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Abstract: Due to anthropogenic activities within watersheds and riparian areas, stream water quality
and ecological communities have been significantly affected by degradation of watershed and stream
environments. One critical indicator of anthropogenic activities within watersheds and riparian
areas is forest fragmentation, which has been directly linked to poor water quality and ecosystem
health in streams. However, the true nature of the relationship between forest fragmentation and
stream ecosystem health has not been fully elucidated due to its complex underlying mechanism. The
purpose of this study was to examine the relationships of riparian fragmented forest with biological
indicators including diatoms, macroinvertebrates, and fish. In addition, we investigated variations in
these relationships over multiple riparian scales. Fragmentation metrics, including the number of
forest patches (NP), proportion of riparian forest (PLAND), largest riparian forest patch ratio (LPI),
and spatial proximity of riparian forest patches (DIVISION), were used to quantify the degree of
fragmentation of riparian forests, and the trophic diatom index (TDI), benthic macroinvertebrates
index (BMI), and fish assessment index (FAI) were used to represent the biological condition of
diatoms, macroinvertebrates, and fish in streams. PLAND and LPI showed positive relationships with
TDI, BMI, and FAI, whereas NP and DIVISION were negatively associated with biological indicators
at multiple scales. Biological conditions in streams were clearly better when riparian forests were less
fragmented. The relationships of NP and PLAND with biological indicators were stronger at a larger
riparian scale, whereas relationships of LPI and DIVISION with biological indicators were weaker
at a large scale. These results suggest that a much larger spatial range of riparian forests should be
considered in forest management and restoration to enhance the biological condition of streams.

Keywords: forest fragmentation; biological indicators; landscape metrics; RDA model; multi-scale
approach

1. Introduction

Land use patterns with strongly fragmented forests or no forests located in stream riparian
areas have significant negative impacts on water quality and aquatic ecological communities [1–4]
due to alteration of stream environments and sediment run-off mechanisms, pollution, and nutrient
loading [5–9]. Thus, land use within riparian areas has become a key concern for stream management
and restoration [10]. Previous research has shown that streamside forests affect aquatic ecosystems
by providing substantial amounts of energy and woody debris [11–15]. Some previous studies have
demonstrated that land use within riparian areas threatens ecosystems through fragmentation of
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forests and degradation of soil and water properties [16–19]. Therefore, it is evident that riparian
forests play an important role as corridors connecting fragmented forests and stream habitats.
Furthermore, forest fragmentation within riparian areas has been directly linked with degraded
water quality and stream ecosystem health [8,11,20–22], and spatiotemporal changes in land use,
logging, intensive forest management, and rapid economic development have played significant roles
in accelerating forest fragmentation [23–27]. Human activities in forested areas affect various stream
characteristics, such as the microclimate, local air temperature, stream water temperature, humidity,
wind speed [28,29], and concentrations of nutrients, sediments, and pollutants in streams, as well
as ecological conditions [8,11,30–36]. However, the main characteristics of the relationship between
forest fragmentation and stream ecosystems remain poorly understood, because they are associated
through complex mechanisms involving numerous other factors (e.g., climate, geology, topography,
and hydrological processes) [37–40].

Many previous studies have focused on a particular aspect of watershed forests (i.e., proportion of
forested area), and have fallen short of identifying which aspects of fragmentation have the strongest
impacts on stream biota. For example, Allan (2004) [41] showed that a greater proportion of forest cover
within a watershed was positively linked with various stream conditions. Roy et al. (2003) [42] reported
that decreased forest cover was related to degradation of biotic integrity in streams. Furthermore, Kim
et al. (2014) [43] reported that the effects of forests at large spatial scales (i.e., forest width) are more
important to fish than at small scales. Fragmentation can be characterized as a function of the patch
number within a given area, patch size, patch shape, and the spatial distribution of patches [44–46].
Specifically, forest fragmentation can be characterized as forest loss, increased edge areas, decreased
size and core area, non-contiguous splitting of large forest areas into smaller fragmented forest patches,
and increased distance between patches [47,48].

When investigating the relationships of various land uses and their spatial patterns in riparian
areas with stream organisms, identifying the optimal spatial scale is one of the most critical and
fundamental issues. In landscape ecology, scale can be defined by two factors, extent and grain
size, which vary in time and space. In cross-sectional studies, extent defines the spatial range of the
investigation, whereas grain size refers to the unit of analysis. Scale has been a central concept in
landscape ecology, as landscape structure and function are scale dependent [49,50]. Often, scientists
have preferred to use multiple spatial scales (i.e., extents) to examine relationships between land use
types and stream health, as there is no known scale of the relationship [51–53]. Allan et al. (1997) [54]
discussed how human activities at various spatial scales impact the stream environment and organisms
in streams. The extent of fragmentation is critical to understanding the relationship between forest
fragmentation and local ecological processes in streams and surrounding areas [55]. In part, this
importance is due to the extent of fragmentation negatively affecting biological integrity by increasing
the exposure of streams to light and wind and increasing stresses on aquatic ecosystems caused
by temperature fluctuations. Therefore, this work is essential to clarify the extent to which forest
fragmentation affects stream environments and organisms in streams. For example, forests hundreds
of meters away from streams are associated with the supply of coarse sediments and organic matter,
whereas shade from riparian forests can lower water temperatures [56]. Arguably, forest fragmentation
in riparian areas may have more significant impacts on stream ecosystems than in other forest types
throughout the watershed simply due to stream proximity [2,57,58]. Rich evidence indicates that
riparian forests have positive effects, including stream bank stabilization [59], decreasing nutrient
and sediment loads from riparian areas [60,61], lowering stream water temperature [62], providing
habitat [63], and enhancing biodiversity in streams [64]. Recently, Yirigui et al. (2019) [8] reported that
forest fragmentation within a 500-m buffer zone has significant negative effects on biological indicators
in streams. According to their study, fragmentation of riparian forests may lower their efficiency for
filtering and absorbing nutrients, sediments, and pollutants, resulting in poor stream water quality and
biological condition. However, the extent to which riparian fragmented forest affects the biological
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condition of streams remained unclear. Answering this question is essential for planners and managers
to make critical decisions regarding effective stream management and restoration strategies.

In this study, we investigated the relationships of forest fragmentation with biological indicators
including diatoms, macroinvertebrates, and fish over multiple riparian scales. In addition, we
examined the variation in relationships between riparian forest fragmentation and biological indicators
for streams over different spatial scales (i.e., extents). The degree of forest fragmentation in riparian
areas was assumed to impact the effectiveness of various mechanisms (e.g., filtering, absorbing, and
up-taking) of riparian forests, as well as hydrological and biochemical runoff processes [8,65–68],
resulting in degraded stream environments (e.g., high levels of pollutants, nutrients, and sediments)
and poor biological indicators [37,69–75]. Additionally, we hypothesized that the negative influence of
forest fragmentation on biological conditions in streams may vary with riparian buffer size due to the
proximity of streams.

2. Materials and Methods

2.1. Study Areas

The Korean peninsula is located between 33◦7′ and 43◦1′ N latitude, and 124◦11′ and 131◦53′ E
longitude. The area of the Korean Peninsula is 221,000 km2, and approximately 45% is within South
Korea. The Nakdong River Basin is located between 35◦03′and 37◦13′ north latitudes and between
127◦29′ and 129◦18′ east longitudes, accounting for about 25% of South Korea’s total geographical area.
The Nakdong River system, one of the major river systems in South Korea, occupies the southeastern
region and its basin area is 23,702 km2; the Nakdong is also the longest river in Korea, with a length
of 511 km [76]. The study area is composed of four major land cover types: commercial (0.2%),
agricultural (23.5%), industrial (0.5%), and forest (70.3%). Korean forests were badly degraded during
the first half of the 20th century due to watershed urbanization processes, the transition from forest to
farmland, dam building, and other processes. These land uses gradually led to increasingly serious
degradation of aquatic ecosystems. Total annual precipitation in the basin is 1200 mm, and about 60%
of the annual precipitation falls in summer (June to September). The mean depth and flow velocity of
the Nakdong River are 47.41 cm and 39.19 cm/s, respectively [43]. The Nakdong river basin has been
the focal area of investigation for relevant study areas because the river has been experiencing serious
changes in biochemical and physical conditions, such as degraded water quality, increasing algal
blooming frequency, decreased flow speed, increased water temperature, increased residence time,
and changes in species composition of diatom, macroinvertebrate, and fish in the river since Korean
government placed 8 large weirs in 2012 (https://en.wikipedia.org/wiki/FourMajor_Rivers_Project,
accessed on 13 August 2019).

2.2. Sampling Sites

In this study, biological indicators were extracted from MOE (Ministry of Environment) datasets
maintained under the National Aquatic Ecological Monitoring Program (NAEMP). NAEMP has been
used to monitor biological conditions of streams in Korea since 2007 [77]. Three assemblages (diatoms,
macroinvertebrates, and fish) were extensively surveyed in the Nakdong River system and sampled
twice annually [78,79]. We used biological indicator datasets collected in 2014 that aligned with land
use data released by MOE for this study. To compute fragmentation metrics, we selected sampling
sites with at least two riparian forest patches, resulting in 79 monitoring sites (Figure 1).

https://en.wikipedia.org/wiki/FourMajor_Rivers_Project
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Figure 1. Distribution of monitoring sites in the Nakdong River system. 

Figure 1. Distribution of monitoring sites in the Nakdong River system.
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2.3. Biological Indicators and Fragmentation Metrics

In this study, we used diatoms (trophic diatom index, TDI), macroinvertebrates (benthic
macroinvertebrates index, BMI), and fish (fish assessment index, FAI) as indicators of the biological
condition of streams in the study area. TDI is an index used for monitoring trophic condition
in freshwater ecosystems based on the percentages of benthic diatom taxa, estimating periphyton
condition in streams based on species abundance and sensitivity [53,74,80,81]. BMI describes the
condition of benthic macroinvertebrate assemblages based on changes in habitat and environmental
condition [82–84]. BMI uses a number assigned to each species, the unit saprobic value, and the
frequency as weighting indicators for the species. As part of their long-term monitoring program,
MOE developed BMI and then applied weighting factors and saprobic values to the macroinvertebrate
index [79]. Fish are especially good indicators of environmental quality [85]. The NAEMP analyzed
properties related to the ecological characteristics of Korean fish assemblages and adopted eight metrics
into the Fish Assessment Index (FAI) [86]. TDI, BMI, and FAI scores (see Table 1 for the method used
to compute scores for each index) ranged from 0 to 100 and were classified into four classes: Class A
(excellent), Class B (Good), Class C (Fair), and Class D (Poor) [79].

Table 1. Equations for computing biological indicators, from National Aquatic Ecological Monitoring
Program (NAEMP) [87].

Biological Indicators Equations

Trophic diatom index (TDI)

TDI = 100 − {(WMS × 25) − 25}
WMS: weighted mean sensitivity

WMS =
∑

Aj·Sj·
Vj∑
Aj·Vj

where, j = species
Aj = abundance (proportion) of species j in the sample (%)
Sj = pollution sensitivity (1 ≤ S ≤ 5) of species j
Vj = indicator value (1 ≤ V ≤ 3)

Benthic macroinvertebrates index (BMI)

BMI =

4−
n∑

j=1
SjHjGj/

n∑
j=1

HjGj

× 25

where, j = number assigned to species
n = number of species
Sj = unit saprobic value of species j
Hj = frequency of species j
Gj = indicators weight value of species j

Fish assessment index (FAI)

FAI = sum of 8 metrics.
Metric 1 (M1): number of Korean native species
Metric 2 (M2): number of rifle benthic species
Metric 3 (M3): number of sensitive species
Metric 4 (M4): percentage of tolerant species
Metric 5 (M5): percentage of omnivores
Metric 6 (M6): percentage of insectivores
Metric 7 (M7): the amount of collection native species
Metric 8 (M8): percentage of fish abnormalities

2.4. Multi-scale Measurements

Stream biota were not only affected by the amount of forested area but also the width (i.e., scale)
of riparian areas adjacent to streams [88,89]. Various landscape indicators are known to have differing
effects at different scales, suggesting that stream ecosystem management requires the application
of multi-scale analysis [90]. Multi-scale applications are widely employed for watershed land use
management, allowing different landscape perspectives to be assessed by applying landscape metrics
to assess fragmentation and its effects [91,92]. We utilized the buffer width required for drinking water
protection under Korean MOE regulations. Since 1999, the Korean MOE has used two buffer widths
(500 m in developed areas and 1 km in rural and semi-natural areas) to preserve riparian areas and
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protect drinking water quality [11,43]. Because most of the sampling sites used in the study were
located in rural and semi-natural areas, we used a 1-km buffer as the base riparian scale. Recently, Kim
et al. (2014) [43] studied the relationship between land use and fish by analyzing land use types within
a 5-km buffer around the river. Based on these factors, we selected two scales (1 and 5 km) and one
intermediate scale of 2 km to investigate the relationships among biological indicators.

2.5. Measuring Forest Fragmentation

The proportions of urban, paddy field, dry field, forest, grass, wetland, and bare soil were extracted
from a digital Korean land use land cover map (LULC) using ArcGIS software version 10.1. This map
was generated using Landsat Thematic Mapper (TM; 30-m resolution) and Indian Remote Sensing
(IRS)-1C pan-chromatic (5.8-m resolution) images [93]. The LULC map was categorized into forests
and non-forests in a grid format (resolution = 50 m). Riparian forest grids for each sampling site were
extracted at three riparian scales, and then the selected fragmentation metrics were computed using
FRAGSTATS 4.3, a spatial pattern metrics computing program [94]. The pattern metrics selected to
quantify the degree of forest fragmentation included the largest patch index (LPI), the number of
patches (NP), the proportion of forest (PLAND), and the division index (DI) at the class level [95–100].

Both patch area and patch density metrics are important, as they provide essential information
about fragmentation [46,96]. The simplest fragmentation metric is the number of forest patches (NP),
which describes whether the forest area is currently fragmented. PLAND quantifies the percentage of
the entire buffer that is composed of forest patches. PLAND is a fundamental measure of landscape
composition, showing the scope of the landscape that is made up of riparian forest patches. For this
study, it was important to clarify how much forest was present within the riparian areas. LPI is a
measure of dominance and is computed as the percentage of the largest forest patch over the total
buffer area. Large undivided forest areas must be considered when planning land use in streamside
areas. DIVISION represents the proportion of the riparian area composed of forest patches, and it
decreases as distance among forest patches increases. In general, the values of PLAND and LPI are
negative metrics, as higher values indicate low fragmentation. Conversely, NP and DIVISION are
positive metrics, with greater values indicating higher degrees of fragmentation (Table 2). Figure 2
illustrates differences among fragmentation metrics, including NP, PLAND, LPI, and DIVISION, with
conceptual diagrams of less and more fragmented riparian vegetation areas.

Table 2. Metrics to quantify forest fragmentation [101].

Fragmentation Characteristics Acronym Equation Remarks

Number of riparian patches NP ni

• NP ≥ 1, without limit.
• High NP value = greater

degree of fragmentation.

Proportion riparian forest PLAND
(

n∑
i=1

ai/A
)
× 100

• 0 < PLAND ≤ 100
• 0 = no riparian forests.

Largest riparian forest patch ratio LPI max
i=1

(ai )/A× (100)
• 0 < LPI ≤ 100
• 0 = greater degree

of fragmentation.

Spatial proximity of riparian forest
patches DIVISION

{
1−

n∑
i=1

(ai/A)2
}

• 0 ≤ DIVISION < 1
• 0 = a single forest patch.

n = number of forest patches, ai = size of riparian forest patch i, and A = total buffer size.
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2.6. Data Analysis

Confirmation of the normality of the observed variables was conducted using the z-score normality
test method, which resulted in Zskewness and Zkurtosis values of 3.92 for medium-sized observation
datasets (50 < # of observation < 300) [101,102]. In this test, Zskewness or Zkurtosis values exceeding 3.92
indicate that the distribution of an observed variable differs significantly from the normal distribution (p
< 0.05). Because preliminary analysis using the z-score normality test indicated that the distributions of
some of the variables used in the study were non-normal, we adopted the non-parametric Spearman’s
rho rank correlation test to account for non-normal distributions using the cor.test() function and
ggpubr package in R. Then, to visualize these correlations, we applied the base R “pairs” function
to create matrices of scatterplots. We utilized the bootstrapping resampling method to compute
confidence intervals for the estimated correlations due to the relatively small number of observations
collected over large study areas [103]. Bootstrapping was carried out using the boot package in R using
1000 resamples (for more details about the bootstrap resampling method and statistics, see [104,105]).
Bootstrap techniques have been used in related fields, such as hydrologic processes (e.g., [106]), material
transport (e.g., [107,108]) and water quality (e.g., [109–111]). The significance of bootstrap correlation
coefficients between biological indicators and fragmentation metrics at various scales was tested using
the Z-value method [112]. Redundancy analysis (RDA) was conducted to evaluate the relationships
of TDI, BMI, and FAI with fragmentation metrics using the vegan, ggplot2, and ggrepel R packages.
Redundancy analysis (RDA) is a method combining regression and principal component analysis
(PCA). RDA is a direct gradient analysis method for evaluating linear relationships between multiple
dependent and independent variables. RDA complements hierarchical partitioning by allowing for
exploration of associations among all response and explanatory variables [113–115].

3. Results

3.1. Descriptive Statistics of Biological Indicators

NAEMP defines poor values as 0 ≤ TDI < 30, 0 ≤ BMI < 45, and 0 ≤ FAI < 25. The study area
exhibited minimum TDI, BMI, and FAI values of 7.80, 13.70, and 12.50, respectively. This result means
that some sampling sites have very poor biological conditions. Meanwhile, NAEMP defines excellent
values as 60 ≤ TDI ≤ 100, 80 ≤ BMI ≤ 100, and 87.5 ≤ FAI < 100. The corresponding maximum values of
the biological indicators were 76.30, 91.90, and 90.70, respectively. Descriptive statistics of the biological
indicators suggest that the biological condition of Nakdong River varies among sites (Table 3). Most TDI
values were distributed around the mean values. The patterns of TDI and FAI showed similar symmetric
phenomena, suggesting that diatoms and fish were more frequently at the fair level than at the good
level (45 ≤ TDI < 60, 25 ≤ FAI < 56.2) or poor level (0 ≤ TDI < 30, 0 ≤ FAI < 25). Poor values of TDI and
FAI were observed at the majority of sampling sites. BMI showed a relatively normal distribution, and
the maximum and minimum values of the biological indicators showed that biological conditions are
generally not good. The z-scores of skewness and kurtosis [101,102] indicated normal distributions for the
observed biological indicators, despite the asymmetric distribution of BMI (Table 3).
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Table 3. Descriptive statistics of stream biological indicators.

Biological Indicators Min. Max. Mean ± S.D.
Z-Score Normality Test 1)

Zskewness Zkurtosis

TDI 7.80 76.30 46.22 ± 15.95 −1.17 −0.27
BMI 13.70 91.90 68.21 ± 16.7 −3.54 * 1.23
FAI 12.50 90.70 50.52 ± 18.99 0.90 1.23

n = 79. S.D. = Standard Deviation. * p < 0.05. 1) p < 0.05, if Zskewness or Zkurtosis > 3.26.

3.2. Descriptive Statistics of Forest Fragmentation Metrics at Multiple Scales

Table 4 provides a descriptive statistical summary of forest landscape condition at spatial scales of
1 km, 2 km, and 5 km. Mean values of the forest metrics showed consistent increases with increasing
scale. For example, NP values for spatial scales of 1 km, 2 km, and 5 km are 7.92, 21.25, and 89.27,
respectively, whereas PLAND values are 32.82, 43, and 53.57, respectively. However, the mean values
of DIVISION (0.93, 0.91, and 0.91, respectively) and LPI (19.08 21.04, and 21.18, respectively) showed
no notable differences among these three spatial scales. Meanwhile, the maximum values of NP
(30, 67, and 272, respectively), PLAND (81.87, 88.78, and 89.45, respectively), and LPI (81.75, 87.49,
and 85.24, respectively) indicate the very weak relationship between the mean value and maximum
value of each scale. The DIVISION index is near 1, confirming extensive forest fragmentation in the
study area. Meanwhile, the correlation of larger scales with a greater number of patches confirmed
that larger forests exhibit more forest fragmentation. PLAND is made up of numerous forest area
characteristics for the indicated fragmentation condition. Increasing patch numbers also supported a
higher degree of fragmentation in the forest pattern. The decrease of LPI revealed a similar tendency.
Thus, deforestation was likely responsible for the increase in forest fragmentation. High values of LPI
suggest that the region is less fragmented [12,46]. These results revealed growing forest fragmentation
in the Nakdong River watershed. The z-scores of skewness and kurtosis of the observed fragmentation
metrics showed that the distribution of PLAND followed a normal distribution at all scales, whereas
the distributions of NP, LPI, and DIVISION were inconsistent among scales. In particular, the relatively
high Zskewness and Zkurtosis values of DIVISION indicated high asymmetry and strongly peaked shapes
at scales of 2 km and 5 km (Table 4). The non-normal distributions of some of fragmentation metrics
suggested that conventional parametric statistics might not be suitable for this study.

Table 4. Descriptive statistics of forest fragmentation metrics at three spatial scales.

Scale Biological Indicators Min. Max. Mean ± S.D.
Z-Score Normality Test 1)

Zskewness Zkurtosis

1 km scale

NP 2 30 7.92 ± 5.07 5.99 * 7.96 *
PLAND 1.27 81.87 32.82 ± 20.47 2.08 −0.84

LAI 0.58 81.75 19.08 ± 13.77 5.56 * 8.20 *
DIVISION 0.33 1 0.93 ± 0.1 5.56 * 1.74

2 km scale

NP 2 67 21.25 ± 12.45 4.61 * 4.03 *
PLAND 4.01 88.78 43 ± 10.92 0.73 * −0.98

LAI 0.65 87.49 21.04 ± 14.61 7.55 * 1.70
DIVISION 0.23 1 0.91 ± 0.12 −12.54 * 27.88 *

5 km scale

NP 9 272 89.27 ± 62.75 1.16 4.20 *
PLAND 9.16 89.45 53.57 ± 16.22 0.41 −0.34

LPI 1.87 85.24 21.18 ± 14.66 3.45 * 8.97 *
DIVISION 0.27 1 0.91 ± 0.11 −11.47 * 23.62 *

n = 79. S.D. = Standard Deviation. * p < 0.05. 1) p < 0.05, if Zsknewness or Zkurtosis > 3.26.
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3.3. Correlations between Biological Indicators and Fragmentation Metrics

Table 5 compares the relationships between biological indicators and forest fragmentation metrics
at multiple scales. PLAND showed significant relationships with all biological indicators at all scales.
Specifically, PLAND was positively correlated with TDI (r = 0.35), BMI (r = 0.40), and FAI (r = 0.43)
at the 1-km riparian scale. These positive relationships of PLAND with biological indicators were
consistent at 2-km and 5-km riparian scales. PLAND also showed positive relationships with TDI
(r = 0.42, r = 0. 40), BMI (r = 0.42, r = 0.46) and FAI (r = 0.44, r = 0.44) at 2-km and 5-km riparian scales,
respectively. Similarly, LPI showed positive correlations with TDI at 1-km (r = 0.33), 2-km (r = 0.31),
and 5-km (r = 0.24) scales. We observed similar relationships between LPI and BMI at multiple scales.
LPI was positively associated with BMI at 1-km (r = 0.37), 2-km (r = 0.38), and 5-km (r = 0.36) riparian
scales, which was consistent with FAI at scales of 1 km (r = 0.40), 2 km (r = 0.37) and 5 km (r = 0.25).
DIVISION, a negative measure of fragmentation, was significantly negatively correlated with TDI at
1-km, 2-km, and 5-km scales (r = −0.34, r = −0.35, and r = −0.29, respectively). However, DIVISION
showed significant negative relationships with BMI at all riparian scales (r = −0.38, r = −0.39 and
r = −0.36, respectively). Similarly, DIVISION was negatively correlated with FAI at the 1-km (r =

−0.41), 2-km (r = −0.39) and 5-km (r = −0.32) scales. We also observed high variance in the confidence
intervals (CI) of correlations between biological indicators and fragmentation metrics at multiple scales
(Table 5). The highest upper limit of the correlation between TDI and NP was −0.5 at the 5-km scale.
Similarly, the highest upper limit of the correlation between TDI and PLAND was 0.56 at the 2-km
and 5-km scales. The highest correlation coefficient between TDI and LPI was observed at the 1-km
scale (r = 0.5), and the strongest negative correlation between TDI and DIVISION was −0.45 at the
1-km scale. The correlations between BMI and NP showed relatively small CIs between the upper
limit and lower limit compared to correlations of BMI with PLAND, LPI, or DIVISION. The highest
correlation coefficients of BMI with PLAND and LPI with a 95% confidence interval were 0.56 (5-km
scale) and 0.49 (2-km scale), respectively. Similarly, the strongest negative correlation between BMI
and DIVISION was −0.47 at the 2-km scale. The upper limits of the correlations of FAI with PLAND
and LPI were 0.59 (2- and 5-km scales) and 0.54 (1-km scale), respectively. The strongest negative
correlation between FAI and DIVISION was observed at the 1-km scale (r = −0.48). A matrix of scatter
plots for pairwise connections of all biological indicators and forest fragmentation metrics showed
multicollinearity among variables, as shown in Figure 3 (1-km scale), Figure 4 (2-km scale) and Figure 5
(5-km scale) at the three scales analyzed. The shape and stretch of the correlations among variables
indicated strong correlations (except for NP and three biological indicators, which appeared to be
weakly correlated).

Table 5. Correlation coefficients and confidence intervals of correlations between biological indicators
and forest fragmentation metrics at multiple scales.

TDI

Fragmentation
Metrics

1 km Scale 2 km Scale 5 km Scale

Correlation Confidence
Interval 1) Correlation Confidence

Interval 1) Correlation Confidence
Interval 1)

NP 0.00 (−0.22, 0.18) −0.02 (−0.24, 0.15) −0.27 * (−0.50,
−0.08)

PLAND 0.35 ** (0.14, 0.54) 0.42 ** (0.15, 0.56) 0.40 ** (0.17, 0.56)
LPI 0.33 ** (0.13, 0.50) 0.31 ** (0.02, 0.43) 0.24 ** (0.04, 0.40)

DIVISION −0.34 ** (−0.45,
−0.13) −0.35 ** (−0.43,

−0.08,) −0.29 ** (−0.42,
−0.11,)
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Table 5. Cont.

BMI

Fragmentation
Metrics

1 km Scale 2 km Scale 5 km Scale

Correlation Confidence
Interval 1) Correlation Confidence

Interval 1) Correlation Confidence
Interval 1)

NP 0.00 (−0.28, 0.19) −0.04 (−0.14, 0.23) −0.23 *. (−0.36, 0.12)
PLAND 0.40 ** (0.13, 0.51) 0.42 ** (0.17, 0.53) 0.46 ** (0.21, 0.56)

LPI 0.38 ** (0.09, 0.47) 0.38 ** (0.14, 0.49) 0.36 ** (−0.03, 0.46)

DIVISION −0.38 ** (−0.45.
−0.14) −0.39 ** (−0.47,

−0.13) −0.36 ** (−0.44, 0.02)

FAI

Fragmentation
Metrics

1 km Scale 2 km Scale 5 km Scale

Correlation Confidence
Interval 1) Correlation Confidence

Interval 1) Correlation Confidence
Interval 1)

NP 0.04 (−0.12, 0.29) −0.02 (−0.18, 0.23) −0.20 * (−0.37, 0.00)
PLAND 0.43 ** (0.29, 0.56) 0.44 ** (0.25, 0.59) 0.44 ** (0.26, 0.59)

LPI 0.40 ** (0.15, 0.54) 0.37 ** (0.13, 0.49) 0.25 ** (0.07, 0.41)

DIVISION −0.41 ** (−0.48,
−0.08) −0.39 ** (−0.47,

−0.10) −0.32 ** (−0.43,
−0.08)

Boot resamples = 1000. * p < 0.05, ** p < 0.01. 1) Confidence level of correlation = 95%.
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3.4. Variation of the Relationships over Multiplc Riparian Scales

Correlations of fragmentation metrics of riparian forests with TDI (Figure 6), BMI (Figure 7), and
FAI (Figure 8) revealed considerable variations in these relationships over different riparian scales.
In particular, the correlation coefficients of NP with TDI were not significant at small (i.e., 1 km)
and intermediate (i.e., 2 km) riparian scales, and no considerable difference was observed between
correlations at small and intermediate scales. However, the correlation between NP and TDI became
significant (r = −0.27) and strong at a large scale (i.e., 5 km). The CI upper and lower limits for
bootstrap correlations between NP and TDI decreased significantly and in parallel, suggesting that the
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overall relationship between NP of riparian forest and TDI was likely stronger at a large scale than at
small or intermediate scales. The relationships between PLAND and TDI at different scales showed
an interesting pattern. Bootstrapped mean correlations over multiple scales fluctuated, whereas the
upper and lower limits of the CI increased slightly as the observation scale increased. In contrast, the
relationships between LPI and TDI, as well as the upper limits of their CIs, decreased as the observation
scale increased. Thus, LPI and TDI were presumably more strongly related at a small scale than at
intermediate and large riparian scales. The bootstrap mean correlation and the upper and lower limits
of the CI for TDI-DIVISION were inconsistent. The mean correlation between TDI and DIVISION
increased at the 5-km scale, whereas the upper limit of CI decreased at that scale.
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at different scales. Continuous lines represent the mean bootstrap correlations and dashed lines are the
upper and lower limits of the confidence interval (95% level).

The bootstrap mean correlation and upper and lower CI limits of the relationship between NP
and BMI showed somewhat complex behavior (Figure 7). The mean correlations between NP and BMI
were not significant at small and intermediate scales, and the relationship decreased considerably at
large scales. Meanwhile, the upper limit of CI weakened, while the lower limit of CI strengthened
considerably (r = −0.36). Thus, the relationships between NP and BMI at small and intermediate scales
were negligible, and these factors had a much stronger negative relationship at the large scale (i.e.,
5-km scale). The mean correlations and upper and lower CI limits of the relationships between PLAND
and BMI clearly showed that the relationship strengthened as the scale increased. The variance in
the relationships of LPI with BMI at small and intermediate scales was minimal. Interestingly, the
lower CI limit calculated at the immediate scale (r = 0.14) decreased considerably at the large scale
(r = −0.03), whereas the mean correlation and the upper CI limit showed no considerable changes
between the intermediate and large scales. These inconsistent variances of the mean and CI limits of
the relationships between LPI and BMI among scales suggested that no considerable changes occurred
in these relationships among the riparian scales tested. The relationship between DIVISION and
BMI was generally the opposite of that between LPI and BMI. The mean correlation and lower CI
limit weakened slightly as riparian scale increased. Meanwhile, the upper CI limit of the relationship
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between DIVISION and BMI at the intermediate scale (r = −0.13) changed radically, becoming a
positive relationship (r = 0.02).Sustainability 2019, 11, 5060 14 of 25 
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The observed relationships between NP and FAI decreased as observation scales increased
(Figure 8). The bootstrap mean correlation was not significant at the small (r = 0.04) or intermediate (r
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= −0.02) scales (Table 5), but the relationship was much stronger at large scale. This tendency was also
observed with the upper and lower CI limits of this relationship between the intermediate and large
scales. Thus, the negative relationship between NP and FAI was likely stronger at large scales (i.e., 5
km) than at small (i.e., 1 km) or intermediate scales (i.e., 2 km). The bootstrap mean correlation and
the upper and lower CI limits of the FAI-PLAND relationship increased slightly but consistently as
riparian scale increased. In contrast, the relationship between LPI and FAI consistently decreased as
riparian scale increased. Thus, the relationship between LPI and FAI was stronger at the small scale
than at intermediate or large riparian scales. The bootstrap mean correlations and upper and lower
CI limits of the relationships between DIVISION and FAI showed slight but consistent decreases as
riparian scale increased.

Significance test using Z-score indicated that there were significant differences among correlations
between fragmentation metrics and biological indicators over scales (Table 6). In specific, the correlation
between TDI and NP at large scale (i.e., 5 km) was significantly different from those small (i.e., 1 km)
and (i.e., 2 km) scales. However, a significant difference in correlations was not observed between
small and intermediate scales. The correlation of TDI with PLAND at small scale was significantly
different from the correlation at the intermediate scale. Similarly, the correlation of TDI with LPI
at intermediate scale was different from the correlation at large scale. Also, we observed that the
significant differences in correlations between TDI and DIVISION were observed between large scale
and small or intermediate scales. Similarly, the correlation between BMI and NP was at a large scale
was significantly stronger than those at small and intermediate scales. Also, the correlation between
BMI and PLAND showed a significantly stronger than the correlation at small scale. In addition, the
correlation between FAI and NP was significantly different from those at a small and intermediate
scales. Regarding the relationships between FAI and PLAND, we observed a significant difference in
the correlation between small scale and large scale. The correlations of FAI with LPI and DIVISION at
large scale was considerably weaker than those at small and intermediate scales (Table 6).

In summary, the relationships of NP with biological indicators TDI, BMI, and FAI were not
significant at small and intermediate scales, but these relationships became much stronger at large
scales. We also observed that the relationships between PLAND and biological indicators became
stronger as riparian scale increased. Meanwhile, the relationship between LPI and biological indicators
was stronger at small scales and became weaker as riparian scale increased. The strength of the negative
relationship of DIVISION with biological indicators weakened as riparian scale increased. Overall, the
relationships of NP and PLAND with biological indicators strengthened as riparian scale increased,
whereas the relationships of LPI and DIVISION with biological indicators weakened as riparian scale
increased, despite the inconsistent slopes of variances among biological indicators. Also, the variations
of the relationships between biological indicators and fragmentation metrics were not consistent over
different scales. Rather, the variations of the relationships over scales were dependent on the types of
fragmentation metrics of riparian forest, which makes it difficult to implement the findings of this
into practice.

3.5. Redundancy Analyses Variations

RDA revealed that the relationships among fragmentation metrics and biological indicators could
be better explained at larger riparian scales. Specifically, RDA showed that DIVISION and NP had
negative impacts on the biological indicators. The first two RDA axes explained all the variation in
variables at the tested scales (Figure 9). Because a multitude of forest fragmentation metrics used as
explanatory variables were correlated with stream biota, we assessed relationships between biological
indicators and other key explanatory variables using RDA at three riparian scales. At the 1-km,
2-km, and 5-km buffer scales, forest fragmentation conditions provided an indication of biological
function. RDA clearly showed that differences among the three buffer scales of forest fragmentation
metrics influenced the conditions of diatoms, macroinvertebrates, and fish in streams. The forest
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fragmentation metrics NP and DIVISION were negatively constrained at all scales, and PLAND and
LPI were positively constrained. The RDA results were found to be statistically significant (p < 0.05).

Table 6. Significance test using Z-score among correlations between biological indicators and
fragmentation metrics over different scales.

Biological
Indicators

Correlation with
Variable 1

Correlation with
Variable 2

Z-Score of Two
Correlations p Value

TDI

NP 1 km NP 2 km 0.447 0.327
NP 1 km NP 5 km 6.182 0.00 **
NP 2 km NP 5 km 5.735 0.00 **

PLAND 1 km PLAND 2 km −1.836 0.03 *
PLAND 1 km PLAND 5 km −1.3 0.09
PLAND 2 km PLAND 5 km 0.537 0.29

LPI 1 km LPI 2 km 0.498 0.30
LPI 1 km LPI 5 km −0.251 0.40
LPI 2 km LPI 5 km 1.692 0.04 *

DIVISION 1 km DIVISION 2 km 0.253 0.39
DIVISION 1 km DIVISION 5 km 14.572 0.00 **
DIVISION 2 km DIVISION 5 km −1.493 0.05

BMI

NP 1 km NP 2 km 0.894 0.18
NP 1 km NP 5 km 5.229 0.00 **
NP 2 km NP 5 km 4.335 0.00 **

PLAND 1 km PLAND 2 km −0.537 0.29
PLAND 1 km PLAND 5 km −1.645 0.05 *
PLAND 2 km PLAND 5 km −1.133 0.13

LPI 1 km LPI 2 km 0.000 0.5
LPI 1 km LPI 5 km 0.517 0.30
LPI 2 km LPI 5 km 0.517 0.30

DIVISION 1 km DIVISION 2 km 0.262 0.39
DIVISION 1 km DIVISION 5 km −0.517 0.30
DIVISION 2 km DIVISION 5 km −0.78 0.21

FAI

NP 1 km NP 2 km 1.34 0.09
NP 1 km NP 5 km 5.42 0.00 **
NP 2 km NP 5 km 4.8 0.00 **

PLAND 1 km PLAND 2 km −0.275 0.39
PLAND 1 km PLAND 5 km −1.645 0.05 *
PLAND 2 km PLAND 5 km −1.108 0.13

LPI 1 km LPI 2 km 0.786 0.21
LPI 1 km LPI 5 km 3.756 0.00 **
LPI 2 km LPI 5 km 2.97 0.00

DIVISION 1 km DIVISION 2 km −0.532 0.29
DIVISION 1 km DIVISION 5 km −2.321 0.01 **
DIVISION 2 km DIVISION 5 km −1.79 0.03 *

n = 79. * p < 0.05. ** p < 0.05
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4. Discussion

Well-preserved streamside vegetation can prevent soil erosion and nutrient release into adjoining
streams, as it stabilizes stream banks [116]. However, the effects of forest fragmentation on stream
ecosystems have scarcely been explored [22]. In this study, we explored the relationships between
riparian forest fragmentation and biological indicators, including diatom, macroinvertebrate, and
fish assemblages at multiple spatial scales. Furthermore, this study examined the variance in these
relationships over multiple riparian scales. According to the results of the study, communities of
diatoms, macroinvertebrates, and fish measured through the biological indicators of TDI, BMI, and
FAI were significantly correlated with forest fragmentation conditions calculated using the landscape
metrics of the NP, PLAND, LPI, and DIVISION indices. Specifically, TDI, BMI, and FAI were positively
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correlated with PLAND and LPI and negatively correlated with DIVISION at all riparian scales. On
the other hand, NP did not show significant relationships with any biological indicators at small (i.e.,
1 km) or intermediate (i.e., 2 km) scales. However, NP was negatively correlated with biological
indicators at large (i.e., 5 km) scales. The consistent positive relationships observed between PLAND
and all biological indicators at multiple scales suggest that biological conditions were better when
riparian forests were less fragmented at all scales. In particular, PLAND had stronger relationships
with BMI than with TDI or FAI. Based on a total class area, PLAND quantifies forest composition in
riparian areas, which is critical for understanding the variations in patch size [117,118] in riparian
areas. These results confirmed previous findings suggesting strong positive relationships between the
presence of streamside forests and biological condition [41]. These positive relationships between LPI
and biological indicators indicated that the biological condition in streams was better when a large
forest patch was present in the riparian area. Thus, all biological indicators were likely to improve
when riparian areas were dominated by a single large forest patch. LPI is a simple measure of patch
dominance in which smaller values of LPI indicate a greater degree of forest fragmentation. Previous
studies have confirmed that a landscape composition dominated by a large forest is associated with
better biological condition [98,119]. These results clearly showed that the FAI condition of streams
was closely tied to the proximity of riparian forest patches. The closer riparian forest patches were to
streams, the better the FAI condition of the streams. These results suggested that biological conditions
in streams were better when riparian areas were covered with more forested area, contained larger
forest patches, and the patches were located near riparian areas. These results confirmed the findings of
a previous study, which suggested better biological condition with less fragmentation of riparian forests
at a 500-m scale [8]. Thus, fragmentation of riparian forests was clearly negatively associated with
biological condition of streams. The biological condition of a stream was generally better if riparian
forests were less fragmented, regardless of riparian scale, in accordance with recent studies [1,3,8]. As
discussed by Yirigui et al. (2019) and others (e.g., References [1,120]), more fragmented riparian forests
may not provide the benefits of intercepting rainfall, lowering run-off speed, and increasing infiltration
into soils and uptake time by plants typical of riparian areas. The results of the present study and
previous findings emphasize the importance of forest fragmentation in riparian areas to the biological
condition of streams and suggest that stream restoration projects should consider not only the amount
of forest but also its spatial configuration in riparian areas.

Comparison of the correlations between NP and PLAND and biological indicators over multiple
scales suggested that forest fragmentation at a large scale was more strongly related to biological
indicators than at a small scale. Specifically, the conditions of diatoms, macroinvertebrates, and fish
were more susceptible to NP and PLAND over larger areas. These results were consistent with previous
studies investigating the effects of land use types and their patterns on ecological communities, which
reported that protection or restoration of smaller areas was not sufficient to maintain the ecological
integrity of streams [121,122]. Due to their location, streamside forests are critical to stream water quality
and biological condition in many ways, including stabilization of stream banks, filtering nutrients
and sediments, lowering water temperature, providing habitat, and enhancing the biodiversity of
streams [2,61–63,123,124]. However, our results suggested that the scale and spatial pattern of forested
areas might be as important for biological communities as the presence of riparian forests. Some
previous studies also reported that forests in riparian areas play significant roles in the condition of
diatoms, macroinvertebrates, and fish at both the watershed and riparian scales [125,126]. Broadly,
larger forested areas appeared to allow maintenance of biological integrity [60,127]. However, we
observed that LPI and DIVISION showed the strongest relationships with biological indicators at
small scales, differing from the relationships of NP and PLAND with biological indicators. These
results indicated that the effects of the presence of large riparian forest patches and the proximity
of riparian forest patches might be important biological indicators in riparian areas around streams.
Thus, managers and planners of river environments should consider the structure of riparian forests to
mitigate the negative effects of forest fragmentation on the biological condition of streams [128–130].
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NP did not show significant relationships with biological indicators at small (1-km) or intermediate
(2-km) scales in the present study. The insignificant relationships of NP with biological indicators at
small and intermediate scales may have occurred because NP was unable to quantify the degree of
fragmentation at the small scale [8]. NP simply measures the number of riparian forest patches within
buffer areas [95] and does not account for the degree of fragmentation or area of riparian forests at
a small spatial scale, corresponding to the variation observed in biological indicators. This finding
was confirmed by the relatively small standard deviation obtained at small and intermediate scales
compared to that at large scale (Table 4). Another aspect of the nature of NP to consider is that NP
should be high when riparian forests are severely fragmented within given buffer areas, and low when
they are not fragmented. However, NP could be small (i.e., less fragmented) when only one small
forest patch occurred within a riparian area. In this case, NP indicates that the riparian forests of
Nakdong River are fragmented, but few forests occur in riparian areas. From this perspective, NP can
be considered a conditional metric of fragmentation given the same forest area, and NP should be used
cautiously when measuring fragmentation of riparian forests and interpreting such results. To make
up for the shortcomings of NP, it is reasonable to use NP along with the mean size of riparian forest
patches [131].

5. Conclusions

In this study, we investigated the relationships between riparian forest fragmentation and biological
condition of diatoms, macroinvertebrates, and fish, and examined the variations in these relationships
over multiple scales. We observed that the proportion of riparian forest (i.e., PLAND) and the largest
riparian forest patch ratio (i.e., LPI) were positively correlated with biological condition of diatoms
(i.e., TDI), macroinvertebrates (i.e., BMI), and fish (i.e., FAI), whereas the spatial proximity of riparian
forest patches (i.e., DIVISION) showed significant negative relationships with biological indicators at
multiple scales. These relationships also varied among riparian scales. Our results indicated that NP
and PLAND were more important at large scales than at small scales, whereas LPI and DIVISION
were more closely tied to biological indicators at small scales than at large scales. Thus, biological
conditions in streams appeared better under less fragmented riparian forest conditions. Furthermore,
variation in the correlations between fragmentation metrics and biological indicators over multiple
scales revealed that the relationships of NP and PLAND with biological indicators became stronger
as the observation scale increased, whereas LPI and DIVISION showed the opposite relationship.
These results suggest that ecological communities in streams might be even more sensitive to the
fragmentation of distant forests than the fragmentation of streamside forests. For river managers and
planners, an ideal approach could involve restoring large riparian forest patches with high proximity
among riparian forest patches in near-stream zones while maintaining more forested areas in zones that
are distant from streams. These results also imply that stream corridor restoration and management
that focuses on only streamside riparian forests might be insufficient for enhancing the integrity
of stream ecosystems, despite numerous studies reporting positive effects of streamside riparian
forests. Therefore, much larger spatial ranges of riparian forests should be considered during forest
management and restoration to enhance the biological condition of streams.
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