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Abstract: An analysis was carried out for different thermodynamic cycles of power plants with air
turbines. Variants with regeneration and different cogeneration systems were considered. In the paper,
we propose a new modification of a gas turbine cycle with the combustion chamber at the turbine
outlet. A special air by-pass system of the combustor was applied and, in this way, the efficiency of
the turbine cycle was increased by a few points. The proposed cycle equipped with a regenerator can
provide higher efficiency than a classical gas turbine cycle with a regenerator. The best arrangements
of combined air–steam cycles achieved very high values for overall cycle efficiency—that is, higher
than 60%. An increase in efficiency to such degree would decrease fuel consumption, contribute to
the mitigation of carbon dioxide emissions, and strengthen the sustainability of the region served
by the power plant. This increase in efficiency might also contribute to the economic resilience of
the area.

Keywords: thermodynamic cycle concepts; sustainability; modified cycle concepts; efficiency;
energy systems

1. Introduction

Social and economic activity should aim to mitigate natural devastation. In recent years, the idea
that improvements in quality of life should take place in greater harmony with the natural environment
has gained popularity. Consequently, ecological problems have become the subject of reflection in
various manufacturing sectors.

The development of production in various ecosystems should not only aim to keep up with
demographic growth, but also to conserve equilibrium in the natural environment, so that it will be
maintained in the best shape for the further development of future societies [1].

Mainly in reference to ecological politics, the definition of what is considered sustainable and
durable development is essential. Ethical and economic values should be synchronized, aiming to
match the premises of sustainable development. The term “sustainable development” is associated
with many meanings. The multiplicity of this notion is reflected in various aspects and trends [2].
The concept of sustainable development focusses attention on environmental, social, and economic
factors, and clearly underlines the interdisciplinary character of the energy sector [3].
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Sustainable energetics should take into account: (1) consumption and how to supply energy
without exposing society to danger and (2) how to assure economic development whilst caring for the
natural environment [4]. The energetic system is based on the notion of equalization, which should,
among other things, consider the production of energy with regard to long-lasting economic and
environmental goals [5].

Disseminating sustainable development on a global scale [6] is the focus of activities aiming to
conceptualize how energetics could be developed through skillful conservation of energy on the local
level. The sustainable management of these resources has to be supported by sustainable development
of energy [7], and should deliver information that enables the evaluation of the energetics in ecological,
economic, and social dimensions.

The formation of a green economy requires the union of transformation processes across the
various regions of the country, along with the active participation of enterprises. One of the factors
assuring the development of the modern economy is the uninterrupted delivery of energy. The energy
resources trade, as well as industrial activity, is bound to the pollution of the atmosphere. This often
leads to regional conflicts and ecological threats, even on a global scale. Knowledge of the suitability
of fuels and the their suitable selection is indispensable to the safe and effective design as well as
exploitation of technical objects [8].

Energetic systems require a deep understanding, taking into account the changes in production
technologies [9]. Therefore energetics must occupy an important place amongst the different areas
of sustainable development. The aim of the present paper is to highlight the possibility of utilizing
circulation power stations in the context of sustainable development. Such a development should be
implemented universally, with regard to the politics of individual states.

A problem of the national power generation sector is the relatively low efficiency of energy
generation from coal, which is additionally accompanied by high emissions of carbon dioxide [10–12].
The average efficiency of Polish power plants is lower than elsewhere in the EU. The most efficient
power plants in Poland are the newest units: Łagisza II (41% efficiency), Pątnów II (41% efficiency),
Bełchatów II (42% efficiency), and Opole II (45% efficiency). Note that although these values can differ
depending on the quoted source, the differences never exceed two percentage points. The majority
of Polish power plants have an efficiency level below 36%, whilst for the oldest ones it can even be
below 30%. For the present efficiency level, the assessed CO2 emissions from steam power plants is
approximately equal to 1100–1200 kgCO2/MWh (for lignite-fired power plants). Modern power units
operating at supercritical steam parameters ensure higher efficiency (48%–50% for hard coal-fired
power plants), which, however, is decreased by more than ten percentage points by the unavoidable
use of CO2 sequestration systems. It is also noteworthy that several Polish power plants, with a total
installed power capacity of about 6 GW, are likely to be closed during the next few years, due to poor
technical condition [13–16].

Problem Posing

In the case of distributed power generation, the efficiency of small electric power plants is
even lower. Organic Rankine Cycle (ORC)-based thermal power plants have an efficiency as low as
approximately 12%. At present, one of the most advanced and efficient electric power plants is a power
unit planned for construction in the USA, which forms part of the framework of a program financed by
the US Department of Energy (US DOE). This unit will operate at ultra-supercritical steam parameters
(with a pressure of about 35 MPa and temperature up to 760 ◦C), and its efficiency is expected to reach
approximately 55% [17,18]. Such high steam pressures and temperatures require special materials and
technologies, the use of which in Poland remains confined to a rather distant future [19]. At present,
the highest efficiencies are reached in combined-cycle power plants (slightly over 60%, designed by
Siemens), but these power plants are not coal-fired [20–22]. Hence, the question arises as to which
direction attempts should be made to increase the efficiency of electric power generation in Poland.
This can be reached by increasing the thermal efficiency of the applied cycle and/or by increasing
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the efficiency of its individual components. In the case of the most recent and most technologically
advanced large steam power plants, the efficiencies of their machinery and equipment are very high
and we cannot expect that they can be further significantly increased [23–28]. For instance, the maximal
efficiency of boilers ranges within 92–95%, high-pressure turbines 88–94%, medium-pressure turbines
90–97%, low-pressure turbines 88–95%, electric current generators 98.5–99%, and water pumps—about
85%. This is complemented by low losses in external glands and low mechanical losses in turbine sets,
which are clearly lower than one percentage point. Therefore, the other option (i.e. increasing the
thermodynamic cycle efficiency) seems more promising.

2. Materials and Methods

The topic of the present study concerned the possibility of increasing the energy efficiency of
small turbines working at various structural configurations.

Thermodynamic analysis was applied to each technical configuration and this formed the main
methodology applied in the current research. Five configuration variants were analyzed. Figure 1
shows five different configurations of gas turbine sets:
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flow rate than the warmed up air. Thus, the temperature difference T5−T6 was lower than T3 −T2. In 
variant 5, by drawing off some air, we decreased outlet temperature T6 and reduced fuel 
consumption, as well as increasing cycle efficiency. 

3. Results 

Figure 1. Analyzed turbine set arrangements. Variant 1: turbine set operating according to the simple
open cycle; Variant 2: turbine set operating according to the open cycle with a regenerator; Variant 3:
turbine set operating according to the open cycle with a combustion chamber at the turbine exit [29–31];
Variant 4: turbine set operating according to the open cycle with an external combustion chamber at
the turbine exit and a high-temperature heat exchanger; Variant 5: turbine set operating according to
the open cycle with partial bypassing of the external combustion chamber at the turbine exit and with
a high-temperature heat exchanger.

In regenerator VII (variant 4), the exhaust gasses had a higher specific heat and a higher mass
flow rate than the warmed up air. Thus, the temperature difference T5 − T6 was lower than T3 −
T2. In variant 5, by drawing off some air, we decreased outlet temperature T6 and reduced fuel
consumption, as well as increasing cycle efficiency.
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3. Results

Generally, the efficiency of the thermodynamic cycle is given by the well-known formula: η

= 1 − Td/Tg, where Td and Tg represent the average temperatures of the hot reservoir (from which
the heat is taken) and the cold reservoir (to which it is supplied), respectively. The highest possible
temperature Tg and the lowest possible temperature Td can be reached by the use of regeneration, as
seen in Figure 2 (this figure shows the Brayton cycle [32], but the above is true for an arbitrary closed
thermodynamic cycle).
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Figure 2. Cycle with regeneration (sample case).

The key role in regeneration is played by the so-called regeneration ratio ε (sometimes also referred
to as the regenerator efficiency), which is defined as the ratio of the actual executed temperature
increase to its theoretical maximal value for the heated medium, ε = (T2′ − T2)/(T4 − T2) (Figure 2).
It is well-known that for the cycle of a gas turbine set with a regenerator, increasing the regeneration
ratio ε leads to an increase in the cycle efficiency and to a decrease in the optimal compression value.
Assuming that ε = 1, the efficiency of the ideal cycle of a gas turbine with a regenerator approaches the
Carnot cycle efficiency when the compression approaches 1. However, in practice, the regeneration
ratio has not exceeded ε= 0.8–0.85 for a long time, as increasing ε leads to an extreme increase of the
regenerator heat transfer surface, which increases proportionally to ε/(1 − ε). The next limitation was
the maximal permissible temperature for regenerator material. The heat exchangers offered by the
producers have a maximal temperature limit of approximately 700 ◦C. In recent years, there has been
changes in this area, as a result of studying the use of CO2 for cooling high-temperature gas reactors
and developing the technology for production of so-called ceramic heat exchangers. At present, the
production technology of heat exchangers operating at ε = 0.98 and at medium temperatures equal
to 900–1000 ◦C, or even exceeding 1200 ◦C in the case of ceramic heat exchangers, is considered
fully mature [33–38]. Adopting solutions of this type provides new opportunities for increasing
the efficiencies of gas turbine sets and combined systems. The possibility of using highly efficient
high-temperature heat exchangers has renewed the interest in closed gas cycles and gas turbine sets
with a combustion chamber at the turbine exit.



Sustainability 2019, 11, 554 5 of 11

4. Discussion

Within the analyzed variants, the variant that revealed the lowest efficiency (for the same assumed
turbine inlet temperature and the same individual efficiencies of turbine set components) was Variant
1 (i.e., simple open cycle). The efficiency of Variant 2 (i.e., cycle with regenerator) was higher by a few
percentage points. Even higher efficiency was reached by Variant 3, in which the air flowed to the
combustion chamber directly from the turbine exit, which corresponded to a cycle with a regenerator
of 100% efficiency, ε = 1. Variant 4 was intended for systems in which, in practice, arbitrary fuel can be
combusted. However, due to the limited temperature difference T5 − T3, its efficiency was close to
that in Variant 2. In Variant 5, part of the air leaving the turbine bypassed the combustion chamber,
which improved the efficiency and provided wider opportunities for the use of a combined system.
However, it should be noted that the heat exchange area of the regenerators in Variants 2, 4, and 5
were approximately 55–70% higher than in Variant 3.

The efficiency analysis was performed for large power turbine sets, at the assumed relatively
high efficiencies of individual elements. In particular, the assumed efficiencies of the turbine and
compressor were equal to 90%, while they were 98% for both the electric current generator and the
combustion chamber. The assumed design values and working media parameters for particular points
of the optimized cycles are shown in Tables 1 and 2, respectively.

Table 1. Assumed design parameters.

Parameter Unit Value

ηcompressor [-] 0.900

ηturbine [-] 0.900

ηmech [-] 0.980

ηleakage [-] 0.980

ηGenerator [-] 0.980

ηcomb.cham [-] 0.980

pi/pi-1 [-] 0.995 air inlet duct/filter

pi/pi-1 [-] 0.995 exhaust gases duct/filter/silencer

pi/pi-1 [-] 0.99 combustion chamber

pi/pi-1 [-] 0.99 regenerator

LHV [MJ/kg] 24

The relative efficiency values obtained for the analyzed variants after assuming the turbine inlet
temperature T3 = 900 ◦C are shown in Figure 3 with Variant 1 as the reference. They confirm the above
observations. Figure 4 shows optimal compression values for the analyzed variants. The optimum
values of compression ratio for each case were obtained as a result of the calculation of a large number
of different variants. Note that at high efficiency (ε) of heat exchangers, the compression values in the
analyzed systems were extremely low. On the one hand, this would make the turbine and compressor
structures simpler and cheaper to produce, but on the other hand would decrease the specific power
of the turbine set.

The efficiency values were heavily affected by the turbine inlet temperature and the efficiencies
of heat exchangers. For instance, decreasing the final temperature difference T5 − T2 from 50 ◦C to
10 ◦C in Variant 3 increased the efficiency by about 9.5%. The highest efficiencies were obtained for
combined gas–steam systems (see Figure 5). In those cases, exceeding 60% efficiency became possible
even when the air turbine inlet temperature was as low as T3 = 900 ◦C. Figure 6 shows a sample case of a
compressor and an air turbine cooperating in the combined power plant, with an output power of about
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55 MW. Meanwhile, Figure 7 presents the flow part of the steam turbine for this power plant. Even higher
efficiencies could be reached in combined cycles consisting of a closed gas system and a steam cycle.
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Table 2. Working media parameters in particular cycle points.

W1 W2 W3 W4 W5

Π [-] 15.50 3.20 1.85 3.00 3.10

p0 [MPa] 0.1000 0.1000 0.1000 0.1000 0.1000

p1 [MPa] 0.0995 0.0995 0.0995 0.0995 0.0995

p2 [MPa] 1.5423 0.2985 0.1841 0.2985 0.3085

p2’ [MPa] - 0.2955 - - -

p3 [MPa] 1.5268 0.2926 0.1822 0.2955 0.3054

p4 [MPa] 0.1005 0.1015 0.1015 0.1025 0.1025

p5 [MPa] 0.1000 0.1005 0.1005 0.1015 0.1015

p6 [MPa] - 0.1000 0.1000 0.1005 0.1005

p7 [MPa] - - - 0.1000 0.1000

T0 [◦C] 20 20 20 20 20

T1 [◦C] 20 20 20 20 20

T2 [◦C] 407.04 148.40 82.59 140.11 144.30

T2’ [◦C] - 633.24 - - -

T3 [◦C] 900 900 900 900 900

T4 [◦C] 381.71 643.24 737.47 624.46 617.19

T5 [◦C] 381.71 199.89 92.59 910 910

T6 [◦C] - 199.89 92.59 221.89 154.30

T7 [◦C] - - - 221.89 154.30

In those solutions, the expected efficiencies could exceed 60% (60%–65%) or even 65% at higher
air turbine inlet temperatures T3 = 1000–1200 ◦C. Note that these temperatures are lower than those
currently recorded in the most technologically advanced gas turbine sets.
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5. Conclusions

Logging and husbanding energy constitute the essential elements of sustainable development.
Laying the foundations for sustainable development relates to the energetics upon which many social
and economic processes depend. The achievement of sustainable energetics should be the object of
further investigations. As a future direction, Poland should aim to enlarge its ecological consciousness
with the implementation of sustainable energetics. The proposed creation of circulation-combined
power stations is one of the possible solutions to the problems of the Polish coal industry and
the national energy production sector. It might also bring closer wide-ranging changes in the
energetic politics.

The proposed combined power plant cycle is a solution variant for the problems faced by the
Polish coal-based energy production sector. It would create opportunities for building highly efficient
coal power plants (>60% efficiency). It would also respond to Poland’s need to meet environmental
protection requirements, as high efficiency will make CO2 capturing and storage unnecessary, while
simultaneously ensuring the high profitability of energy generation from coal.

The proposed technology is distinguished by:

• The original scheme of the thermodynamic cycle of power plant;
• The low parameters of the working medium;
• Its high efficiency, equal to about 60%–65% (or more). This means it would be possible to nearly

double the amount of electric energy generated from national coal (for a given amount of coal, as
compared to the present state of technology). In practice, this would be equivalent to decreasing
fuel consumption by half. It would also be accompanied by a smaller consumption of cooling
water (by at least 2–4 times) and smaller amounts of heat being released to the environment;

• The fuel used can be black or brown coal, resources which are plentiful in Poland. This solution
will also allow for diversification, that is, the possible use of other fuels such as oil, natural gas,
biofuels, biomass, bio gas, wooden pellets, and/or agricultural and municipal waste;

• Lower power plant construction costs, compared to, for instance, both subcritical and supercritical
steam power plants, or modern combined gas-steam systems;

• Cheaper power plant operation and maintenance. Flow parts of the compressor and turbine
would remain clean during the entire useful life of the power plant, as they would not be polluted
with exhaust and would not require repairs and cleaning as in other highly efficient solutions;

• Possibility of application in thermal and electric power plants, in cogeneration and trigeneration
systems (i.e., for the simultaneous production of electricity, heat, and useful cold);

• The absence of carbon dioxide capture and storage installation, which significantly decreases
the power plant construction costs and avoids the considerable efficiency drop related to the
operation of this installation;

• Halving of CO2 emissions, down to below 600 kgCO2/MWh (i.e., to a value which is comparable
with the CO2 emissions from present natural gas-fired power plants). Additionally, the emission
of greenhouse gases would be reduced to half that of the emissions of present coal-fired devices.
This solution would meet, with a surplus, all EU requirements (program 3×20), and would
simultaneously be a rescue for Polish coal, which could then be considered as “clean fuel”.

The proposed solutions would provide sales for Polish coal and would positively affect the energy
security of the country. An optional solution to that described in the article is a combined system
consisting of a closed CO2 cycle and steam cycle. Design calculations performed for this variant and
preliminary designs of gas and steam turbines for a 335 MW power plant confirmed the possibility of
its implementation and of reaching the “60% plus” efficiency.
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