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Abstract: The Vehicle Routing Problem (VRP) in its manifold variants is widely discussed in scientific
literature. We investigate related optimization models and solution methods to determine the state of
research for vehicle routing attributes and their combinations. Most of these approaches are idealized
and focus on single problem-tailored routing applications. Addressing this research gap, we present a
customizable VRP for optimized road transportation embedded into a Decision Support System (DSS).
It integrates various model attributes and handles a multitude of real-world routing problems. In the
context of urban logistics, practitioners of different industries and researchers are assisted in efficient
route planning that allows for minimizing driving distances and reducing vehicle emissions. Based on
the design science research methodology, we evaluate the DSS with computational benchmarks and
real-world simulations. Results indicate that our developed DSS can compete with problem-tailored
algorithms. With our solution-oriented DSS as final artifact, we contribute to an enhanced economic
and environmental sustainability in urban logistic applications.

Keywords: vehicle routing problem; decision support system; design science research; green
information system; urban logistics

1. Introduction

In today’s competitive and highly demanding environment, there is a growing recognition for
cost reduction and customer service to be achieved based on well-organized logistics processes. The
efficient distribution of goods and services is crucial for many companies since transportation is an
important cost factor. Thus, vehicle routing is considered as an essential source for potential savings
in a company’s distribution system [1]. Studies demonstrated that optimized routes can lead to
significant cost savings ranging up to 20-30% [2,3]. Besides the individual economic importance
for companies, the macroeconomic relevance of efficient routing plans is tremendous in terms of
ecological sustainability. The avoidance of needless long routes with low degrees of capacity utilization
enables a notable reduction of emissions and congestion by relieving the urban and interurban road
infrastructure [4].

The determination of the optimal set of routes to be performed by a vehicle fleet to serve given
customers is known as Vehicle Routing Problem (VRP) [3]. The VRP and its many variants have
been widely studied for more than 50 years [5]. Typically, routing models are developed to support
operational as well as tactical decision-making processes in transport and logistics [6]. While a
human planner may often be able to conceive a feasible routing schedule within a reasonable time
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for small problem sets, such manual solutions are usually far from being optimal when the specific
business context requires the consideration of structural constraints such as time windows and capacity
restrictions [7]. While researchers have devoted much effort into developing new variants and solution
methods for the VRP, much of this work has been criticized of “being too focused on idealized models
with non-realistic assumptions for practical applications” [8]. To tackle this research gap, we applied a
Design Science Research (DSR) methodology to develop a Decision Support System (DSS) capable
of optimizing routing problems in different business contexts of urban logistics. The DSS must
transfer objectives as well as constraints into VRP models and it must be able to solve structurally
different problems [9]. The DSS as resulting artifact is classified as nascent design theory [10]. Besides
individual companies, our society is becoming increasingly aware of environmental and economic
sustainability [11]. The attention on sustainability is also recognized in Information System (IS)
research, as information is a prerequisite for making appropriate decisions on sustainability actions [12].
The emerged research domain of Green IS addresses the transformative role of IS in the context of
a sustainable society and business strategies. The emphases in this field vary by conceptualization,
analyses, design, and impact of such systems [12]. Studies examining Green IS research by Malhotra et
al. [13] and Gholami et al. [14] reveal that design and impact-oriented research is lacking. Since the IS
domain is described as an interdisciplinary space, where discourses of several disciplines are straddled
and a variety of topics as well as methodologies are present [15], we combine elements of computer
science, operations research, management science, and transportation science in our approach. The
described requirements and challenges lead to our research question:

How can a customizable VRP be implemented into a DSS enabling route optimization for urban
logistics applications of several industries?

Our aim is to gather various vehicle routing attributes into a generic and customizable optimization
model. In our final artifact, called Multi-Attribute Vehicle Routing Decision Support System
(MAVRDSS), the user describes a practical routing problem based on the underlying business context.
To achieve this objective, the article is structured as follows: First, we present the applied DSR
methodology for the artifact development. Afterwards, the various VRP attributes are described
and classified, referring to related research. Subsequently, we introduce our developed DSS and
its components, constituting a prototype web-application. To evaluate MAVRDSS, we present
computational benchmarks and simulation results of two real-world application cases in the context of
urban logistics. Further, we discuss implications, limitations, recommendations, and contributions of
our study. We complete our article with conclusions and an outlook.

2. Methodology

Our research methodology is based on DSR principles as proposed by Hevner et al. [16]. This
method stands in contrast to behavioral science, because the design science approach systematically
seeks to create “new and innovative artifacts” [16]. This means it is the most suitable approach for
creating, specifying, and evaluating a particular topic while addressing its relevance and its rigor.
Hevner [17] presents three cycles of activities (relevance, rigor, and design) which influence each other.

The topic’s contextual environment and related issues are addressed by the relevance cycle.
Our research is motivated by the observation that companies can have large efficiency reserves in
transportation processes due to a lack of optimized routes. The amount of goods and services that
must be delivered is rising and tackles nearly all kinds of business operations. Together with the
ongoing urbanization and the progressing climate change, the need for optimization still rises to reduce
incidental burdens. By providing efficient routing support, we address the lack of solution-oriented
Green IS and increase the livability of inhabitants by securing needs while at the same time improving
air quality, traffic load, and noise pollution [13,14] as already presented within the introduction. Within
the rigor cycle, the review of existing scientific knowledge depicts a crucial part of the research process.
We carried out a literature review on multi-attribute VRP. To ensure an appropriate focus on the
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application domain, the scope of the VRP review is narrowed to real-world application cases, relevant
routing attributes, and their modeling approaches. The results of the rigor cycle are presented in
Section 3.

The design cycle is defined as an iterative process that uses several build-and-evaluate loops
and revises developed design artifacts until they are ready for a real-world application. To develop
our technological artifact, we conducted several loops while respecting environmental requirements,
scientific methods, and present knowledge. Based on existing taxonomies, we derived a VRP
classification scheme as a basis to formulate a basic VRP. Starting with the implementation of only
few model attributes, we stepwise expanded the VRP model by several features and functionalities.
Together with the application of a (heuristic) solution method, we integrated the multi-attribute
vehicle routing model into a DSS prototype (called MAVRDSS), that is classified as nascent design
theory [10]. Besides activities of developing a technological artifact (Section 4), the design cycle calls for
a continuous evaluation of the resulting research to ensure its adequacy to improve the environment.
On one side, the functionality and efficiency of the routing model is monitored continuously throughout
the development process. On the other side, the evaluation of the artifact must be based on scientific
theories and engineering methods drawn from the knowledge base. Venable et al. [18] propose
the comparative evaluation of a new artifact with existing artifacts to determine whether it makes
an improvement on the state of the art. For this purpose, we conduct benchmark calculations on
different well-known VRP instances to examine the artifact’s validity, performance, and functionality.
Concurrently, we compare our MAVRDSS with existing problem-tailored solution approaches. Further,
the artifact is tested on two real-world instances in the context of urban logistics, namely a small-sized
coffee supplier and a medium-sized parcel service provider (Section 5).

3. VRP Attributes and Related Work

In view of the large body of scientific works, the VRP is widely considered as a distinct field of
knowledge in operations research and computer science [3,19]. Regarding the planning horizon of
transport and logistics processes, the VRP assists short-term and daily decisions related to diverse
transportation services of goods and passengers. This section aims to give a brief overview of the
most relevant VRP attributes or rather constraints. The goal of the following literature overview is to
obtain insights on actual real-world problems in transport and logistics and how they can be addressed
efficiently within the context of routing models. Following the overall purpose of creating a DSS for a
variety of real-world routing problems, these insights provide the basis for building a routing DSS
considering aspects that are relevant in practice. VRP research follows a clear trend towards including
aspects that are essential to routing in real-life. “Real-world problems are generally characterized by
several interacting attributes, which describe their feasibility and optimality structures” [20]. Such
routing problems with a multitude of possible attributes and their combinations are often grouped
under the denomination of Rich VRP [8]. Those models share the characteristics of including additional
constraints and objectives, generalizing, and unifying other independent problems [21]. When referring
to various constraints and objectives, some authors use the term attributes and refer to rich-like models
as multi-attribute VRP [20,22,23].

Table 1 contains a brief description of real-world VRP attributes which are based on the scheme
of Lahyani et al. [6] serving as reference for the developed DSS in the next section. This list does not
claim to be complete as there exist even more VRP attributes in the scientific literature. Regarding
the explanations and the developed DSS, the diverse types of nodes (e.g., customers, intermediate
facilities, central depots, driver homes) are translated into only two distinct node sets: A set of nodes
where requests occur (called customers) and a set of nodes where no requests occur (called depots).
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Table 1. List of common Vehicle Routing Problem (VRP) attributes, abbreviations, and description.

Attribute Abbr. Description

Pickup and delivery PD Customers may have pickup and delivery requests to be served
in sequential, separate or simultaneous manner

Multiple depots MD There is more than one node without a request; vehicle trips
depart from and/or arrive at more than one node

Multiple periods MP The planning horizon covers more than one period and requests
are served according to visitation patterns

Multiple products MC Vehicles can carry different types of products/commodities (e.g.,
dry, liquid, frozen)

Heterogeneous vehicles HV Vehicles have different properties (e.g., costs, capacity,
maximum travel distance, travel speed and distance)

Capacitated vehicles Ccv Vehicles have limited loading capacities

Limited range LR The length of a route is restricted (e.g., limited fuel, emissions)

Compartmentalized vehicles vC Different product types are carried in separate vehicle
compartments

Loading policy/specific ordering Lp Routing must respect possible ordering of visits induced by a
loading policy (e.g., last-in-first-out)

Driver regulations DR Routing must respect legislation on driver working hours and
safety (e.g., rest periods)

Inventory considerations IN Requests base on customers’ inventory levels (typically:
avoiding stock-out situations)

Capacitated depots CD Depots have limited storing capacities

Multiple time windows MW  Customers are associated with more than one time window, in
which the request can be served (equivalently: The planning
period is interrupted by at least one break time)

Time window

component Time restrictions on

-customer/requests CT -customer/requests (e.g., opening hours, break times)

-depots DT -depots (e.g., closing hours)

-vehicles/drivers VT -vehicles/drivers (e.g., working hours, lunch breaks)

-roads RT -roads (e.g., time dependent access restriction)

Optional visits ov Decision consists in choosing which requests to serve as visits
are not mandatory

Multiple trips MT Vehicles can perform more than one trip in a planning period
(equivalently: A tour includes at least one intermediate
depot visit)

Multiple visits/split-deliveries MV Vehicles can visit customers more than once and may serve a
fraction of demand at each visit

Open routes OR Start and end node of a vehicle’s tour may not be equal

Incompatibilities 1C Node sequencing must respect physical inclusion or exclusion
restrictions between, e.g., vehicle-customer, vehicle-depot,
vehicle-product, or customer-depot

Precedence constraints PC Routing must respect a possible visiting order due to physical or
service considerations (e.g., dial-a-ride, loading issues)

Balanced routes BR The workload of routes must be balanced (e.g., in terms of
distance, duration, loaded quantities, or cost)

Objective components

-distance DO Optimization targets can include

-times/durations TO -distance (e.g., minimize total travel distance or cost of travel)

-vehicle/driver VO -times/durations (e.g., minimize travel durations or time

-customer/request CcO windows)

-facility/depot FO -vehicle/driver (e.g., minimize number of operated

-loads LO vehicles/drivers)

-customer/request (e.g., maximize number of visits)
-facility/depot (e.g., minimize number of necessary locations)
-loads (e.g., minimize number or cost of loadings)

Multiple objectives MO  There is more than one optimization target (e.g., minimize fixed
vehicle cost and distance cost); multiple targets are prioritized
either by weights or by a hierarchical ordering (includes several
weighted sum objectives)

Soft constraints SC Problem constraints addressed in objective function (e.g.,

penalty fee)
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The described VRP attributes are considered in diverse combinations by many authors. To identify
the state of research in this field, we systematically analyzed and classified existing Rich VRP literature.
Regarding the terminologies, the review methodology must consider three crucial issues: First, the
definition of the term “rich” to denote a model is vague and its usage may significantly differ among
authors. Some authors may not use the term “rich” at all, but the model addresses various constraints
aiming at a close representation of the real world. Second, the state-of-the-art in VRP research is
continuously evolving. Models explicitly denoted as “rich” by their authors some years ago may not
be regarded as such anymore. Third, although the terms “real-world” or “real-life” are used by many
authors to describe their model and the problem type, the degree to which an actual application case is
considered may significantly differ among the studies. In fact, some authors address a realistic case
study and provide comprehensive descriptions of the given problem, whereas other authors merely
hint at possible fields of application.

To cope with the mentioned issues, we followed the proposed guidelines of Kitchenham et al. [24].
At first stage, we examined diverse databases, including Google Scholar, Springer Link, AlSel, and Web of
Science. We searched for the keywords “vehicle routing”, “rich”, “multi attribute”, “multi feature”,
“real world”, and “case study” in various combinations. In addition to that, we conducted a forward
and backward search following the principles of Webster and Watson [25], resulting in a total number
of 54 relevant articles. At a second stage, exclusion criteria were used to narrow the research scope on
studies providing valuable insights on real-world transport and logistics problems as well as modeling
attributes. We considered approaches containing at least four model attributes (routing attributes and
objective function elements) and a specific application case. To secure actual high-quality research
and a solid peer-reviewing, we excluded articles of conference proceedings as well as journal articles
published before 2009. As a result, 25 relevant articles were comprised.

As shown by the table, several routing attributes (e.g., heterogeneous vehicles (HV), capacitated
vehicles (CV), time window component: Customer/requests (CT)) and objective function elements (e.g.,
objective component: Distance (DO), objective component: Vehicle/driver (VO), multiple objectives
(MO)) are already intensively investigated, but no model is able to comprise almost all model features.
Regarding the presented list, the average number of included model attributes is 7.4. The most
elements were implemented by Armas et al. [26], who considered 14 of 32 model attributes within
their approach. In general, many articles deal with the VRP and its diverse specifications. Eksioglu et
al. [27] present the development of VRP-research over the past years. They identified over 1000 articles
in academic journals. Compared to the small number of multi-attribute VRP presented in Table 2, most
of the existing VRP articles are problem-tailored and lack generality. Less implemented attributes and
especially the option to combine different constraints constitute a research gap we address.

To provide an actual benefit for service and delivery companies of all sizes and sectors, the VRP
must be embedded into a user-friendly DSS. Yet, many idealized models are frequently unable to
capture the variety of problem attributes found in practical routing settings. Recently, the research
community has turned the attention to incorporating more different constraints and objectives into
optimization models to tackle the complexities of real-world applications. Apart from that, several
commercial web-based VRP tools exist which offer only limited usability due to the small choice of
problem specifications. To be applicable in a multitude of business contexts, a valuable DSS must keep
its generality while offering as many attributes as possible. A user must be able to choose among the
described attributes which best reflect the problem at hand. To address these challenges, we developed
MAVRDSS presented in the next section.
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Table 2. Classification of reviewed VRP studies.

Authors Routing Attributes Objective Function

PD MD MP MC HV LR VC LP BR DR IN CD MW CT DT VI RT OV MT MV OR IC PC DO TO VO CO FO LO MO SC
Amorim et al. [28] v v v / v v v
Armas et al. [26] v v v v v / v v v v / v /
Cattaruzza et al. [29] v v v /
Ceselli et al. [30] v v v 7/ v v 7/ v v 7
Coelho et al. [31] v v v v v / v
Derigs et al. [32] v v v v
Derigs et al. [33] v v /v v
Goel [34] v 7/ v v v v
Hemmelmayr et al. [35] v 7/ v v v
Holland et al. [36] v v v v v
Ibeas et al. [37] v v v
Kovacs et al. [38] v v / v v v
Lahyani et al. [9] v v / v v v
Loépez-Sanchez et al. [39] v v v v
Oppen et al. [40] v v 4 v v v 7/
Osaba et al. [41] v v v
Prescott-Gagnon et al. [42] v v v v / v v v
Rais et al. [43] v v v / v
Rasmussen et al. [44] v v v 7/ v /7 v o/
Rieck and Zimmermann [45] v v v v v v v
Santillan et al. [46] v v v v v 7/ v
Schmid et al. [47] v v v v v 7 v
Soysal et al. [48] v v v v v
Stenger et al. [49] v v v v v v
Wen et al. [50] v v v v v v
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4. Multi-Attribute Vehicle Routing Decision Support System (MAVRDSS)

4.1. Requirements

Routing software is mainly employed by companies producing industrial goods that need to plan
local pickup and/or delivery routes, long-haul truckload routes, as well as service companies, such
as couriers, buses, or technicians, to name a few [1]. One finding is that most of these companies are
relatively large or specialized on deliveries (shipping companies). To provide relevant support for
decision makers of diverse industries in urban logistics, we developed MAVRDSS from scratch, using
the web-application framework Ruby on Rails. The tool’s target groups are all small- and medium-sized
enterprises that participate in the urban commercial traffic and that operate an own vehicle fleet,
e.g., newspaper delivery, solid waste collection, or craftsmen-, parcel-, pharmacy-, e-grocery-, and
care-services. As most of those companies behave according to their gathered experience and best
practices, only few use appropriate software to optimize their daily vehicle routing. Consequently,
there are considerable saving potentials in terms of travel distance, travel time, travel expenses,
vehicle emissions, and the resulting traffic volume. To achieve these unexploited potentials and
to provide relevant assistance for especially small- and medium-sized enterprises without existing
routing optimization, MAVRDSS must offer high usability and quick results for as many VRP attributes
as possible.

Regarding the computation time, MAVRDSS must provide quick routing recommendations for the
decision maker. The increasing computer power enables researchers to tackle ever-larger combinatorial
optimization problems. This led to the emergence of various solutions methods that have been widely
applied on the VRP, which is proven to be NP (non-deterministic polynomial-time)-hard [51]. Methods
for solving optimization problems can be classified into two fundamental approaches: Exact methods
based on mathematical programming on the one hand, and approximate methods based on heuristics
and metaheuristics on the other hand [52]. Exact methods can guarantee optimal solutions. In this
context, mixed integer programming (MIP) is widely regarded as one of the most powerful tools in
operations research. However, when faced with large-scale combinatorial problems, even the best
commercial MIP solvers are unable to produce high quality solutions in acceptable running times. As
a result, researchers commonly use heuristics for solving VRP [6,53]. Approximate methods obtain
good solutions on large-size problem instances but do not have information about the solution’s
optimality. Heuristics are most often designed to solve a specific problem. Systematically following
several steps, they focus on quickly obtaining a feasible and acceptable solution [54]. In contrast to that,
metaheuristics are general-purpose algorithms performing a more thorough search of the solution space.
They aim to provide acceptable solutions in reasonable running times while allowing inferior and
sometimes infeasible moves. They are applicable on a broader class of problems and may be employed
as a guiding strategy in tailoring underlying heuristics [53,55]. Metaheuristics can be categorized
further into two main classes: Local search and population search. Local search based methods, for
instance Tabu Search, intensively explore the solution space by iteratively moving from the current
solution to another promising solution in its neighborhood. Population search based algorithms,
for instance Genetic Algorithms, maintain a pool of good parent solutions and recombine them to
produce promising offspring that updates the pool. The performance of a local search algorithm largely
depends on its capability to diversify the search, that is, to “escape” from locally optimal solutions [56].
Creating problem-independent algorithms for designing an efficient local search is an active topic of
research. Recently, some authors have turned their attention towards such unified solution approaches
to solve a variety of VRP [23,56,57]. However, applying these approaches usually requires strong
algorithmic expertise and a considerable amount of user involvement (e.g., defining neighborhoods,
adapting layers, etc.), which is normally not present in small- and medium-sized enterprises within the
described industries. In general, Braysy and Gendreau [58] recommend heuristics which possess the
following characteristics: High solution quality in terms of objective function value, speed, simplicity
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of implementation, flexibility, and robustness. MAVRDSS addresses these requirements and enables
users without optimization knowledge the determination of best possible solutions.

Based on the VRP taxonomy of Eksioglu et al. [27] and our literature review in Section 3, we
derived the following scheme to classify relevant real-world VRP-attributes (Figure 1). We reduced
the complexity of the VRP taxonomy presented by Eksioglu et al. [27] because not all categories are
appropriate for the developed MAVRDSS. For instance, we do not distinguish between different
solution methods as we focus on a heuristic approach. This complexity reduction is also suggested
by Lahyani et al. [6], who assess existing taxonomies as too ambiguous due to its high level of detail.
The goal is not to stress the particularities and differences between all VRP variants but rather to list
all relevant model attributes that constitute a specific VRP variant, while keeping a moderate level
of granularity.

I. Information IL. ProblemPhysical
Characteristics Characteristics
inputdata depots veliicles ciistomers
+input evolution L single +ype L unrestricted
L static L multiple L homogenous
L dynamic L heterogeneous
+input quality pertods +capacity depots
L deterministic L single L unrestricted L unconstrained
L capacitated L capacitated
+range
travel mode prodisct types L unlimited tmes
L unimodal L single L limited L unconstrained
L multimodal +structure L ime dimension
Lno compartments +time window structure
number of veliicles L single time window
L unlimited number +loading policy L multiple time windows
L bounded number L no policy +time window components
L specific ordering L customers/requests
crstomer requiests L depots
L pickup or delivery drivers L vehicles/drivers
L pickup and delivery L no regulations
III. Route IV. Objective
Characteristics Characteristics
node covering incompatibilities stricture components
L complete L all compatible L single objective L distance
L optional visits L incompatibilities L multiple objectives L times
L weighted sum L vehicle/driver
visit freqiency node coupling L hierarchical ordering L customer/request
L single visit L no precedence L depot
L multiple visits / load L precedence constraints hardness of constraints Lload
splitting L hard constraints
routes balancing L soft constraints
depot connectivity L no balancing
L closed routes L balanced routes
L open routes
veliicle ise
L single trip
L multiple trips

Figure 1. Classification of the implemented VRP-attributes (based on Lahyani et al. [6]).

The possible VRP attributes are classified by four categories to systematically model the given
problem characteristics. The MAVRDSS-user describes the case-specific problem characteristics and its
constraints in the presented order (I-IV). Figure 1 also indicates which VRP-attributes are implemented
within MAVRDSS (black font). Referring to the VRP-attributes presented in Table 1, we implemented
26 of the 32 described attributes, offering high flexibility and a wide range of applications. Due to
inconsistencies, the gray marked attributes are not implemented. The requirement of preserving the
model’s generality is fulfilled for nearly all attribute combinations. Only few incompatibilities between
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attributes exist, for instance, the open routes are incompatible with the single depot attribute. Further,
the multiple trips attribute is incompatible with the pickup and delivery attribute and the load-splitting
attribute cannot be combined with multiple trips.

4.2. Functionality and User Interaction

MAVRDSS is built as prototype web-application to run the computationally intensive optimization
on a remote server, while a MAVRDSS-user only needs to operate a device supporting a web-browser.
All user actions are executed via the graphical user interface (GUI). The software comprises five main
components as depicted in Figure 2: Model configuration, input data, optimization settings, solutions,
and visualization. The model configuration represents the customizable part of the routing model based
on the attributes in the classification scheme. With the manifold configuration opportunities shown
in Figure 1, diverse urban logistic applications can be simulated, considering the industries” specific
constraints. Within the whole configuration process, the user is served with descriptive information
about the model attributes. The input data refers to the customers, depots, vehicles, and their
associations. A user creates customers, depots, etc., and associates parameter values by filling out input
forms. Optimization settings refer to user-sided configurations of the optimization process, which can
be set before an optimization run (e.g., running time limit). MAVRDSS provides an interface-to-database
system that allows writing and reading relevant data. A step counter variable keeps track of the
configuration status. After saving the model configuration, input data, and optimization settings
in the database (DB), the user can start an optimization run. All information is transformed into a
case-specific optimization model and passed to the software LocalSolver for resolution. LocalSolver is
a mathematical programming solver based on local search techniques following the model-and-run
paradigm that offers the possibility to tackle a large class of different problems. In this way, the
complex processes of defining neighborhoods, moves, and the search strategy are automated. After an
optimization run, the solutions (e.g., customer sequencing) are saved in the DB. The user can access
and visualize them via the GUI, using Google APIs (application programming interface) for appropriate
presentation in an embedded map. A user interacts with these described components when operating
the web-application (see Figure 2).

Q|
SIS

Solutions Visualization

1

1| Gut bssy

1

' Model Input Optimization :

H Configuration Data Settings '

1 1

i -4 i

| = ACS Yo !

X ! (B 1

&k\\}e% i | e dlt E

1, |Local |:

|| [nput DB transmit SOLVEF !

| <Go gle APIs> l———— A

i retrieve S |

\ Output SN |1

A ' '

LA 1 = 1
P '

| s

1

1

1

1

1

1

Figure 2. User interaction and system architecture of Multi-Attribute Vehicle Routing Decision Support
System (MAVRDSS).

While only the input data and the model configuration are treated as own resources, all components
are part of a project resource. In terms of the model associations, each user can have different projects
and each project can contain many vehicles, customers, etc. A user can create new instances of the
resources, and read, update, or delete them. A project is runnable if the user has selected the model
attributes, has created at least one vehicle, one depot, and two customer locations. Moreover, the travel
distances and durations between all customers and depots must be generated. HTML elements are
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used to display the required content based on the current controller action. The client’s browser must
support JavaScript to run the web-application.

As the routing model’s versatility and customizability are the fundamental features of MAVRDSS,
its utilization must be supported through an adequate design and functionality of the web-application.
In this regard, the main requirement is the applicability of MAVRDSS by end-users with neither
programming skills nor knowledge of optimization methods. While the development of a user-friendly
interface with meaningful help systems is a long-winded process, this article offers a prototype-tool
for the multi-attribute VRP. Information buttons with hover effect provide a brief description of each
attribute to further support the user. For instance, Figure 3 illustrates an extract of the web-application’s
GUI during the model configuration.

All Projects  Profile -

Manage your model configuration

Information Characteristics Problem Physical Characteristics ‘ Route Characteristics Objective Characteristics
Node Covering @
Customer visits Complete ~ Optional Visits
Vehicle Use @

Number of trips Single Trip ~ Multiple Trips

Depot Connectivity @ Are your drivers' routes closed and start and end at the same location,

or do start and end points differ in an open route?
Route structure Closed Routes ~ Open Routes

Add options Fixed start depot

This is mandatory. © Variable start depot

Figure 3. Screenshot of the MAVRDSS-GUI during the model configuration.

4.3. System Components and Implementation

MAVRDSS is developed using Ruby on Rails, which is an open-source web development framework
written in the higher object-orientated programming language Ruby. The framework focuses on
productivity and aims to accelerate the development of web-applications [59]. Apart from LocalSolver,
all tools used to implement MAVRDSS are managed within the Ruby on Rails framework.

The spatial component of MAVRDSS comprises the following features: generating distance
and duration matrix, autocomplete form for creating addresses, displaying locations on maps, and
visualizing route solutions. For these purposes, MAVRDSS interacts with several Google APls. All API
functions are accessed through the Google Maps JavaScript API. Google Maps Embed API is used to render
maps in different HTML views. For example, a user can see the location of a created address in the
embedded map. When a user has created a new address, the Google Geocoding API service converts the
address into geographic coordinates, which is further used to place markers on a map and to center the
map based on addresses. If permitted, the Google Geolocation API is used to retrieve the current position
of the user operating MAVRDSS and to adjust the autocomplete address towards that position. When
typing the first letters of a street name into the address form, a user gets proposals of nearby street
names starting with the same letters. The Waypoints API is used to display routes based on solution
values from an optimization run. The distance and duration matrix are generated using the Google
Distance Matrix APL

As stated above, LocalSolver is used to integrate all components of a local search heuristic and to
solve the user-specific VRP. The search strategy is a simulated annealing heuristic with restarts. The
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selection of the next move is a choice among existing moves. The strategy collects statistics on each
neighborhood and adapts the search continuously. For those moves initially identified as infeasible, the
selection probability is set to zero. The moves are general-purpose transformations of neighborhoods
striving to maintain the feasibility at each iteration. The solver is not limited to linear constraints but
can handle highly nonlinear models. The LocalSolver software is implemented in C++ language. Its
compiler accepts models written in C++, C#, Python, Java, or the built-in modeling language LSP (Local
Search Programming). The latter is used in version 7.0 to implement the described multi-attribute VRP.
In the LSP language, it is possible to manipulate data structures as in imperative programming and to
define the optimization model using mathematical operators, built-in variables and functions. LSP
has all characteristics of a scripting language but is dedicated to modeling and solving a problem [60].
Within MAVRDSS, the efficiency of the resulting customized model bases on choices of appropriate
constraints, well-defined objective functions, and the right solver parameterization. Besides user-sided
efficiency considerations, the implementation of the multi-attribute VRP in LocalSolver must stay
lightweight and exclude superfluous computations as much as possible to remain efficient. The
multi-attribute VRP is implemented in a single LSP model based on polyvalent components. This
means that most basic functions are used for different configuration setups and only the function’s
constituents are evaluated individually with respect to the selected attributes. The model configuration
is translated into 77 Boolean variables relating to specific functions in the LSP file. These values are
used to determine the final model that is passed to the solver. To minimize the computation time and
to attain an efficient model, only the selected attributes are passed to LocalSolver. This is achieved with
an extensive set of conditional statements in the LSP model file, which activate or deactivate attributes
and attribute combinations.

To provide an exemplary insight into the modeling approach, both an objective and a constraint
implementation are explained using mathematical formulation and the resulting LSP-code. The
vehicle capacity restriction is modeled as a hard and problem structuring constraint. According to the
previously explained efficient and narrow programming in LSP, such simple but mandatory limitation
can be tied in a relationship of served demand quantity to vehicle capacity shown in equations (1-3).
Equation (1) defines the load of the first sequence as the sum of the demand quantity at the first
customer location (1) and an initial load of the vehicle k (q;'("it), whereas the demand ) Can be
positive in case of a pickup node or negative for a delivery node. For every following node p in the
tour, the current load is the recursively defined function (2). The size of Loady , varies for each vehicle
according to the number of associated visits in a tour ¢x. Constraint (3) ensures that the current load

does not exceed the vehicle specific capacity (77”") and that it is positive.

Loady 1 = 9"+ G, vk 1)
Loady, = Loady, 1 + ey Vk p €2,...,c 2)
0 < Loady, < E/Zehide Vkpel,...c 3)

As visible in the following code, the corresponding function is defined as a condition for single or
multiple trips. In case of a single trip (line 2 and 3) the variable load currentLoad[k][i] for each vehicle
k and stop i is bound to the maximum capacity truckCapacity[k] of the allocated truck and ensures a
value greater than zero.

if (currentLoadConstraint) {
if (singleTrip)constraint and(@..c-1, i => @ <= currentLoad[k][i] && currentLoad[k][i]

<= truckCapacity[k]);
if (multipleTrips)constraint and(@..c-1, i => currentlLoad[k][i] <= truckCapacity[k]);}

W

When mapping the underlying problem, modeling hard constraints that are not necessary to
structure the problem should be avoided to prevent early optimization stops and local optima. A
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complementary approach for an optional condition, such as the even distribution of the route duration
for all drivers, is therefore to describe an imbalance function that is to be minimized as an objective.
Equation (4) shows the corresponding function, where the imbalance is defined as the maximum value

of zero and the difference between the minimum and maximum tour duration (Dur4fference) minus the

Duytour
average duration weighted by the tolerance factor ,B-(Z k qu’; )

) Durtowr
min[imbalance = max{O, Duy™if ference _ B Z Z];: }] 4)
k

The minimization is implemented and performed by the minimize command of the LSP library
in line 21 after the relations of the imbalance function are defined in lines 5-14. Line 6 defines the
maximum tour length for each vehicle k. Lines 7 to 11 define the shortest tour as the longest tour in
advance and check in a for loop iterating for each vehicle whether the respective tour is between zero
and the longest tour to define the shortest tour for these cases as routeMin. Line 13 then defines the
imbalance including the weighting factor beta for a variable tolerance limit of the deviations in route
duration. In this example, the code is shown for the case the user chooses a hierarchical weighting of
attributes. Thereby, the imbalance minimization is included in the objective function according to the
selected target hierarchy.

5 if (balanceRouteDurations) {

6 routeMax <- max[k in @..nbTrucks-1](routeDurations[k]);

7 routeMin <- routeMax;

8 for [k in @..nbTrucks-1] {

9 routeMin <- ((routeDurations[k] > @ && routeDurations[k] < routeMin)
10 ? routeDurations[k] : routeMin);

11 }

12 averageDuration <- totalDuration / nbTrucksUsed;

13 imbalance <- max(®, (routeMax - routeMin) - beta*averageDuration);

14 }

15 function readObjectives() {

16 if (hierarchicalObjectives) {

17 local P = hierarchical.split("_");
18 for [obj in @..P.count()-1] {

19 [.]

20 else if (toInt(P[obj]) == 18) {

21 minimize imbalance;}

5. Results

5.1. Benchmark Calculations

To analyze the tool’s performance and to evaluate our solution approach, we provide a
proof-of-concept. This involves testing MAVRDSS across a range of available problem instances. The
performance of MAVRDSS is tested on three routing problem variants, namely the split-delivery VRP,
the multiple-depot VRP, and the Location Routing Problem (LRP). Various authors addressed these
VRP variants and tested their proposed solution method on different standard instances in comparison
with other studies who considered the same instances. For each problem variant, there is a set of
instances chosen and two or three studies serve as benchmarks to compare the performance of the
solution methods on each considered instance. To the best of our knowledge, the selected reference
studies are among the best performing solution methods on the respective instances.
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In the next three tables, the reference algorithms are stated at the table head. The first column
describes the problem instance and size of the respective VRP variant. The Gap-column indicates the
relative percentage gap of the heuristic solution to the best-known solution. The best-known solutions
are taken from the most recently published reference study. Boldface entries indicate if the best-known
solution is reached (gap = 0.0%). The CT-column states the computation time in seconds. LocalSolver
indicates the running time only in full seconds. The best result of three runs is stated for each instance
and the number of customer subsets is increased iteratively until no more feasible solution is obtained
after 120 seconds. This short time span is deployed to meet the requirement of real-world routing
applications where fast decisions are essential. The simulated annealing level is set to 2 and the number
of threads is set to 2 for all problem instances. All calculations using MAVRDSS are run on a computer
with an Intel Core i7 QuadCore CPU (2.2 GHz) and 8 GB memory.

Table 3 presents the computational results for the split-delivery VRP on seven benchmark instances
provided by Belenguer et al. [61]. The solutions are compared to the SplitILS heuristic from Silva et
al. [62] and to an unnamed heuristic from Aleman et al. [63]. According to Silva et al. [62], the SplitILS
outperformed previous heuristics and obtained new best-known solutions on almost all instances (gap
= 0.0% for all). Computations of MAVRDSS are stopped after 120 seconds and best values are reported.

Table 3. Computational results for the Split-Delivery VRP.

Number of Customers Aleman et al. SplitILS MAVRDSS
Gap CT Gap CT Gap CT
22 0.0 2.6 0.0 0.2 0.0 19
23 0.1 1.6 0.0 0.1 0.4 12
30 0.0 7.5 0.0 0.2 0.4 9
33 0.1 8.4 0.0 0.5 1.5 22
51 0.1 49.8 0.0 1.8 12 17
76 0.2 914 0.0 51.8 4.2 45
101 0.2 298.2 0.0 38.9 8.8 117

MAVRDSS is able to reliably produce feasible solutions on the given problem sets, i.e., all customer
demands are served and capacity restrictions hold. Although the solutions are generally not bad since
they mostly stay below the 5% optimality gap for instance sizes with up to 76 customers, they are
inferior compared to the problem-tailored heuristics. On one side, the results show that LocalSolver
generates the solutions in rather short running time. On the other side, these solutions are hardly
improved in the remaining running time. This indicates that the search strategy is likely to lead to
locally optimal solutions and that a search diversification is not always successful.

Table 4 presents the computational results for the Multi-Depot VRP as compared to three algorithms
that have shown the best performance as stated by Cordeau and Maischberger [64]. The instances for
the Multi-Depot VRP are taken from Cordeau et al. [65], where the number of vehicles is given. The
three algorithms are ALNS [56], CGL [65], and ITS/1 [64]. The gaps reported by Cordeau et al. [65] are
based on best-known values. The gap values are updated using the best-known values reported in the
reference paper by Cordeau and Maischberger [64]. The latter authors do not provide information
on the running time of their algorithm. Instead, they report the best result after 100,000 iterations,
whereby an average computation time of 110 seconds is stated. However, computations of MAVRDSS
are stopped after 120 seconds and best values are reported.
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Table 4. Computational results for the Multi-Depot VRP.

IN| % [M] x K] ALNS CGL ITS/1 MAVRDSS

Gap CT Gap CT Gap CT Gap CT

50 x4 x4 00 29 0.0 15 0.0 0.0 12
50 x4 x 2 00 28 01 50 0.0 0.0 14
75x5x%x3 00 64 06 17 01 00 22
80x2x5 0.1 75 01 1 0.0 0.0 42
100 x2 x5 03 120 04 79 0.2 34 31
100 x 2 x 8 05 8 06 336 05 1.5 32
100 x 3 x 6 07 93 02 293 04 34 48
100 x 4 x 4 0.8 88 1.1 427 07 1.9 40
160 x 4 x 5 00 179 04 539 0.0 7.1 28
240 X 6 X 5 03 315 0.0 10 03 55 54
249 x 2 x 14 08 333 25 1175 22 7.0 102
249 x 3 x 12 05 361 16 419 17 54 88
249 x4 x 8 05 363 23 984 17 52 89
249 x5%6 08 357 1.0 1040 1.0 35 110
360 X9 x5 05 582 11 1786 0.7 0.9 78

Note: [N|: Number of customer nodes; [M|: Number of depot nodes; [K|: Number of vehicles/tours.

14 of 21

The obtained objective function values are mostly inferior compared to those of the three reference
studies. However, the objective function values obtained by MAVRDSS are around the 5% optimality
gap (to best-known solution). The results lead to a similar conclusion as for the Split-Delivery VRP:

LocalSolver can produce decent solutions in short running times, but these solutions are hardly improved

in the remaining time.

Table 5 compares the MAVRDSS solutions on the classic LRP (simultaneous determination of
optimal depot locations and vehicle routes) to three algorithms that have shown the best performances
in terms of solution quality and running time among six algorithms tested in a comparative study by

Yu et al. [66].

Table 5. Computational results for the Location Routing Problem (LRP).

IN| x [M] MAPM LRGTS SALRP MAVRDSS
Gap CT Gap CT Gap CT Gap CT
21 x5 00 03 00 02 00 183 0.0 1
22x5 46 03 04 02 00 166 0.0 1
27 x5 00 10 01 03 00 233 0.0 2
29x5 00 08 00 04 00 239 00 1
32x5 60 10 01 05 00 251 0.0 2
36 x5 54 14 35 07 00 317 0.0 2
50 x5 00 38 37 24 00 528 00 18
75 x 10 84 94 81 101 04 1268 22 94
88 x 8 1.5 342 52 175 00 2269 08 65
100x10 39 445 3.0 282 06 3308 22 86
134 x 8 9.7 1105 71 483 0.0 5524 34 9
150x10 14 2550 23 1192 27 5770 6.0 80

Note: [N|: Number of customer nodes; [M|: Number of depot candidate sites.

These three heuristics are: MAPM [67], LRGTS [68], and SALPR [66]. The instance set for the
LRP is gathered by Barreto [69]. These instances consider the classical Location-Routing constraints

of capacitated depots and vehicles. Computations in MAVRDSS are stopped after 120 seconds
and best values are reported. The comparative results indicate that MAVRDSS can compete with
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problem-tailored LRP algorithms. For small datasets, the solutions reached best-known values within
reasonable running times. For larger datasets, high quality solutions were reliably produced within
seconds and further improved.

To conclude, the presented results demonstrate the effectiveness of MAVRDSS when applied on
weakly constrained models. Especially with relatively few hard constraints, for instance present in a
LRP, the risk of being stuck in locally optimal solutions is rather low. Although the computational
results for the Multi-Depot VRP as well as for the Split-Delivery VRP show that LocalSolver does not
always successfully diversify the search, it is able to produce valuable results in short computation
times. For some instances, the obtained results even outperform the specialized reference heuristics. In
summary, MAVRDSS enables to model various routing problems and achieve high quality solutions
which can often compete with problem-tailored algorithms.

5.2. Real-World Simulations

After presenting a comparative evaluation based on different standard instances and
problem-tailored solution approaches, two real-world application cases in the context of urban
logistics are described to analyze the added value of MAVRDSS. The first case covers three working
days of a freelance courier employed at a small-sized coffee supplier. The second case contains a
day trip of a medium-sized parcel service provider. We compare the tool’s solution with the actual
distance driven by the couriers in both cases. Considering the presented classification scheme, relevant
attributes of the routing problem in both cases are given depot locations, given customer locations, a
deterministic demand, and only one product type. Capacitated vehicles with a limited range, closed
routes, and single customer visits are further specifications. In addition, the first case comprises
customer time windows that must be met when supplying customers. Minimizing the total distance
while visiting all customers exactly once constitutes the central objective in both cases. In line with this
efficiency maximization, the total vehicle emissions and the resulting transport costs are minimized
leading to an optimized resource utilization. As many couriers just obtain their assigned customer
destinations, they must plan the route on their own. Accordingly, the driver decides independently
and directly on the ordering of destinations based on personal experience.

In the first case, a courier had to supply up to 12 customers in urban surroundings each day. The
distance travelled by the courier ranged from 28.03 km to 42.07 km per trip. With an optimized order
of destinations using MAVRDSS, the routes are reduced by distances from 4.61 km to 11.89 km per
trip. This corresponds to a range of savings from 16.14% to 42.75%. In the second case, a courier had
to deliver 119 parcels to 97 customers in urban surroundings, resulting in a total driving distance
of 44.27 km in one trip of one day. Taking the same customer locations and solving the described
optimization problem with MAVRDSS and the hardware described above (Intel Core i7 QuadCore
CPU 2.2 GHz, 8GB memory), it takes 45 seconds to receive a solution with a total driving distance of
27.52 km. Reducing the distance by 16.75 km implies an efficiency enhancement of 37.83%. When
using the same hardware and an exact solution method (solver: CPLEX) for the identical problem
instance, it takes approximately 24 hours to receive a similar solution (28.94 km). Again, this difference
regarding the computation time demonstrates the requirement of a (local search) heuristic when solving
routing problems.

6. Discussion and Contributions

With MAVRDSS, we created a research artifact to provide relevant assistance for VRP of diverse
industries in urban logistics. Guided along the three cycles of a DSR process, this section critically
reviews our approach and discusses limitations as well as implications of the resulting artifact with
respect to the above-mentioned research goal.

As part of the rigor cycle, we conducted a literature review focused on multi-attribute and
real-world VRP. Our study integrates the existing knowledge on VRP and their solution approaches
together with computer-aided decision support. In doing so, we combine scientific literature of
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transportation, logistics, operations research, management science, as well as computer science.
Previous research activities in these fields demonstrate the lack of decision support for generic vehicle
routing planning. While most of the literature focuses on problem-tailored solution approaches, we
developed a multi-attribute VRP allowing for the implementation of several problem-specific business
contexts. A finding of the literature review is that many models explicitly denoted as rich or real-world
VRP by their authors offering only few or no descriptions about addressed real-world issues. To keep
track of the various model attributes considered in the research community, we derive a classification
scheme for VRP. The development of the classification scheme is motivated by the observation that
existing classification schemes are either too detailed (suffering from ambiguity), or too imprecise
(leaving voids and being undescriptive when classifying the various model features). Our scheme of
existing VRP attributes is capable of providing a fast overview by grouping attributes within problem
information, physical, route, and objective characteristics. With the primary goal of an artifact’s utility
in the DSR process, the classification scheme is used as a navigating structure for the customizable part
of the developed DSS. In this regard, the attribute classification aims to remain descriptive and easy to
apply by users without prior knowledge of VRP nor optimization methods.

The identified model attributes are brought together in a prototype IS-artifact, called MAVRDSS.
The main requirement is to provide a customizable VRP including these attributes to preserve the
model’s generality, which is met with only few exceptions as mentioned above. The translation of the
attributes selected by the user into the optimization model components is a major challenge. Regarding
the modeling environment of our DSS, a benefit of using LocalSolver and the built-in modeling language
Local Search Programming, is the interface-to-model system enabling an integration of new model
attributes. Since writing or adjusting existing heuristic algorithms is a long-winded process, a developer
using LocalSolver can profit from its model-and-run approach, considering the specific limitations of
the local search based resolution techniques. Consequently, MAVRDSS allows for a great variability of
attribute combinations. On one side, the generality is a major benefit in terms of its applicability by a
wide range of practitioners and researchers facing different distribution problems. On the other side,
the model’s generality is also a point of criticism as some company-specific scenarios are possibly not
represented sufficiently by the pool of model attributes. Without a doubt, there are specifications that
cannot be modeled with MAVRDSS, e.g., the integration of the parking situation at customers [70]
or the avoidance of left-turning and zigzagging [36]. Hence, the prototype is not a “one-size-fits-all”
solution, but rather a useful tool for most of decision makers with an optimization potential in terms of
vehicle utilization efficiency and the resulting impacts.

The right choice of attributes represents the most crucial part regarding the performance of
MAVRDSS. Since the MAVRDSS-users can specify a practical problem by choosing from a wide pool
of model attributes, there are potential user-sided error sources which must be identified. On one
side, adding too many constraints to the model complicates the move from one feasible solution to
another. On the other side, the optimization model may lose its practical sense without real problem
structuring constraints. MAVRDSS must offer appropriate guidance on various combinations of
objectives, especially with respect to possible conflicts. While much effort is devoted to eliminating
user-sided errors during the model configuration stage, there are only few validations on the input
data that is passed to the optimization model.

Another essential element is the method to determine travel times. As described, the Google API is
used to retrieve the estimated travel times as well as distances between the nodes of the system. In the
present status of the tool, this estimation is based on the current traffic situation of the road network.
As a potential extension of MAVRDSS, the user could choose whether the current or the average traffic
situation should be taken as basis of the travel time and distance calculation. Thereby, the accuracy as
well as the optimality of the solution could be enhanced in some application cases. In general, the
travel time variability is a limitation of our approach. For instance, Shao et al. [71] present a VRP where
the travel times between nodes depend on time periods. These result as a day can be subdivided
into an adjustable number and length of time periods. Corresponding travel times result for each
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period to account for variations of the road network conditions and the corresponding travel speed
over the day. However, besides changing traffic conditions, there are several external events that can
affect the schedule of a service provider during the day, e.g., a customer cancels his/her appointment, a
customer requests a new time window, extreme weather conditions occur. Those events require a fast
revaluation of the changed conditions but as demonstrated by the benchmarks, MAVRDSS produces
high quality results in short computation times so that a fast reoptimization is possible.

As part of the design cycle, MAVRDSS was evaluated on well-known academic VRP benchmarks to
ensure validity and functionality of the model formulation as well as the chosen solution method. Since
each study typically uses different hardware, the comparability of the presented benchmarks is limited.
However, the presented results of the comparative evaluation generally document the efficiency of
LocalSolver when applied on weakly constrained models. Regarding the resulting computation time
and especially the potential attribute combinations, the formulation of the model attributes in the
Local Search Programming language is crucial. For the considered instances, our implementation of
formulating the model attributes can compete with problem-tailored heuristics. Solver specifications
(simulated annealing level, number of threads, etc.) were kept constant during the benchmark tests
leaving room for further variation.

As advised for the methodology of DSR, deeper empirical evaluation in the field forms a major
part of the relevance cycle and will increase practicality, rigor, and generalizability of our approach. As
86.5% of the DSS related DSR artifacts [72], no complete field trial has been realized yet. In this regard,
the MAVRDSS prototype should be tested in practice to validate its real-world utility. To apply the
developed web-application, a company must own valid business licenses for the integrated software
LocalSolver as well as the Google APIs. Instead of Google APls, an open-source API (e.g., OpenStreetMap)
could be used as an alternative. However, we recommend a cooperation with existing transport
companies and other services to further validate and evaluate our developed DSS.

As stated in the introduction, the artifact development of MAVRDSS is also motivated by the
potential to decrease the road traffic’s impacts (e.g., emissions) when optimizing routes. In addition
to economic costs, the environmental effects can be taken into consideration while constructing
transportation routes. Many authors have dealt with the environmental sensitivity of routing aspects
by including broader constraints and objectives in VRP models [52]. As the vehicle emissions are
directly related to the travel distance and the according fuel consumption [73], emissions are currently
not stated separately in MAVRDSS.

With our artifact classified as nascent design theory, we reacted to the call of Malhotra et al. [13]
and Gholami et al. [14], who point out the overrepresentation of conceptualization and analyses
compared to solution-oriented research. We combined transportation, logistics, operations research,
management science, computer science, and especially Green IS research to promote the transformative
role of IS in contributing to enhanced economic, social, and environmental sustainability. With the
help of MAVRDSS, we enable better decision-making through easy usability for diverse companies in
finding appropriate solutions for the delivery of goods and services, especially in cities.

By implementing the problem into a DSS prototype, we answer our research question by enabling
generic route optimization leading to efficient vehicle utilization. The possibility to model a wide
range of routing problems allows for a broad application in logistics problems of diverse industries.
Due to the integration of LocalSolver, decent solutions in terms of running time and solution quality
can be achieved. When comparing the obtained results to problem-tailored approaches, MAVRDSS is
often able to achieve results with similar quality. Even if the frequently occurring transport problems
are covered by existing VRP and problem-tailored solution approaches, small- and medium-sized
companies often lack appropriate decision support (e.g., newspaper and grocery delivery, or craftsmen-,
pharmacy-, and care-services). We tackle this gap with our prototype, because special VRP cannot be
developed for each application case. In doing so, we contribute to DSR applications for environmental
sustainability as well as the Green IS domain as our research addresses relevant issues regarding
the efficient supply of people with goods and services. The use of MAVRDSS minimizes driving
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distances resulting in emission reductions, especially compared to non-optimized routes. Because many
companies do not use routing software yet, there are considerable saving potentials regarding driving
distances, costs, and resulting emissions. Based on the prospering e-commerce, cost pressure continues
to arise for companies, especially within the transport sector. By using MAVRDSS, companies can
optimize their planning processes and minimize the distances of delivery processes for goods as well
as services towards a more cost-efficient operation mode. When run on an efficient server, MAVRDSS
can achieve even more advantages for decision makers through the use of a web-application.

7. Conclusions and Outlook

We present a technological artifact enabling generic route optimization taking present knowledge
on VRP and related solution approaches into account. Previous research activities in these fields
demonstrate the lack of decision support for customizable vehicle routing planning. In the context of
urban logistics, this adaptability is important due to the broad applications in diverse industries. The
developed DSS integrates a multi-attribute VRP and allows for optimizing transportation problems of
several problem-specific business contexts. The presented results indicate that our DSS can compete
with problem-tailored algorithms. The use of MAVRDSS minimizes driving distances resulting in
emission reductions, especially compared to non-optimized routes. Companies can optimize their
planning processes for goods transportation as well as services towards a more cost-efficient operation
mode. As many companies do not use routing software, the saving potentials in terms of road traffic
and its impacts are manifold. With the deployment of MAVRDSS, we enable better decision-making
through easy usability for diverse companies in finding appropriate solutions for the delivery of goods
and services, especially within urban surroundings.
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