j
· f jᵀ (2)

Sustainability 2019, 11, 5673 4 of 15

where f j denotes the reshaped matrix using the extracted features of the j-th layer of VGG19. Then the
style loss can be defined as Formula (3).

Ls =
1

C j
‖G j(y) −G j(ŷ)‖

2
2 (3)

We exchange the layers used for features extraction and conduct much experiments.
The experiment results are shown as follows.

As we can clearly see from Figure 1, the lower layers of VGG19 can preserve much more detailed
information of content images. While, the deeper layers of VGG19 are more interested in the regular
texture which represents the style of a picture. Therefore, the lower layers of VGG19 are more suitable
for content features extraction and the deeper layers are more suitable for style features extraction.

Sustainability 2019, 11, x FOR PEER REVIEW 4 of 15

ℒ௦ = ௝ܥ1 ฮܩ௝(ݕ) − ฮଶଶ (3)(ොݕ)௝ܩ

We exchange the layers used for features extraction and conduct much experiments. The
experiment results are shown as follows.

As we can clearly see from Figure 1, the lower layers of VGG19 can preserve much more detailed
information of content images. While, the deeper layers of VGG19 are more interested in the regular
texture which represents the style of a picture. Therefore, the lower layers of VGG19 are more suitable
for content features extraction and the deeper layers are more suitable for style features extraction.

Figure 1. Feature extraction effects of different of the VGG19.

4. Proposed Method

4.1. Data Processing

We firstly process the input data of the network. In order to avoid the problem of color mixing
in the classic neural style transfer, a gray conversion is conducted for the content image. We use the
classic physiology formula to transform each RGB pixel of content image into grey pixel as Formula
(ݔ)ݕܽݎܩ .(4) = (ݔ)ܴ ∙ 0.299 + (ݔ)ܩ ∙ 0.587 + (ݔ)ܤ ∙ 0.144 (4)

where R(x), G(x), and B(x) denote the value of the Red, Green, and Blue (RBG) channels of the pixel
x in content image respectively. After the gray conversion, the original content image with three RGB
channels is transformed into a gray image with one grayed channel. Whereas, the style image is an
RGB picture with three channels, the grayed content image still needs to be converted to the form of
three channels to match the format of the style image. Thus, we just simply stack three identical
grayed channels as the content image with RGB format. The gray conversion is shown in Figure 2.

Figure 2. Gray conversion.

Figure 1. Feature extraction effects of different of the VGG19.

4. Proposed Method

4.1. Data Processing

We firstly process the input data of the network. In order to avoid the problem of color mixing
in the classic neural style transfer, a gray conversion is conducted for the content image. We use the
classic physiology formula to transform each RGB pixel of content image into grey pixel as Formula (4).

Gray(x) = R(x)·0.299 + G(x)·0.587 + B(x)·0.144 (4)

where R(x), G(x), and B(x) denote the value of the Red, Green, and Blue (RBG) channels of the pixel x
in content image respectively. After the gray conversion, the original content image with three RGB
channels is transformed into a gray image with one grayed channel. Whereas, the style image is an
RGB picture with three channels, the grayed content image still needs to be converted to the form of
three channels to match the format of the style image. Thus, we just simply stack three identical grayed
channels as the content image with RGB format. The gray conversion is shown in Figure 2.

Sustainability 2019, 11, x FOR PEER REVIEW 4 of 15

ℒ௦ = ௝ܥ1 ฮܩ௝(ݕ) − ฮଶଶ (3)(ොݕ)௝ܩ

We exchange the layers used for features extraction and conduct much experiments. The
experiment results are shown as follows.

As we can clearly see from Figure 1, the lower layers of VGG19 can preserve much more detailed
information of content images. While, the deeper layers of VGG19 are more interested in the regular
texture which represents the style of a picture. Therefore, the lower layers of VGG19 are more suitable
for content features extraction and the deeper layers are more suitable for style features extraction.

Figure 1. Feature extraction effects of different of the VGG19.

4. Proposed Method

4.1. Data Processing

We firstly process the input data of the network. In order to avoid the problem of color mixing
in the classic neural style transfer, a gray conversion is conducted for the content image. We use the
classic physiology formula to transform each RGB pixel of content image into grey pixel as Formula
(ݔ)ݕܽݎܩ .(4) = (ݔ)ܴ ∙ 0.299 + (ݔ)ܩ ∙ 0.587 + (ݔ)ܤ ∙ 0.144 (4)

where R(x), G(x), and B(x) denote the value of the Red, Green, and Blue (RBG) channels of the pixel
x in content image respectively. After the gray conversion, the original content image with three RGB
channels is transformed into a gray image with one grayed channel. Whereas, the style image is an
RGB picture with three channels, the grayed content image still needs to be converted to the form of
three channels to match the format of the style image. Thus, we just simply stack three identical
grayed channels as the content image with RGB format. The gray conversion is shown in Figure 2.

Figure 2. Gray conversion. Figure 2. Gray conversion.

Sustainability 2019, 11, 5673 5 of 15

Another problem we need to solve is that the style image we used is not limited to the fully texture
image. Some regular texture may only concentrate in a centralized area, and we need to use those local
features to render the whole content image. Therefore, it’s necessary to conduct the data augmentation
for the style image to enhance the local features. Following operations are taken for data augmentation.

(1) Zoom in on the original image and then crop the image of the same size.
(2) Randomly rotate the image at a certain angle and change the orientation of the image content.
(3) Flip the image horizontally or vertically.
(4) Randomly occlude part of the image.
(5) Randomly perturb RGB value of each pixel of the image by adding salt and pepper noise or

Gaussian noise.

The data augmentation is illustrated as Figure 3.

Sustainability 2019, 11, x FOR PEER REVIEW 5 of 15

Another problem we need to solve is that the style image we used is not limited to the fully
texture image. Some regular texture may only concentrate in a centralized area, and we need to use
those local features to render the whole content image. Therefore, it’s necessary to conduct the data
augmentation for the style image to enhance the local features. Following operations are taken for
data augmentation.

(1) Zoom in on the original image and then crop the image of the same size.
(2) Randomly rotate the image at a certain angle and change the orientation of the image content.
(3) Flip the image horizontally or vertically.
(4) Randomly occlude part of the image.
(5) Randomly perturb RGB value of each pixel of the image by adding salt and pepper noise or

Gaussian noise.

The data augmentation is illustrated as Figure 3.

Figure 3. Data augmentation.

4.2. Network Model

The whole network contains two components and they are style transfer network and loss
network. The style transfer network realizes a direct mapping between the content image and the
stylized image. Then the stylized image is inputted to the loss network to calculate the content and
style losses with inputted content and the style image. Next, the weight of the style transfer network
will be updated according to the losses calculated in the loss network using gradient descent
algorithm. The style transfer network is a deep neural network composed of multiple convolution
layers and residual blocks. The weight of each layer in the style transfer network is randomly
initialized while the loss network adopts the first few convolution layers of the pretrained VGG19
network. During the training process, only the weight of the style transfer network will be updated.
The size of the images must be the same during the training phase, while in the test phase, we can
input different sizes of images. The whole network structure and the operation flow are shown in
Figure 4.

Figure 3. Data augmentation.

4.2. Network Model

The whole network contains two components and they are style transfer network and loss network.
The style transfer network realizes a direct mapping between the content image and the stylized image.
Then the stylized image is inputted to the loss network to calculate the content and style losses with
inputted content and the style image. Next, the weight of the style transfer network will be updated
according to the losses calculated in the loss network using gradient descent algorithm. The style
transfer network is a deep neural network composed of multiple convolution layers and residual
blocks. The weight of each layer in the style transfer network is randomly initialized while the loss
network adopts the first few convolution layers of the pretrained VGG19 network. During the training
process, only the weight of the style transfer network will be updated. The size of the images must be
the same during the training phase, while in the test phase, we can input different sizes of images.
The whole network structure and the operation flow are shown in Figure 4.

Sustainability 2019, 11, 5673 6 of 15
Sustainability 2019, 11, x FOR PEER REVIEW 6 of 15

Figure 4. Network model and workflow.

4.3. Style Transfer Network

The style transfer network is stacked by multiple convolution layers, residual blocks, and
deconvolution layers. The convolution layers and deconvolution layers adopt short stride for down
sampling and up sampling, respectively. Specifically, the style transfer network is composed of four
convolution layers, five residual blocks, and two deconvolution layers. Besides the output layer, each
convolution or deconvolution layer is followed by a Relu activation layer. The residua block is firstly
represented by He et al. [40] in 2016. After two liner transformations, the input data and its initial
value is added through a “shortcut” and then the added value is inputted to the Relu activation
layers. The whole structure of the style transfer network is shown as Figure 5.

Figure 5. Style transfer network.

4.4. Loss Network and Loss Function

Figure 4. Network model and workflow.

4.3. Style Transfer Network

The style transfer network is stacked by multiple convolution layers, residual blocks, and
deconvolution layers. The convolution layers and deconvolution layers adopt short stride for down
sampling and up sampling, respectively. Specifically, the style transfer network is composed of four
convolution layers, five residual blocks, and two deconvolution layers. Besides the output layer, each
convolution or deconvolution layer is followed by a Relu activation layer. The residua block is firstly
represented by He et al. [1] in 2016. After two liner transformations, the input data and its initial
value is added through a “shortcut” and then the added value is inputted to the Relu activation layers.
The whole structure of the style transfer network is shown as Figure 5.

Sustainability 2019, 11, x FOR PEER REVIEW 6 of 15

Figure 4. Network model and workflow.

4.3. Style Transfer Network

The style transfer network is stacked by multiple convolution layers, residual blocks, and
deconvolution layers. The convolution layers and deconvolution layers adopt short stride for down
sampling and up sampling, respectively. Specifically, the style transfer network is composed of four
convolution layers, five residual blocks, and two deconvolution layers. Besides the output layer, each
convolution or deconvolution layer is followed by a Relu activation layer. The residua block is firstly
represented by He et al. [40] in 2016. After two liner transformations, the input data and its initial
value is added through a “shortcut” and then the added value is inputted to the Relu activation
layers. The whole structure of the style transfer network is shown as Figure 5.

Figure 5. Style transfer network.

4.4. Loss Network and Loss Function

Figure 5. Style transfer network.

Sustainability 2019, 11, 5673 7 of 15

4.4. Loss Network and Loss Function

The input of the loss network contains three parts, the style image, the stylized image generated
by the style transform network, and the content image. The loss network adopts the first few layers of
the VGG19 to extract the features of images and its structure and workflow is shown as Figure 6.

Sustainability 2019, 11, x FOR PEER REVIEW 7 of 15

The input of the loss network contains three parts, the style image, the stylized image generated
by the style transform network, and the content image. The loss network adopts the first few layers
of the VGG19 to extract the features of images and its structure and workflow is shown as Figure 6.

Figure 6. Loss network.

In previous sections, we analyze the ability of feature extraction for different layers in VGG19.
The shallower convolutional layers extract the lower features of the image, thus preserving a large
amount of detailed information. While the deeper convolution layers can extract higher features in
the image, thereby preserving the style information of the image. According to the above rules, we
finally adopt “Conv3_1” in VGG19 to extract the content features. Similarly, we adopt “Conv2_1”,
“Conv3_1”, “Conv4_1”, and “Conv5_1” in VGG19 to extract the style features.

Content loss describes the difference of features between stylized image and content image. It
can be calculated using Formula (5).

ℒ௖௢௡௧௘௡௧(ݕ, (ොݕ = ܵܤ1 ∙ ݊ு௟ ݊ௐ௟ ݊஼௟ ෍෍෍(ܿ௜,௝,௞௟ − ܿ̂௜,௝,௞௟)ଶ௡಴೗
௞ୀଵ

௡ೈ೗
௝ୀଵ

௡ಹ೗
௜ୀଵ (5)

where ܵܤ denotes the batch size of the input data. ݊ு௟ , ݊ௐ௟ , and ݊஼௟ denotes the height, width, and
number of channels of the l-th layer, respectively. ܿ௜,௝,௞௟ and ܿ̂௜,௝,௞௟ represent the ݅ × ݆-th value of the
k-th channel after the content image and stylized image are activated by the l-th layer of VGG19.

Gram matrix can be seen as an eccentric covariance matrix between features of an image. It can
reflect the correlation between the two features. Additionally, the diagonal elements of the Gram
matrix also reflect the trend of each feature that appears in the image. Gram matrix can measure the
features of each dimension and the relationship between different dimensions. Therefore, it can
reflect the general style of the entire image. We only need to compare the Gram matrix between
different images to represent the difference of their styles. The gram matrix can be calculated using
Formula (6).

௞,௞ᇲ௟ܩ (ݕ) =෍෍ܿ௜,௝,௞௟ ∙ ܿ̂௜,௝,௞௟௡ೈ೗
௝ୀଵ

௡ಹ೗
௜ୀଵ (6)

where ݇ and ݇ᇱ both denote the number of channels in the ݈-th layer.
Style loss means the difference between the Gram matrix of the stylized image and the Gram

matrix of the style image. It can be calculated using Formula (7).

ℒ௦௧௬௟௘௟ ,ݕ) (ොݕ = 1݊ு௟ ݊ௐ௟ ݊஼௟ ෍ ෍(ܩ௞,௞ᇲ௟ (ݕ) − ௞,௞ᇲ௟ܩ ଶ௡಴೗((ොݕ)
௞ᇲୀଵ

௡಴೗
௞ୀଵ (7)

Figure 6. Loss network.

In previous sections, we analyze the ability of feature extraction for different layers in VGG19.
The shallower convolutional layers extract the lower features of the image, thus preserving a large
amount of detailed information. While the deeper convolution layers can extract higher features in
the image, thereby preserving the style information of the image. According to the above rules, we
finally adopt “Conv3_1” in VGG19 to extract the content features. Similarly, we adopt “Conv2_1”,
“Conv3_1”, “Conv4_1”, and “Conv5_1” in VGG19 to extract the style features.

Content loss describes the difference of features between stylized image and content image. It can
be calculated using Formula (5).

Lcontent(y, ŷ) =
1

BS·nl
Hnl

Wnl
C

nl
H∑

i=1

nl
W∑

j=1

nl
C∑

k=1

(cl
i, j,k − ĉl

i, j,k)
2

(5)

where BS denotes the batch size of the input data. nl
H, nl

W , and nl
C denotes the height, width, and

number of channels of the l-th layer, respectively. cl
i, j,k and ĉl

i, j,k represent the i× j-th value of the k-th
channel after the content image and stylized image are activated by the l-th layer of VGG19.

Gram matrix can be seen as an eccentric covariance matrix between features of an image. It can
reflect the correlation between the two features. Additionally, the diagonal elements of the Gram
matrix also reflect the trend of each feature that appears in the image. Gram matrix can measure the
features of each dimension and the relationship between different dimensions. Therefore, it can reflect
the general style of the entire image. We only need to compare the Gram matrix between different
images to represent the difference of their styles. The gram matrix can be calculated using Formula (6).

Gl
k,k′(y) =

nl
H∑

i=1

nl
W∑

j=1

cl
i, j,k·ĉ

l
i, j,k (6)

where k and k′ both denote the number of channels in the l-th layer.
Style loss means the difference between the Gram matrix of the stylized image and the Gram

matrix of the style image. It can be calculated using Formula (7).

L
l
style(y, ŷ) =

1
nl

Hnl
Wnl

C

nl
C∑

k=1

nl
C∑

k′=1

(Gl
k,k′(y) −Gl

k,k′(ŷ))
2

(7)

Sustainability 2019, 11, 5673 8 of 15

where Gl(y) and Gl(ŷ) denote the Gram matrix of extracted features in l-th layer for the style image
and stylized image.

Then we define the total style loss as the weight sum of all layers and it can be defined as
Formula (8).

Lstyle(y, ŷ) =
∑

λl
·L

l
style(y, ŷ) (8)

where λl denotes the weight of l-th layer.
In order to make the generated stylized image smoother, TV loss is introduced to be a regularizer

to increase the smoothness of the generated image. TV loss calculates the square of the difference
between each pixel and the next pixel in the horizontal and vertical directions. TV loss can be calculated
using Formula (9).

LTV =

nl
H−1∑
i=1

nl
W∑

j=1

nl
C∑
k

(
ci, j,k − ci+1,j,k

)2
+

nl
H∑

i=1

nl
W−1∑
j=1

nl
C∑
k

(
ci, j,k − ci,j+1,k

)2
(9)

Finally, we can define the total loss as the weight sum of Lcontent, Lstyle, and LTV. The total loss
can be represented as Formula (10).

Ltotal = αLcontent + βLstyle + γLTV (10)

where α, β and γ are three adjustment factors and their values can be adjusted according to the actual
demand. We will have a discussion on their values in Section 5.3.

The final target in the training phase is to minimizeLtotal. The weight of the style transfer network
will be updated according to the total loss by gradient descent algorithm.

4.5. Cross Training Strategy

In order to preserve as much content information as possible, we use a cross training method by
rotationally adopting different loss function. When the num of iteration is even, we adopt the original
total loss as loss function, otherwise, the content loss will be chosen as the loss function. The loss
function can be defined as Formula (11).

Ltotal =

{
αLcontent + βLstyle + γLTV i f iteration%2 == 0
Lcontent otherwise

(11)

The workflow of the training process is shown as Figure 7.

Sustainability 2019, 11, x FOR PEER REVIEW 8 of 15

where ܩ௟(ݕ) and ܩ௟(ݕො) denote the Gram matrix of extracted features in ݈-th layer for the style
image and stylized image.

Then we define the total style loss as the weight sum of all layers and it can be defined as Formula
(8). ℒୱ୲୷୪ୣ(y, yො) =෍ߣ௟ ∙ ℒ௦௧௬௟௘௟ (y, yො) (8)

where ߣ௟ denotes the weight of ݈-th layer.
In order to make the generated stylized image smoother, TV loss is introduced to be a regularizer

to increase the smoothness of the generated image. TV loss calculates the square of the difference
between each pixel and the next pixel in the horizontal and vertical directions. TV loss can be
calculated using Formula (9).

ℒ்௏ = ෍ ෍෍(ܿ௜,௝,௞ − ܿ௜ାଵ,୨,௞)ଶ௡಴೗
௞

௡ೈ೗
௝ୀଵ

௡ಹ೗ ିଵ
௜ୀଵ +෍ ෍ ෍(ܿ௜,௝,௞ − ܿ௜,୨ାଵ,௞)ଶ௡಴೗

௞
௡ೈ೗ ିଵ
௝ୀଵ

௡ಹ೗
௜ୀଵ (9)

Finally, we can define the total loss as the weight sum of ℒ௖௢௡௧௘௡௧, ℒୱ୲୷୪ୣ, and ℒ்௏. The total loss
can be represented as Formula (10). ℒ௧௢௧௔௟ = ℒ௖௢௡௧௘௡௧ߙ + ℒ௦௧௬௟௘ߚ + ℒ்௏ (10)ߛ

where ߚ ,ߙ and ߛ are three adjustment factors and their values can be adjusted according to the
actual demand. We will have a discussion on their values in Section 5.3.

The final target in the training phase is to minimize ℒ௧௢௧௔௟ . The weight of the style transfer
network will be updated according to the total loss by gradient descent algorithm.

4.5. Cross Training Strategy

In order to preserve as much content information as possible, we use a cross training method by
rotationally adopting different loss function. When the num of iteration is even, we adopt the original
total loss as loss function, otherwise, the content loss will be chosen as the loss function. The loss
function can be defined as Formula (11). ℒ௧௢௧௔௟= ൜ ℒ௖௢௡௧௘௡௧ߙ + ℒ௦௧௬௟௘ߚ + 	ℒ்௏ߛ 	 	 	 	 ݂݅	 2%݊݋݅ݐܽݎ݁ݐ݅ == 0ℒ௖௢௡௧௘௡௧	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	݁ݏ݅ݓݎℎ݁ݐ݋ 	 	 	 	 	 	 	 	 	 	 	 (11)

The workflow of the training process is shown as Figure 7.

Figure 7. Loss network.5. Experiments and Analysis.

5.1. Experiment Environment and Parameters

Figure 7. Loss network.

Sustainability 2019, 11, 5673 9 of 15

5. Experiments and Analysis

5.1. Experiment Environment and Parameters

In order to have an evaluation of our presented algorithm, we compare it with the classic neural
style transfer algorithm proposed by Gatys et al. The experiment environment is a workstation using
the Ubuntu operation system. The workstation is also equipped with a GTX 1080 Ti (10G Memory)
graphics card to accelerate the training process of the style transfer network. The relevant software
versions are shown in the table below (Table 1).

Table 1. Relevant software versions.

Software Name Versions

Python 3.7
TensorFlow-GPU 1.13.1

NumPy 1.14.6
SciPy 1.1.0

Matplotlib 3.02
Os 3.7

The specific information of convolution kernels in the style transfer network are illustrated in
Table 2.

Table 2. Parameters of convolution kernels.

Convolution Name Kernels Size, Stride, Number

Conv1 9× 9, 1, 32
Conv2 3× 3, 2, 64
Conv3 3× 3, 2, 128

Res_block_Conv 3× 3, 1, 128
Deconv1 3× 3, 2, 64
Deconv2 3× 3, 2, 32
Conv4 9× 9, 1, 3

The relevant parameters of the network are listed in Table 3.

Table 3. Parameters for training.

Software Name Versions

Batch_Size 4
Training Data Size [256,512,1024]

Number of Training Data 5000
Content_layer Conv3_1

Style_layer Conv2_1, Conv3_1, Conv4_1, Conv5_1
Epoch 100
α, β, γ 1, [1,5,10], 1

Optimizer Adam
Learning Rate 0.001

5.2. Activation Function in Output Layer

In our proposed algorithm, the output layer of the style transfer network can adopt tanh or
sigmoid as its activation function. When adopting tanh as the activation function, the final output will
adopt Formula (12).

y = tan h(x) ∗ 122.5 + 122.5 (12)

Sustainability 2019, 11, 5673 10 of 15

where x is the output value of the previous layer. When adopting sigmoid as the activation function,
the final output will adopt Formula (13). In both ways, the output value of the output layer can be
between 0 and 255.

y = sigmoid(x) ∗ 255 (13)

In order to have an evaluation of two different activation functions in the output layer, we test
the performance of the network using the same content and style image. The experiment result is
shown as Figure 8. We can clearly see from Figure 8 that when adopting tanh as the activation function,
the performance is poor and only part of the image is stylized. Whereas, the style image can be well
integrated into the content image by the method of adopting sigmoid as the activation function in the
output layer.

Sustainability 2019, 11, x FOR PEER REVIEW 10 of 15

In order to have an evaluation of two different activation functions in the output layer, we test
the performance of the network using the same content and style image. The experiment result is
shown as Figure 8. We can clearly see from Figure 8 that when adopting tanh as the activation
function, the performance is poor and only part of the image is stylized. Whereas, the style image can
be well integrated into the content image by the method of adopting sigmoid as the activation
function in the output layer.

Figure 8. Different activation functions in the output layer.

5.3. Loss Control Factors Adjustment

As we have discussed in the loss network, α, β, γ are three parameters to adjust the proportion
of content loss, style loss, and TV loss. The proportion of content loss and style loss has a significant
influence on the levels of stylization. When the content loss accounts for a larger proportion, the
stylized image will preserve more information of the content image. On the contrary, the stylized
image will be better rendered with the value of β increasing. TV loss only affects the smoothness of
the stylized image and it owns a small impact on the overall rendering effect. The rendering can be
strengthened by decreasing the value of α or increasing the value of β. Different applications can
retrofit the values of α and β based on their requirements. As Figure 9 illustrates, when β is 1, the
stylization is shallow and when β is increased to 10, the stylization is obvious.

Figure 8. Different activation functions in the output layer.

5.3. Loss Control Factors Adjustment

As we have discussed in the loss network, α, β, γ are three parameters to adjust the proportion
of content loss, style loss, and TV loss. The proportion of content loss and style loss has a significant
influence on the levels of stylization. When the content loss accounts for a larger proportion, the
stylized image will preserve more information of the content image. On the contrary, the stylized
image will be better rendered with the value of β increasing. TV loss only affects the smoothness of
the stylized image and it owns a small impact on the overall rendering effect. The rendering can be
strengthened by decreasing the value of α or increasing the value of β. Different applications can
retrofit the values of α and β based on their requirements. As Figure 9 illustrates, when β is 1, the
stylization is shallow and when β is increased to 10, the stylization is obvious.

Sustainability 2019, 11, 5673 11 of 15

Sustainability 2019, 11, x FOR PEER REVIEW 11 of 15

Figure 9. Stylized image under different values of β.

5.4. Comparison of Details Preserving

In a stylized image, we expect the objects in it are still recognizable while the background is well
rendered. Classic neural style transfer achieves a great performance in image rendering, however,
it’s weak to preserve the details in the content image. In order to evaluate the performance of the
presented algorithm, we compare it with the classic neural style transfer in terms of details preserving.
Both two algorithms adopt the same content and style image with 1024 × 1024 pixels. Classic
neural style transfer iterates 1000 times for fully rendering while our presented algorithm iterates 100
epochs for fully training. The experiment result is shown as Figure 10. As Figure 10 illustrates, the
classic neural style transfer destroyed partial details from the content image. As you can clearly see
in the enlarged picture, that the pillars and the roof of the pavilion have different degrees of missing.
While, in our improved algorithm, those details are preserved and the background is well rendered.

Figure 10. Comparison of details preserving.

5.5. Comparison of Characters Rendering

Figure 9. Stylized image under different values of β.

5.4. Comparison of Details Preserving

In a stylized image, we expect the objects in it are still recognizable while the background is well
rendered. Classic neural style transfer achieves a great performance in image rendering, however,
it’s weak to preserve the details in the content image. In order to evaluate the performance of the
presented algorithm, we compare it with the classic neural style transfer in terms of details preserving.
Both two algorithms adopt the same content and style image with 1024× 1024 pixels. Classic neural
style transfer iterates 1000 times for fully rendering while our presented algorithm iterates 100 epochs
for fully training. The experiment result is shown as Figure 10. As Figure 10 illustrates, the classic
neural style transfer destroyed partial details from the content image. As you can clearly see in the
enlarged picture, that the pillars and the roof of the pavilion have different degrees of missing. While, in
our improved algorithm, those details are preserved and the background is well rendered.

Sustainability 2019, 11, x FOR PEER REVIEW 11 of 15

Figure 9. Stylized image under different values of β.

5.4. Comparison of Details Preserving

In a stylized image, we expect the objects in it are still recognizable while the background is well
rendered. Classic neural style transfer achieves a great performance in image rendering, however,
it’s weak to preserve the details in the content image. In order to evaluate the performance of the
presented algorithm, we compare it with the classic neural style transfer in terms of details preserving.
Both two algorithms adopt the same content and style image with 1024 × 1024 pixels. Classic
neural style transfer iterates 1000 times for fully rendering while our presented algorithm iterates 100
epochs for fully training. The experiment result is shown as Figure 10. As Figure 10 illustrates, the
classic neural style transfer destroyed partial details from the content image. As you can clearly see
in the enlarged picture, that the pillars and the roof of the pavilion have different degrees of missing.
While, in our improved algorithm, those details are preserved and the background is well rendered.

Figure 10. Comparison of details preserving.

5.5. Comparison of Characters Rendering

Figure 10. Comparison of details preserving.

Sustainability 2019, 11, 5673 12 of 15

5.5. Comparison of Characters Rendering

Sometimes, characters are contained in the content image and commonly, we expect those
characters can preserve their original features rather than be rendered. In order to have an evaluation
of the presented algorithm in terms of characters rendering, we compare it with the classic neural
style transfer. Both two algorithms use the same content and style image with 1024 × 1024 pixels.
Classic neural style transfer iterates only 500 times to preserve more features of characters and our
presented algorithm still iterates 100 epochs for fully training. The experiment result is shown as
Figure 11. As we can clearly see from Figure 11, that both two algorithms achieve a good performance
in stylization. However, the classic neural style transfer algorithm stylizes the characters the same as
the background which results in the facial features, contours, etc., of the characters become blurred and
distorted. This can be explained as that classic neural style transfer adopts the optimization method to
convert the original image to the stylized image. Therefore, the network will treat each pixel in the
picture indiscriminately, making the content image close to the style image. While in our presented
algorithm, the trained deep neural network will recognize the characters in the image and separate
them from the background. Thus, the characters still keep complete features and clear outlines.

Sustainability 2019, 11, x FOR PEER REVIEW 12 of 15

Sometimes, characters are contained in the content image and commonly, we expect those
characters can preserve their original features rather than be rendered. In order to have an evaluation
of the presented algorithm in terms of characters rendering, we compare it with the classic neural
style transfer. Both two algorithms use the same content and style image with 1024 × 1024 pixels.
Classic neural style transfer iterates only 500 times to preserve more features of characters and our
presented algorithm still iterates 100 epochs for fully training. The experiment result is shown as
Figure 11. As we can clearly see from Figure 11, that both two algorithms achieve a good performance
in stylization. However, the classic neural style transfer algorithm stylizes the characters the same as
the background which results in the facial features, contours, etc., of the characters become blurred
and distorted. This can be explained as that classic neural style transfer adopts the optimization
method to convert the original image to the stylized image. Therefore, the network will treat each
pixel in the picture indiscriminately, making the content image close to the style image. While in our
presented algorithm, the trained deep neural network will recognize the characters in the image and
separate them from the background. Thus, the characters still keep complete features and clear
outlines.

Figure 11. Comparison of characters rendering.

5.6. Comparison of Time Consuming

Finally, we have an evaluation of our presented algorithm compared with the classic neural style
transfer in terms of time consuming. Images with different pixels are tested respectively. Both in the
classic neural style transfer and our present algorithm, the network needs to be adjusted to fit
different sizes of input data. Graphics Processing Unit (GPU) is only used when execute the two
different algorithms. Images with high resolution will have a better visual effect and meanwhile, it
takes more time for the network to render. Experiment result is shown in Table 4. As we can clearly
see from Table 4, the time consuming of both two algorithms increases with image pixel increasing.
For the image with the same pixel, our proposed algorithm achieves an enhancement of three orders
of magnitude compared with the classic neural style transfer. However, in our presented algorithm,
a long time is needed to train the style transfer network.

Table 4. Comparison of time consuming of different algorithms.

Algorithm Classic Neural Style Transfer Algorithm Ours

Image Size 100 Iterations 500 Iterations 1000
Iterations

Training
Time 1 Iteration

256 × 256 5.4 s 26.1 s 51.3 s 5 h 32 m 0.05 s
512 × 512 15.1 s 69.6 s 122.7 s 8 h 47 m 0.1 s

1024 × 1024 30.5 s 138.6 s 240.1 s 12 h 17 m 0.2 s

Figure 11. Comparison of characters rendering.

5.6. Comparison of Time Consuming

Finally, we have an evaluation of our presented algorithm compared with the classic neural style
transfer in terms of time consuming. Images with different pixels are tested respectively. Both in
the classic neural style transfer and our present algorithm, the network needs to be adjusted to fit
different sizes of input data. Graphics Processing Unit (GPU) is only used when execute the two
different algorithms. Images with high resolution will have a better visual effect and meanwhile, it
takes more time for the network to render. Experiment result is shown in Table 4. As we can clearly
see from Table 4, the time consuming of both two algorithms increases with image pixel increasing.
For the image with the same pixel, our proposed algorithm achieves an enhancement of three orders of
magnitude compared with the classic neural style transfer. However, in our presented algorithm, a
long time is needed to train the style transfer network.

Table 4. Comparison of time consuming of different algorithms.

Algorithm Classic Neural Style Transfer Algorithm Ours

Image Size 100 Iterations 500 Iterations 1000 Iterations Training Time 1 Iteration

256 × 256 5.4 s 26.1 s 51.3 s 5 h 32 m 0.05 s
512 × 512 15.1 s 69.6 s 122.7 s 8 h 47 m 0.1 s

1024 × 1024 30.5 s 138.6 s 240.1 s 12 h 17 m 0.2 s

Sustainability 2019, 11, 5673 13 of 15

5.7. Other Examples Using Proposed Algorithm

Some other examples using the proposed algorithm are shown as Figure 12.Sustainability 2019, 11, x FOR PEER REVIEW 13 of 15

Figure 12. Examples using proposed algorithm.

6. Discussion

The convolution neural network owns an excellent ability for features extraction and it provides

an alternative way for the feature comparison between different images. The classic neural style

transfer algorithm regards the stylization task as an image-optimization-based online processing

problem. While, our presented algorithm regards it as a model-optimization-based offline processing

problem. The most prominent advantage of the presented algorithm is the short running time for

stylization. Since the network model can be trained in advance, it’s suitable for those delay sensitive

application especially real-time style transfer. Another advantage is that it can separate important

targets from the background to avoid the content loss. Contrary to image-optimization, model-

optimization aims to train a model to directly map the content image to the stylized image. The

training process makes the model capable to recognize different objects such as characters and

buildings, therefore, it can better preserve the details of those objects and separate them from the

background.

Meanwhile, there are also some demerits of the proposed algorithm. It’s inflexible to switch the

style. Once we want to change the style, we need to train a brand-new model which may take a lot of

time. However, the image-optimization-based method only needs to change the style image and then

iterates to the final solution. Additionally, our presented algorithm needs to run on the device with

better performance such as computation and memory which increases the cost.

7. Conclusion

Classic neural style transfer has the demerits of time consuming and details losing. In order to

accelerate the speed of stylization and improve the quality of the stylized image, in this paper, we

present an improved style transfer algorithm based on a deep feedforward neural network. A style

transfer network stacked by multiple convolution layers and a loss network work based on VGG19

are respectively constructed. Three different losses which represent the content, style, and

smoothness are defined in the loss network. Then, the style transfer network is trained in advance,

adopting the training set, and the loss is calculated by the loss network to update the weight of the

style transfer network. Meanwhile, a cross training strategy is adopted during the training process.

Our feature work will mainly focus on single model based multi-style transfer and special style

transfer combined with Generative Adversarial Networks (GAN).

Author Contributions: Z.G. conceived and designed the experiments; C.Z. and Y.G. performed the experiments

and analyzed the data. J.W. wrote this paper.

Figure 12. Examples using proposed algorithm.

6. Discussion

The convolution neural network owns an excellent ability for features extraction and it provides an
alternative way for the feature comparison between different images. The classic neural style transfer
algorithm regards the stylization task as an image-optimization-based online processing problem.
While, our presented algorithm regards it as a model-optimization-based offline processing problem.
The most prominent advantage of the presented algorithm is the short running time for stylization.
Since the network model can be trained in advance, it’s suitable for those delay sensitive application
especially real-time style transfer. Another advantage is that it can separate important targets from the
background to avoid the content loss. Contrary to image-optimization, model-optimization aims to
train a model to directly map the content image to the stylized image. The training process makes the
model capable to recognize different objects such as characters and buildings, therefore, it can better
preserve the details of those objects and separate them from the background.

Meanwhile, there are also some demerits of the proposed algorithm. It’s inflexible to switch the
style. Once we want to change the style, we need to train a brand-new model which may take a lot of
time. However, the image-optimization-based method only needs to change the style image and then
iterates to the final solution. Additionally, our presented algorithm needs to run on the device with
better performance such as computation and memory which increases the cost.

7. Conclusions

Classic neural style transfer has the demerits of time consuming and details losing. In order
to accelerate the speed of stylization and improve the quality of the stylized image, in this paper,
we present an improved style transfer algorithm based on a deep feedforward neural network. A style
transfer network stacked by multiple convolution layers and a loss network work based on VGG19 are
respectively constructed. Three different losses which represent the content, style, and smoothness
are defined in the loss network. Then, the style transfer network is trained in advance, adopting the
training set, and the loss is calculated by the loss network to update the weight of the style transfer
network. Meanwhile, a cross training strategy is adopted during the training process. Our feature

Sustainability 2019, 11, 5673 14 of 15

work will mainly focus on single model based multi-style transfer and special style transfer combined
with Generative Adversarial Networks (GAN).

Author Contributions: Z.G. conceived and designed the experiments; C.Z. and Y.G. performed the experiments
and analyzed the data. J.W. wrote this paper.

Acknowledgments: The authors are thankful to the editor and reviewers for their hard work which largely
improve the quality of this paper.

Conflicts of Interest: The authors declare no conflict of interest.

Data Availability: The data that support the findings of this study are available from the corresponding author
upon reasonable request.

References

1. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. arXiv 2015, arXiv:1512.03385.
2. Zou, W.; Li, X.; Li, S. Chinese painting rendering by adaptive style transfer. In Pattern Recognition and

Computer Vision; Springer: Cham, Switzerland, 2018; pp. 3–14. [CrossRef]
3. Zheng, C.; Zhang, Y. Two-stage color ink painting style transfer via convolution neural network.

In Proceedings of the 2018 15th International Symposium on Pervasive Systems, Algorithms and Networks
(I-SPAN), Yichang, China, 16–18 October 2018. [CrossRef]

4. Liu, S.; Guo, C.; Sheridan, J.T. A review of optical image encryption techniques. Opt. Laser Technol. 2014, 57,
327–342. [CrossRef]

5. Wu, C.; Ko, J.; Davis, C.C. Imaging through strong turbulence with a light field approach. Opt. Express. 2016,
24, 11975–11986. [CrossRef] [PubMed]

6. Gatys, L.A.; Ecker, A.S.; Bethge, M. A Neural algorithm of artistic style. arXiv 2015, arXiv:1508.06576.
[CrossRef]

7. Karen, S.; Andrew, Z. Very deep convolutional networks for large-scale image recognition. arXiv 2015,
arXiv:1409.1556.

8. Wang, J.; Gao, Y.; Liu, W.; Sangaiah, A.K.; Kim, H.J. An intelligent data gathering schema with data fusion
supported for mobile sink in wireless sensor networks. Int. J. Distrib. Sens. Netw. 2019, 15. [CrossRef]

9. Qiu, H.; Huang, X. An Improved image transformation network for neural style transfer. In Proceedings
of the 2nd International Conference on Intelligence Science (ICIS), Shanghai, China, 25–28 October 2017.
[CrossRef]

10. Wang, J.; Gu, X.; Liu, W.; Sangaiah, A.K.; Kim, H. An empower hamilton loop based data collection algorithm
with mobile agent for WSNs. Hum.-Cent. Comput. Inf. Sci. 2019, 9, 18. [CrossRef]

11. Zeng, H.; Liu, Y.; Li, S.; Che, J.; Wang, X. Convolutional neural network based multi-feature fusion for
non-rigid 3D model retrieval. J. Inf. Process. Syst. 2018, 14, 176–190.

12. Daru, P.; Gada, S.; Chheda, M.; Raut, P. Neural style transfer to design drapes. arXiv 2017, arXiv:1707.09899.
13. Pan, J.S.; Kong, L.P.; Sung, T.W.; Tsai, P.W.; Snasel, V. Alpha-fraction first strategy for hierarchical wireless

sensor networks. J. Internet Technol. 2018, 19, 1717–1726.
14. Johnson, J.; Alahi, A.; Li, F.-F. Perceptual losses for real-time style transfer and super-resolution. arXiv 2016,

arXiv:1603.08155.
15. Qiu, X.; Jia, W.; Li, H. A font style learning and transferring method based on strokes and structure of Chinese

characters. In Proceedings of the 2012 International Conference on Computer Science and Service System,
Nanjing, China, 11–13 August 2012; pp. 1836–1839. [CrossRef]

16. Pan, J.S.; Lee, C.Y.; Sghaier, A.; Zeghid, M.; Xie, J.F. Novel systolization of subquadratic space complexity
multipliers based on toeplitz matrix–vector product approach. IEEE Trans. Very Large Scale Integr. 2019, 27,
1614–1622. [CrossRef]

17. Azadi, S.; Fisher, M.; Kim, V.G.; Wang, Z.; Shechtman, E.; Darrell, T. Multi-content gan for few-shot font style
transfer. arXiv 2018, arXiv:1712.00516.

18. Wang, J.; Gao, Y.; Liu, W.; Sangaiah, A.K.; Kim, H.J. Energy efficient routing algorithm with mobile sink
support for wireless sensor networks. Sensors 2019, 19, 1494. [CrossRef] [PubMed]

19. Nguyen, T.T.; Pan, J.S.; Dao, T.K. An improved flower pollination algorithm for optimizing layouts of nodes
in wireless sensor network. IEEE Access 2019, 7, 75985–75998. [CrossRef]

http://dx.doi.org/10.1007/978-3-030-03338-5_1
http://dx.doi.org/10.1109/i-span.2018.00039
http://dx.doi.org/10.1016/j.optlastec.2013.05.023
http://dx.doi.org/10.1364/OE.24.011975
http://www.ncbi.nlm.nih.gov/pubmed/27410119
http://dx.doi.org/10.1167/16.12.326
http://dx.doi.org/10.1177/1550147719839581
http://dx.doi.org/10.1007/978-3-319-68121-4_28
http://dx.doi.org/10.1186/s13673-019-0179-4
http://dx.doi.org/10.1109/CSSS.2012.457
http://dx.doi.org/10.1109/TVLSI.2019.2903289
http://dx.doi.org/10.3390/s19071494
http://www.ncbi.nlm.nih.gov/pubmed/30934790
http://dx.doi.org/10.1109/ACCESS.2019.2921721

Sustainability 2019, 11, 5673 15 of 15

20. Meng, Z.Y.; Pan, J.S.; Tseng, K.K. PaDE: An enhanced differential evolution algorithm with novel control
parameter adaptstion schemes for numerical optimization. Knowl.-Based Syst. 2019, 168, 80–99. [CrossRef]

21. Pan, J.S.; Kong, L.P.; Sung, T.W.; Tsai, P.W.; Snasel, V. A clustering scheme for wireless sensor networks based
on genetic algorithm and dominating Set. J. Internet Technol. 2018, 19, 1111–1118.

22. Wu, T.Y.; Chen, C.M.; Wang, K.H.; Meng, C.; Wang, E.K. A provably secure certificateless public key
encryption with keyword search. J. Chin. Inst. Eng. 2019, 42, 20–28. [CrossRef]

23. Liu, J.; Yang, W.; Sun, X.; Zeng, W. Photo stylistic brush: Robust style transfer via superpixel-based bipartite
graph. IEEE Trans. Multimed. 2017, 20, 1724–1737. [CrossRef]

24. Wang, J.; Gao, Y.; Wang, K.; Sangaiah, A.K.; Lim, S.J. An affinity propagation-based self-adaptive clustering
method for wireless sensor networks. Sensors 2019, 19, 2579. [CrossRef]

25. Wang, J.; Gao, Y.; Yin, X.; Li, F.; Kim, H.J. An enhanced PEGASIS algorithm with mobile sink support for
wireless sensor networks. Wirel. Commun. Mob. Comput. 2018, 2018, 9472075. [CrossRef]

26. Ghrabat, M.J.J.; Ma, G.; Maolood, I.Y.; Alresheedi, S.S.; Abduljabbar, Z.A. An effective image retrieval based
on optimized genetic algorithm utilized a novel SVM-based convolutional neural network classifier. Hum.
-Cent. Comput. Inf. Sci. 2019, 9, 31. [CrossRef]

27. Zeng, D.; Dai, Y.; Li, F.; Wang, J.; Sangaiah, A.K. Aspect based sentiment analysis by a linguistically
regularized CNN with gated mechanism. J. Intell. Fuzzy Syst. 2019, 36, 3971–3980. [CrossRef]

28. Zhang, L.; Wang, Y. Stable and refned style transfer using zigzag learning algorithm. Neural Process. Lett.
2019. [CrossRef]

29. Tu, Y.; Lin, Y.; Wang, J.; Kim, J.U. Semi-supervised learning with generative adversarial networks on digital
signal modulation classification. Comput. Mater. Contin. 2018, 55, 243–254.

30. Li, C.; Liang, M.; Song, W.; Xiao, K. A multi-scale parallel convolutional neural network based intelligent
human identification using face information. J. Inf. Process. Syst. 2018, 14, 1494–1507.

31. Liu, D.; Yu, W.; Yao, H. Style transfer with content preservation from multiple images. In Advances in
Multimedia Information Processing—PCM 2017; Springer: Cham, Switzerland, 2017. [CrossRef]

32. Hu, J.; He, K.; Hopcroft, J.E.; Zhang, Y. Deep compression on convolutional neural network for artistic style
transfer. In Theoretical Computer Science; Springer: Singapore, 2017. [CrossRef]

33. Wang, L.; Wang, Z.; Yang, X.; Hu, S.; Zhang, J. Photographic style transfer. Vis. Comput. 2018. [CrossRef]
34. Zhang, W.; Li, G.; Ma, H.; Yu, Y. Automatic color sketch generation using deep style transfer. IEEE Comput.

Graph. Appl. 2019, 39, 26–37. [CrossRef]
35. Zhao, H.H.; Rosin, P.L.; Lai, Y.K.; Lin, M.G.; Liu, Q.Y. Image neural style transfer with global and local

optimization fusion. IEEE Access 2019, 7, 85573–85580. [CrossRef]
36. Yoon, Y.B.; Kim, M.S.; Choi, H.C. End-to-end learning for arbitrary image style transfer. Electron. Lett. 2018,

54, 1276–1278. [CrossRef]
37. Liu, Y.; Xu, Z.; Ye, W.; Zhang, Z.; Weng, S.; Chang, C.C.; Tang, H. Image neural style transfer with preserving

the salient regions. IEEE Access 2019, 7, 40027–40037. [CrossRef]
38. Chen, Y.; Lai, Y.; Liu, Y. CartoonGAN: Generative adversarial networks for photo cartoonization.

In Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City,
UT, USA, 18–23 June 2018. [CrossRef]

39. Chen, X.; Xu, C.; Yang, X.; Song, L.; Tao, D. Gated-gan: Adversarial gated networks for multi-collection style
transfer. IEEE Trans. Image Process. 2018, 28, 546–560. [CrossRef] [PubMed]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.knosys.2019.01.006
http://dx.doi.org/10.1080/02533839.2018.1537807
http://dx.doi.org/10.1109/TMM.2017.2780761
http://dx.doi.org/10.3390/s19112579
http://dx.doi.org/10.1155/2018/9472075
http://dx.doi.org/10.1186/s13673-019-0191-8
http://dx.doi.org/10.3233/JIFS-169958
http://dx.doi.org/10.1007/s11063-019-10024-w
http://dx.doi.org/10.1007/978-3-319-77380-3_75
http://dx.doi.org/10.1007/978-981-10-6893-5_12
http://dx.doi.org/10.1007/s00371-018-1609-4
http://dx.doi.org/10.1109/MCG.2019.2899089
http://dx.doi.org/10.1109/ACCESS.2019.2922554
http://dx.doi.org/10.1049/el.2018.6497
http://dx.doi.org/10.1109/ACCESS.2019.2891576
http://dx.doi.org/10.1109/CVPR.2018.00986
http://dx.doi.org/10.1109/TIP.2018.2869695
http://www.ncbi.nlm.nih.gov/pubmed/30222565
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Work
	Features Extraction from VGG19
	Proposed Method
	Data Processing
	Network Model
	Style Transfer Network
	Loss Network and Loss Function
	Cross Training Strategy

	Experiments and Analysis
	Experiment Environment and Parameters
	Activation Function in Output Layer
	Loss Control Factors Adjustment
	Comparison of Details Preserving
	Comparison of Characters Rendering
	Comparison of Time Consuming
	Other Examples Using Proposed Algorithm

	Discussion
	Conclusions
	References

