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Abstract: CO2 mineralization is a long-term and secure solution for geological CO2 storage that
primarily depends on the CO2–brine–rock interaction during CO2 sequestration in subsurface
formations. In this study, lab experiments were conducted to investigate the CO2–brine–rock
interaction over short timescales, and numerical simulations were performed to reveal dynamic
interactions and equilibrium interactions by applying TOUGHREACT and PHREEQC, respectively.
In the experiments, the main ions of HCO3

− and Ca2+ were detected in the solution, and calcite
dissolution and dawsonite precipitation were observed from SEM images. The simulation results
showed that the CO2 dissolution and the solution pH were affected by the temperatures, pressures,
types of solutions, and solution concentrations and were further influenced by mineral dissolution
and precipitation. The results of the equilibrium simulation showed that the dissolved minerals were
albite, anhydrite, calcite, Ca-montmorillonite, illite, K-feldspar, and chlorite, and the precipitated
minerals were dolomite, kaolinite, and quartz, which led to HCO3

−, K+, and Na+ being the main ions
in solutions. The results of the dynamic simulation showed that calcite and dolomite dissolved in
the early period, while other minerals began to dissolve or precipitate after 100 years. The dissolved
minerals were mainly albite, kaolinite, K-feldspar, and chlorite, and precipitated minerals were
Ca-montmorillonite, illite, and quartz. Anhydrite and pyrite did not change during the simulation
period, and the main ions were HCO3

−, Na+, Ca2+, and Mg2+ in the simulation period. This study
provides an effective approach for analyzing the CO2–brine–rock interaction at different stages during
CO2 storage, and the results are helpful for understanding the CO2 mineralization processes in deep
saline aquifers.

Keywords: experiment; simulation; CO2–brine–rock interaction; CO2 sequestration; saline aquifer

1. Introduction

The overuse of fossil fuels in industrial production and human life has caused a continuous and
dramatic increase of greenhouse gas emissions. Controlling greenhouse gas emissions and protecting
the global climate is currently a major issue [1]. The role of CO2 as a greenhouse gas and its potential
effect on the global climate has been well-documented [2–4]. Of a variety of CO2 emission reduction
methods, CO2 sequestration in geologic formations is undoubtedly the most realistic and effective
disposal approach. The three primary candidate formation types suggested for geologic sequestration
are oil and gas reservoirs, coalbeds, and deep saline formations, which all contain aqueous phases [5–7].
Compared to other types of geologic media, sequestration of CO2 in deep saline aquifers is considered
to have the largest potential capacity because of the large pore volumes in sedimentary basins, the
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high density and solubility of CO2 in deep saline aquifers at high pressures, and the widespread global
distribution of deep saline aquifers [8–12].

There are four primary mechanisms by which CO2 can be trapped in a porous medium: structural
trapping, residual trapping, dissolution trapping, and mineral trapping [9,13,14]. Structural and
residual trapping is also called physical trapping and occurs solely upon the injection of CO2, while
mineral and solubility trapping refers to geochemical trapping and usually occurs over a longer time
period after the CO2 is injected [15]. Due to the formation of solid immobile carbonates, mineral
trapping is the safest and most permanent means of CO2 geological storage, and continues on after
solubility trapping because it depends on CO2 dissolution in brine [16]. The process of solubility and
mineral trapping essentially involves the interaction among the CO2, brine, and rock.

In recent years, researchers have conducted several studies on the CO2–brine–rock interaction
during CO2 geological storage, including lab experiments and numerical simulations. Much of
this research has focused on changes in the composition of formation waters, mineral dissolution
and precipitation, and modification of the formation porosity and permeability [1,16–26], which are
extremely important to CO2 storage safely, effectively and for a long time [27–29]. Chemical reactions
that are initiated by CO2 dissolution in formation water after CO2 injected into a reservoir result in the
modified fluid having a lower pH and higher HCO3 [30]. The aqueous solubility of CO2 is temperature-,
pressure-, and ionic strength-dependent and is generally lower at elevated temperature and salinity
and greater at elevated pressure [31–33]. The acid formed by CO2 dissolution will react with minerals,
leading to the dissolution or precipitation of minerals and the change of ion concentrations in the
water [34–36]. The reactions among CO2, brine, and rock are many and varied, depending on the
chemical composition of the fluid and the mineralogy of the rock [37]. Cui et al. [38] conducted a
CO2–brine–rock interaction experiment using sandstone and carbonate and reached the conclusion
that for sandstone, the presence of CO2 can lead to the dissolution of ankerite and clay minerals
and the precipitation of plagioclase, which can result in the increase of Ca2+ and Mg2+ in formation
water; for carbonates, CO2 can induce the dissolution of dolomite and the precipitation of ankerite and
calcite. Gysi and Stefansson [39] observed that the dissolution of basaltic glass in CO2-rich waters was
incongruent with the overall water composition and secondary mineralogy, depending on reaction
progress and pH.

However, lab experiments of the CO2–brine–rock interaction only last several months or years at
most, and in reality the geochemical reactions occur over a geologic time scales. Therefore, geochemical
modeling has been performed to assess long-term effects of CO2–brine–rock interaction during CO2

geological sequestration. PHREEQC is a general geochemical software program that can be applied to
most hydrogeochemical environments [40]. Steel et al. [16] performed geochemical modeling to get
an indication of how close the experiments were to reaching equilibrium using PHREEQC. Davila et
al. [41] calculated the saturation indexes of the injected solutions with PHREEQC. TOUGHREACT is a
numerical simulation program for chemically reactive non-isothermal flows of multiphase fluids in
porous and fractured media that has been widely used to study CO2 disposal in deep formations [42].
Zhang et al. [14] established a reactive geochemical transport model to identify the multiphase
processes, geochemical changes and mineral alteration, and CO2 trapping mechanisms after CO2

injection by applying TOUGHREACT. Tian et al. [43] focused on mineral alterations induced by the
invasion of CO2, feedback on medium properties such as porosity, and the self-sealing efficiency of the
caprock through TOUGHREACT. In addition, there are some other numerical tools for studying the
CO2–brine–rock interaction during CO2 storage in subsurface formations [20,44,45].

Though previous scholars have done a lot of research on the CO2–brine–rock interaction and
CO2 mineralizing during CO2 geological storage, simultaneous conduction of lab experiments and
numerical simulations, especially for comparing the results by different simulation methods, need to
be further studied. To further identity the interaction among CO2, water, and rock at different
stages, we designed lab experiments to reveal the interaction over short times in a high-temperature
and high-pressure reactor, and we subsequently performed numerical simulations with two types
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of software to comparatively analyze the balanced and dynamic interactions. These are also the
innovative aspects of this paper.

2. Experimental Set-Up

2.1. Experimental Materials

The rock samples used for experiments were taken from the upper layer of the Shahejie Formation,
which is located at a depth of 2780 m in a sandstone saline aquifer in the Dongying Depression, China.
More detailed information on the sandstone can be found in Liu et al. [28]. The photo of the sandstone
handsample and thin section image under 150x magnification are shown in Figure 1. X-ray diffraction
(XRD) analysis was conducted to determine the sandstone mineralogy using X’Pert Pro MPD model
(D/MAX 2500) in Research Institute of Petroleum Exploration and Development, China. The main
mineral compositions and contents of the sandstone are shown in Table 1.
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Figure 1. Photo of the sandstone handsample and thin section image observed by electron microscope.

Table 1. Mineral compositions and contents of the rock sample used in the experiments and simulations.

Mineral Chemical Formulae Mass Fraction (%) 1 Amount (mol) 2

Quartz SiO2 35.3 0.588
Calcite CaCO3 13.3 0.133

K-feldspar KAlSi3O8 7.0 0.025
Albite NaAlSi3O8 6.6 0.025

Dolomite CaMg(CO3)2 15.3 0.083
Pyrite FeS2 1.3 0.011

Anhydrite CaSO4 1.0 0.007
Ca-Montmorillonite Ca0.165Al2.33Si3.67O10(OH)2 1.9 0.005

Kaolinite Al2Si2O5(OH)4 9.3 0.036
Chlorite Mg5Al2Si3O10(OH)8 0.8 0.001

Illite K0.6Mg0.25Al2.3Si3.5O10(OH)2 8.2 0.021

Where the captions noted with ‘1’ and ‘2’ refer to the mineral amount used in dynamic simulations and in equilibrium
simulations, respectively. The values of mass fraction were analyzed by XRD and values of amount were calculated
from mass fraction, molecular weight and a total mass of 100 g.

2.2. Experimental Procedure

The experiments were conducted in a static high temperature and high pressure reactor.
A schematic diagram of the test system is shown in Figure 2. The sandstone sample was cut into slices
of 20 mm × 10 mm × 3 mm, and the slices were washed with deionized water and dried at 105 ◦C for
48 h. Then, every slice was weighed (with average mass of 1.80 g) before the experiment and loaded
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into the reactor container. NaCl solutions with different concentrations of 0.02, 0.1, and 0.5 mol/L
were prepared to represent brackish water, saltwater, and brine in different reservoirs, respectively.
The reaction solutions were purged with pure N2 gas for 10 minutes to remove atmospheric oxygen and
were then stored in the brine tank for use. In every experiment, 25 mL of NaCl solution or deionized
water was pumped into the reactor container through a liquid metering pump, with a solid–liquid ratio
of 1:14 by weight, which could provide sufficient liquid to react with sandrock slices. CO2 was injected
by a gas metering pump through the CO2 cylinder to the reactor container. The temperature was
maintained at 50 ◦C by water bath heating throughout the experiments, and pressure was controlled
at 2, 5, 8, and 10 MPa by adjusting the CO2 injection amount. During the experiment, temperature,
and pressure were monitored with a thermometer and pressure gauge. After experiment, reaction
solutions and rock slices were sampled for further analysis to evaluate the influence of the experiment
time, NaCl solution concentration, and experiment pressure on the CO2–brine–rock interaction. A set
of experiments was conducted, and the parameters of the specific batch experiments are shown in
Table 2.
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Figure 2. Schematic diagram of the CO2–brine–rock interaction test system, with numbers
corresponding to the following parts. (1) CO2 cylinder, (2) gas metering pump, (3) gas valve, (4) brine
tank, (5) liquid metering pump, (6) liquid valve, (7) reactor container, (8) gauge, (9) thermometer,
and (10) outlet.

Table 2. Parameters for the batch experiments on the CO2–brine–rock interaction.

Experiment Time (h) NaCl Solution Concentration (mol/L) Experiment Pressure (MPa)

12 0 * 2
24 0.02 5

72 * 0.1 8 *
144 0.5 10

When the value of one factor changed, the values of the other two factors were constant and equal to the values
designated with a “*”.

2.3. Analytical Methods

Concentrations of major cations (including K+, Na+, Ca2+, and Mg2+) and anions (mainly
HCO3

− and SO4
2−) in the aqueous samples were determined with inductively coupled plasma

mass spectrometry (ICP–MS) and ion chromatography (IC), respectively. Before the analysis, nitric
acid was added to stabilize the ions in the solutions.

After each experiment, the remaining sandstone sample was retrieved, rinsed repeatedly with
distilled water, dried at 50 ◦C for 24 h, and weighed. The surface morphology of the sample was
analyzed with a TESCANVEGAII-LSH tungsten filament scanning electron microscope (SEM) at
20kV in the Education Ministry Key Laboratory of Marine Reservoir Evolution and Hydrocarbon
Accumulation Mechanism, China University of Geosciences (Beijing).
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2.4. Experimental Results

2.4.1. Effect of Experiment Time on CO2–Brine–Rock Interaction

The changes of K+, Na+, Mg2+, Ca2+, and HCO3
− concentrations in the solutions at different

experiment times during the CO2–brine–rock interaction are shown in Figure 3. Low concentrations of
K+, Na+, and Mg2+ were detected in the solution, which are possibly derived from small amounts of
K-feldspar, albite, and dolomite dissolved in the sandstone. Comparatively, the concentrations of Ca2+

and HCO3
− were large and significantly increased with experiment time, and they may have been

generated from the large amount of calcite dissolution from the sandstone. Since the concentrations
of the main ions clearly changed at the experiment time of 72 h, the following experiments were
conducted for 72 h.
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2.4.2. Effect of Experimental Pressure on CO2–Brine–Rock Interaction

The changes of K+, Na+, Ca2+, Mg2+, HCO3
−, and SO4

2− concentrations in the solutions with
different experimental pressures during the CO2–brine–rock interaction are shown in Figure 4. With the
increased pressure, the concentrations of Na+ and Mg2+ increased slightly, while the concentrations of
HCO3

− and Ca2+ increased significantly, and the concentrations of K+ and SO4
2− did not change with

increasing pressure.
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Figure 4. Changes of main ion concentrations with different experimental pressures during the
CO2–brine–rock interaction with an initial NaCl concentration of 0 mol/L; experiment temperature of
50 ◦C and time of 72 h.

2.4.3. Effect of NaCl Concentration on CO2–Brine–Rock Interaction

The changes of K+, Na+, Ca2+, Mg2+, HCO3
−, and SO4

2− concentrations in the solutions with
different NaCl concentrations during the CO2–fluid–rock interaction are shown in Figure 5. When the
concentration of NaCl increased in the solution, the concentrations of K+, Ca2+, Mg2+, HCO3

−,
and SO4

2− increased slightly. However, the concentration of Na+ decreased significantly with the
increasing NaCl concentration, which indicates that some secondary mineral containing Na was
forming due to the CO2–brine–rock interaction.
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CO2–brine–rock interaction with an experiment pressure of 8 MPa, temperature of 50 ◦C, and time of
72 h.

2.4.4. Effect of CO2–Brine–Rock Interaction on Rock Minerals

To further investigate the changes in the mineral morphology during the CO2–brine–rock
interaction, the surfaces of thin sandstone slices were observed using an SEM before and after the
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reaction (Figure 6). The results showed that the calcite minerals exhibited a nice crystalline form before
the CO2–brine–rock interaction (Figure 6a,b), and the crystal surface was smooth and clean. However,
the calcite was intensely dissolved during the CO2–brine–rock interaction. As the experiment pressure
increased, the calcite corrosion strength also increased. As shown, at the pressure of 2 MPa, the calcite
dissolution was not clear (Figure 6c), while at pressures of 5 MPa and 8 MPa, the mineral surface
became loose and porous due to the further dissolution of calcite (Figure 6d,e), and at the pressure
of 10 MPa, the original morphology of the calcite was unrecognizable, leaving some holes on the
surface of sandstone (Figure 6f). The precipitation of new minerals was also observed after the reaction.
Some white slender minerals were found on the surface of the sandstone (Figure 6g–i). They were
likely dawsonite, which formed by mineral recrystallization, resulting in the large decrease of Na+ in
solution after the experiment.
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Figure 6. SEM images of sandstone samples in the experiments before and after the CO2–brine–rock
interactions. (a,b) Clean and smooth surface of calcites before the interaction, (c) unclear mineral
surface after the interaction at the pressure of 2 MPa, (d,e) loose and porous mineral surface as calcite
further dissolution at the pressure of 5 and 8 MPa, (f) holes left after most calcite dissolution, and (g–i)
white slender minerals formed on the surface of the sandstone after the interaction.
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3. Simulation Evaluation

3.1. Balanced Simulation by PHREEQC

The PHREEQC interactive model (Version 2.5, USGS, Reston, Virginia, VI, USA, 2001) was used
to analyze the balanced interactions among CO2, brine, and rock under different conditions (including
different types of solutions, NaCl concentrations, temperatures, and pressures). In the simulation,
the amount of minerals input was listed in Table 1, and the amount of water or solution input was
1.4 L, considering a solid–liquid ratio of 1:14 by weigh similar to the experiment. The results of
mineral dissolution or precipitation are shown in Figure 7. Overall, crystals of albite, anhydrite, calcite,
Ca-montmorillonite, illite, K-feldspar, and chlorite dissolved; crystals of dolomite, kaolinite, and quartz
precipitated; and pyrite changed little for its limited amount. The entire input of albite (25 mmol),
Ca-montmorillonite (5 mmol), chlorite (1 mmol), and illite (21 mmol) dissolved, and the dissolution
amount did not change with different NaCl solution concentrations, types of solutions, temperatures
and pressures. Seven millimolar anhydrite fully dissolved in pure water and NaCl solutions, but the
dissolution amount was reduced in CaCl2 and MgCl2 solutions. Only 4.37 mmol of the calcite input
dissolved in pure water and NaCl solutions, and the dissolution amount did not change with the NaCl
concentrations, temperatures, and pressures; however, the dissolution amount increased significantly
(up to 36.6 mmol) in the MgCl2 solution. In contrast, 18.8 mmol of calcite precipitated in the CaCl2
solution. In pure water, the amount of K-feldspar dissolution was clearly affected by temperature and
pressure, as it decreased with increasing temperature and increased with increasing pressure. In NaCl
solutions, the amount of K-feldspar dissolution increased slightly with increasing concentrations of
the NaCl solutions. In CaCl2 and MgCl2 solutions, the amount of K-feldspar dissolution increased
compared with the same concentration of the NaCl solution. In pure water, the precipitation amount
of kaolinite and quartz were clearly affected by temperature and pressure, decreasing with increasing
temperature and increasing with increasing pressure. In addition, the precipitation amount of kaolinite
and quartz slightly increased with the increasing concentration of the NaCl solutions, and significantly
increased in the CaCl2 and MgCl2 solutions. The precipitation amount of dolomite did not change with
different temperatures or pressures in pure water or in NaCl and CaCl2 solutions, but significantly
increased in the MgCl2 solution.
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The changes in the amount of CO2 dissolution and the pH with different temperature, pressure,
and types and concentrations of solutions are shown in Figure 8. The CO2 dissolution amount
decreased from 0.89 mol/L in pure water to 0.53 mol/L in a 2.0 mol/L NaCl solution, and the pH
varied slightly from 6.08 with pure water to 6.14 in the 2.0 mol/L NaCl solution at 50 ◦C, 8 MPa.
The CO2 dissolution amount was 0.53–0.89 mol/L, and the pH was 6.08–6.14 at 50 ◦C, 8 Mpa, with NaCl
concentrations ranging from 0–2.0 mol/L (Figure 8a). The CO2 dissolution amount was 0.70 mol/L in
the NaCl solution of 1 mol/L, which was smaller than 0.80 mol/L in the CaCl2 and MgCl2 solutions,
and the pH was 6.11 in a 1 mol/L NaCl solution, which was larger than 4.96 in the CaCl2 solution
and 4.99 in the MgCl2 solution (Figure 8b). The CO2 dissolution amount increased from 0.26 mol/L
at 2 MPa to 1.08 mol/L at 10 MPa, and the pH decreased from 6.08 at 2 MPa to 6.49 at 10 MPa in
pure water at 50 ◦C (Figure 8c). The CO2 dissolution amount enhanced from 0.64 mol/L at 30 ◦C to
1.34 mol/L at 90 ◦C, and the pH changed from 6.05 at 30 ◦C to 6.20 at 90 ◦C in pure water at 8 MPa
(Figure 8d).
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After the interaction among CO2, sandstone and water (or solution), the concentration of ions in
the liquid phase with different temperatures, pressures, and types and concentrations of solutions are
shown in Figure 9. The concentrations of HCO3

−, K+, and Na+ changed significantly in the solution
throughout the simulation by PHREEQC. Pressure and temperature mainly affected the concentrations
of HCO3

− and K+. The concentration of HCO3
− and K+ increased with increasing pressure and clearly

decreased with increasing temperature. The concentration of NaCl slightly affected the concentrations
of HCO3

−, K+, Na+, and Cl−. With increasing NaCl concentrations, the concentration of K+ and
Cl− increased, HCO3

− decreased, and Na+ decreased at first and then increased later. The types of
solutions mainly affected the concentrations of Ca2+, Mg2+, and HCO3

−. In the CaCl2 and MgCl2
solutions, the concentration of Ca2+ and Mg2+ in solution after the reaction was smaller than in the
initial solution. The concentration of HCO3

− in the NaCl solution was larger than in the CaCl2 and
MgCl2 solution.
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3.2. Dynamic Simulation by TOUGHREACT

TOUGHREACT (ECO2N module) was used to analyze the dynamic interaction among CO2,
sandstone and pure water at a pressure of 8 MPa and temperature of 50 ◦C. As shown in Figure 10,
calcite dissolved at the beginning, and the amount of calcite dissolution decreased gradually before
0.1 year, then stayed nearly constant, and finally increased after 1000 years. Dolomite dissolved
gradually after the CO2–brine–rock interaction, and the amount of dolomite dissolution remained
constant after 0.1 year. Other minerals began to dissolve or precipitate after 100 years. The dissolved
minerals were mainly albite, kaolinite, K-feldspar, and chlorite. The precipitated minerals were
Ca-montmorillonite, illite, and quartz. The content of anhydrite and pyrite did not change during the
simulation period.

The CO2 dissolution amounts and pH of the solutions during the simulation period are shown
in Figure 11. The CO2 dissolution amount was approximately 1.05 mol/L in the early simulation
period and slightly decreasing after 1000 years. The pH decreased from 7 to 4.9 immediately at the
beginning of the simulation, followed by a gradual pH increase to 5 at approximately 0.1 year, and then
it changed little until 100 years, after which the pH increased again and was up to 5.4 at the end of the
10,000 year simulation period.
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The primary ions in the solution after the interaction among CO2, sandstone and brine were
HCO3

−, Na+, Mg2+, Ca2+, SO4
2−, and K+ (as shown in Figure 12). The concentration of HCO3

− was
1.13 mol/L at the beginning of the simulation increasing gradually after 1000 years. The concentration
of Na+ was low before 100 years and increased up to 0.22 mol/L. The concentration of Mg2+ increased
from 0.05 mol/L to 0.029 mol/L before 0.3 years, then remained unchanged until 100 years, and finally
decreased in the late period of the simulation. The concentration of Ca2+ decreased from a high
concentration of 0.03 mol/L in the initial simulation to the concentration of 0.01893 mol/L at 0.3 years,
and then it decreased slightly from 1 year to 100 years, and finally decreased quickly to a low
concentration of 0.0492 mol/L at 10000 years. The concentration of SO4

2− was always 0.00184 mol/L
during the simulation period. K+ was nearly absent before 10 years, and the concentration of K+

gradually increased to 0.00267 mol/L at 2000 years and then decreased to 0.00109 mol/L at 10,000 years.
The concentrations of Fe2+ and Cl− were very low throughout the simulation period.
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4. Discussion

4.1. CO2 Dissolution and pH

The dissolution of CO2 in solution was affected by temperature, pressure, the type of solution,
and the solution salinity. CO2 dissolution increased with the rise in pressure and decreased with
increasing temperature and solute concentration. There is a negative correlation between the solution
pH and the CO2 dissolution in general. When CO2 dissolved in the solution, carbonic acid formed,
as shown in Formula (1). Then, the carbonic acid in the solution was further decomposed into hydrogen
and bicarbonate, as shown in Formula (2). Therefore, the more CO2 dissolved in the solution, the more
hydrogen ions formed, leading to the decrease of the solution pH:

CO2(aq)+H2O 
 H2CO3 (1)

H2CO3 
 H++HCO−
3 (2)

4.2. Minerals Dissolution and Precipitation

The dissolution and precipitation of minerals was mainly affected by the CO2 dissolution and
the pH. As discussed above, the CO2 dissolution amount was large and the pH was low under high
pressure and low temperature conditions, which could promote the interaction between solution and
rock. As shown in Figure 7, the amount of K-feldspar dissolution and the amount of precipitation of
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kaolinite and quartz was large under high pressure and low temperature conditions. At the same time,
the pH was larger and the amount of K-feldspar, kaolinite, and quartz dissolution or precipitation
in the NaCl solution was smaller than in MgCl2 and CaCl2 solutions. In addition, the pH decreased
slightly with increasing NaCl concentrations and the amount of K-feldspar, kaolinite, and quartz
dissolution or precipitation increased to a small extent.

The results of the dynamic simulation showed that calcite and dolomite dissolution occurred only
at the beginning of the simulation. The quick dissolution of calcite can be confirmed with the SEM
images of the sandstone, which show that calcite dissolved after the interaction of CO2, water, and rock
for 72 h, leaving some holes in the rock surface. However, the dissolution and precipitation of other
minerals occurred hundreds of years after the CO2–water–rock interaction (as shown in Figure 10a),
which was indicated by the dynamic simulations and could not be observed in a short-time lab
experiment. As shown in Figure 10b, the reaction rate of each mineral dissolution or precipitation
kept at a constant after 4000 years. The dissolution rate of annual change in volume fraction for each
mineral from high to low was albite of 4.02 × 10−7, kaolinite of 1.73 × 10−7, K-feldspar of 1.34 × 10−7,
chlorite of 8.68 × 10−8, and calcite 4.23 × 10−8, and the precipitation rate of annual change in volume
fraction for each mineral from high to low was Ca-Montmorillonite of 3.50 × 10−7, illite of 2.95 × 10−7,
and quartz of 5.84 × 10−8.

The simulation results of PHREEQC and TOUGHREACT both showed that albite, anhydrite,
calcite, K-feldspar, and chlorite dissolved, while quartz precipitated and pyrite changed little.
However, there were also some differences in the simulation results between PHREEQC and
TOUGHREACT. Ca-Montmorillonite and illite dissolved in the PHREEQC results, but precipitated
in TOUGHREACT results. Additionally, dolomite and kaolinite precipitated in PHREEQC but
dissolved in TOUGHREACT. The differences in the simulation results between PHREEQC and
TOUGHREACT can be explained by the fact that the results of PHREEQC reflect the final equilibrium
of the CO2–brine–rock interaction and the results of TOUGHREACT show the dynamic processes of
the interaction. In addition, PHREEQC has the limitations of not considering complex ion exchange
models and uncertainties in thermodynamic constants, and thus simplifies the assumptions [46,47].
These limitations may be another reason caused the differences.

4.3. Main Ions in Solution

In this experiment, Ca2+ and HCO3
− were the main ions after the interaction of CO2, brine,

and rock. Ca2+ was formed due to the dissolution of calcium-bearing minerals (as shown in Formula
(3)). As discussed above, while calcite dissolution occurred quickly and was observed in SEM images,
the dissolution of other minerals should take a long time. HCO3

− mainly came from two reactions:
one was the decomposition of H2CO3 (as shown in Formula (2)), and the other was the combination of
H− and CO3

2− coming from the dissolution of calcite (Formula (3)):

CaCO3+H− 
 Ca2++HCO−
3 (3)

With increased time of interaction among the CO2, water, and rock, the concentration of other ions
in solution changed due to the dissolution or precipitation of minerals. K+ and Na+ were produced
from the dissolution of K-feldspar and albite after hundreds of years of the interaction of CO2, water
and rock simulated by TOUGHREACT. The concentrations of K+ and Na+ reached relatively large
values when the CO2–brine–rock interaction was balanced, as simulated by PHREEQC. Mg2+ was
detected in the experiment, and the concentration of Mg2+ increased in the early period simulated by
TOUGHREACT, which may have come from the dissolution of dolomite. However, the concentration
of Mg2+ decreased in the late period simulated by TOUGHREACT, which indicates that the rate of Mg2+

consumption due to Ca-montmorillonite precipitation was larger than the rate of Mg2+ generation
because of dolomite dissolution. This is consistent with the results of PHREEQC, which showed that
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there was no Mg2+ in the solution, indicating that the precipitation of dolomite consumed all of the
Mg2+ coming from the dissolution of Ca-montmorillonite.

5. Conclusions

This paper provides a method to study the hydrogeochemical reactions among CO2, formation
water, and a sandstone reservoir at various stages during the geological storage of CO2. The lab
experiment directly investigated the characteristics of CO2–brine–rock interaction over a short
time. TOUGHREACT predicted the interaction processes at different times over a long period, and
PHREEQC forecasted the interaction of CO2–brine–rock in the final equilibrium state. The conclusions
of this paper can be summarized as follows.

The changes of ion concentrations were clear due to the CO2–brine–rock interaction in
the experiment after 72 h. The concentrations of HCO3

− and Ca2+ increased significantly.
The concentration of HCO3

− in solution was mainly increased in two ways: (i) the decomposition
of carbonic acid that was formed by CO2 dissolution, and (ii) the dissolution of calcite, which was
further shown in the SEM images of the lithic sandstone after the experiment. The increase in Ca2+

concentration was mainly caused by calcite dissolution. Moreover, the precipitation of dawsonite
possibly led to the large decrease in Na+. Because of the limited run time of the experiment, the change
in concentration of other ions and the dissolution or precipitation of other minerals was not observed.

The amount of CO2 dissolution and the solution pH was affected by the temperatures, pressures,
types of solution, and the solution concentrations in the models, which further influenced mineral
dissolution and precipitation. The simulation results of PHREEQC and TOUGHREACT both showed
that albite, anhydrite, calcite, K-feldspar, and chlorite dissolved, while quartz precipitated and pyrite
changed little. Ca-montmorillonite and illite precipitated, and dolomite and kaolinite dissolved in the
simulation period simulated by TOUGHREACT; however, Ca-montmorillonite and illite dissolved
and dolomite and kaolinite precipitated in the final equilibrium interaction simulated by PHREEQC.
In the simulation period, HCO3

−, Na+, Ca2+, and Mg2+ were the primary ions in solution because of
the CO2 dissolution and mineral dissolution and precipitation during the CO2–brine–rock interaction.
It would be helpful to further understand the CO2 mineralization process to securely store CO2 in
deep saline aquifers.
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