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Abstract

:

In recent years, with the support of new information technology and national policies, cloud manufacturing (CMfg) has developed rapidly in China. About CMfg, scholars have conducted extensive and in-depth research, among which multi-objective service selection and scheduling (SSS) attracts increasing attention. Generally, the objectives of the SSS problem involve several aspects, such as time, cost, environment and quality. In order to select an optimal solution, the preference of a decision maker (DM) becomes key information. As one kind of typical preference information, objective priorities are less considered in current studies. So, in this paper, a multi-objective model is first constructed for the SSS with different objective priorities. Then, a two-phase method based on the order of priority satisfaction (TP-OPS) is designed to solve this problem. Finally, computational experiments are conducted for problems with different services and tasks/subtasks, as well as different preference information. The results show that the proposed TP-OPS method can achieve a balance between the maximum comprehensive satisfaction and satisfaction differences, which is conducive to the sustainable development of CMfg. In addition, the proposed method allows the preference information to be gradually clarified, which has the advantage of providing convenience to DM.
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1. Introduction


In recent years, information technologies have been widely used in manufacturing companies, and their impacts on the manufacturing industry become more apparent than ever before [1,2,3]. In order to promote manufacturing informationization, major manufacturing countries in the world have issued relevant policies, which provide an unprecedented opportunity for the sustainable development of the manufacturing industry. As a new manufacturing model supported by information technology, cloud manufacturing (CMfg) is rapidly developing in China [4,5]. Through CMfg platforms, manufacturing resources distributed throughout this country are integrated and packaged into various services. At the same time, a variety of manufacturing requirements are published onto the platforms by clients. These requirements are usually personalized products that need multiple services to work together [6]. Therefore, how to select and schedule these services to meet the requirements of different clients becomes an important issue.



At present, scholars have built various characteristic models for CMfg service selection and scheduling (SSS) problems [7] (or service composition [8], task scheduling [9,10] and service sharing [11,12]). Tao et.al. have done a detailed overview on the CMfg service management [13]. One common feature of these models is that multiple factors need to be considered in the objectives, for example, time [14,15,16], cost [14,15,16,17], reliability [14,15,16] and energy consumption [14,17,18,19], risk [17], service [20], trust [21], availability [22], value [23], reputation [19,24] and workload [25]. Some scholars integrate these factors into a single objective through weight values and design effective algorithms, such as the: parallel method [8], workload-based method [9], two-level method [10], cooperative method [26], chaos control optimal algorithm [16] and improved niche immune algorithm [27]. Some focus on the game theory models [11,12]. Some others pay attention to multi-objective models and algorithms; for instance, Pareto group leader algorithm [14], cloud-entropy enhanced genetic algorithm [23], hybrid artificial bee colony algorithm [18,19], adaptive multi-population differential artificial bee colony algorithm [24], modified particle swarm optimization algorithm [25] and ε-dominance multi-objective evolutionary algorithm [28].



In the above studies, novel objective functions attract more attention, and DM’s preference for different objectives is rarely considered or simply expressed as a set of weight values [8,17]. In the decision-making process, preference information is critical due to the fact that only one solution needs to be selected as the final scheme. Therefore, considering preference information in the model or algorithm becomes a new research direction, which can provide convenience for DM to choose satisfactory solutions. So, in our previous paper [29], linguistic preference is taken into account, and a two-phase method based on a desirable satisfying degree is proposed. However, in the real environment, preference information will not always be given in terms of linguistic terms; sometimes, it may be expressed as objective priorities, i.e., the order in which only after some objectives have been achieved, other can be considered. To solve multi-objective optimization problems with priorities, lexicographic optimization is widely used [30,31]. This method divides objectives into L priority levels, where L does not exceed the number of objectives. However, when there are multiple priorities, lexicographic optimization will consume a lot of computation time. Therefore, Chen and Tsai [32] put forward a principle that objectives with high priority have high satisfactions. Based on their ideas, Li and Hu [33] proposed a two-step interactive satisfactory method that decomposed the multi-objective problem into two sub-problems. However, this method is mainly used for continuous optimization problems and not suitable for direct use in discrete optimization. Therefore, this paper plans to improve their method and introduce it into SSS problems.



In this paper, we intend to study an SSS problem with different objective priorities. In particular, the following questions will be answered: (1) How to build an SSS model that takes into account different objective priorities. (2) How to control the satisfaction difference while optimizing all objectives. (3) In the decision-making process, how does DM gradually give clear preference information?



The rest of this paper is structured as follows. Section 2 gives a brief description of the problem. In Section 3, the proposed SSS model and solution method are introduced and analyzed in detail. In Section 4, computational experiments are conducted for problems with different scales and different preference information. Section 5 draws conclusions and gives directions for further research.




2. Problem Description


In this research, the CMfg platform with client-centered operating mode is taken into account, where clients’ interests become the optimization objectives. When a client’s request is submitted to the CMfg platform, it usually needs to be allocated to different service providers through three steps: task decomposition, service discovery and matching, service selection and scheduling (SSS). The abstract model of SSS in CMfg is shown in Figure 1 [14]. Suppose that within a certain decision period, there are M enterprises and N tasks on the CMfg platform. Here, we use E={E1,⋯,Ei,⋯,EM} to represent the enterprise set, and T={T1,⋯,Tj,⋯,TN} to represent the task set. Different enterprises provide different kinds of services, for example, enterprise Ei provides Hi kinds of services, so it’s service set is expressed as SEi={SEi,1,⋯,SEi,h,⋯,SEi,Hi}. Each task could be decomposed into multiple subtasks, for example, task Tj could be decomposed into Kj subtasks, so it’s subtask set is expressed as STj={STj,1,⋯,STj,k,⋯,STj,Kj}. In the SSS process, each subtask is assigned to one available service by aj,ki,h and xj,ki,h, both of which can only be 0 or 1. Firstly, the value of aj,ki,h is determined in service discovery and matching process, then treated as a known parameter in SSS process. If service SEi,h has the ability to perform subtask STj,k, then aj,ki,h=1; otherwise aj,ki,h=0. Secondly, we need to select the value of xj,ki,h in SSS process. If subtask STj,k is indeed assigned to service SEi,h, then xj,ki,h=1; otherwise xj,ki,h=0. For instance in Figure 1, a2,34,2 is used to determine whether service SE4,2 is capable of executing subtask ST2,3, and x2,34,2 is used to determine whether subtask ST2,3 is allocated to service SE4,2.



Different values of xj,ki,h represent different SSS schemes. As two important factors affecting the results of SSS, DM’s preferences and platform’s operational mode are considered in our studies. Based on these two factors, we classify the SSS problem into different types, as shown in Table 1. For each kind of preference information, we intend to consider a different operation mode. In previous work, we considered linguistic terms and system-centered mode. While in this paper, different objective priorities and client-centered mode are taken into account.



When DM believes that the objective has priority, it is not appropriate to find the Pareto solution set, because it will cost a lot. So, scholars try different methods to get an optimal solution with objective priorities. For example: Khorram and Nozari [34] considered a problem with 3 objectives, each objective function has different priority. We use fg to reperesent the gth objective function, then f1 has the first priority and f2 has the second priority. The priority relationship in their exaple could be expressed as:



Priority level 1: f1;



Priority level 2: f2;



Priority level 3: f3.



In the SSS problem, there are also some situations where some objectives are more important than others. For example, for industries with serious environmental impacts, environmental objectives are more important than cost and time objectives; for urgent tasks, time objectives are more important than cost objectives. Priority is a common type of DM’s preference. According to the objective priorities, an optimal service selection and scheduling scheme can be obtained. For the convenience of modeling, the number of priority level is expressed by the parameter L. Here, we consider a three-level priority, i.e., L=3. Then, the key becomes how to choose the most preferred solution, which optimizes multiple objectives in collaboration, while reflecting the relative importance based on priority.




3. The Multi-Objective Service Selection and Scheduling Model and Solution Methods


Based on the problem description described in the previous section, the proposed multi-objective SSS model and optimization method are presented in the following subsections.



3.1. Model Formulation


Before modeling, some important notations are shown in Table 2.



In SSS problems, some basic constraints need to be subjected to. First of all, this paper considers the case where a subtask can only be assigned to one service. Then, the constraint can be expressed as:


∑i=1M∑h=1Hixj,ki,h=1,∀j=1,⋯,N;k=1,⋯,Kj



(1)







Second, task STj,k can be assigned to service SEi,h, only if service SEi,h is able to perform subtask STj,k. This constraint can avoid illogical arrangements, and be expressed as:


xj,ki,h≤aj,ki,h,∀j=1,⋯,N;k=1,⋯,Kj



(2)







In addition, xj,ki,h is a logical variable, and could only be 0 or 1.


xj,ki,h∈{0,1},∀j=1,⋯,N;i=1,⋯,M;k=1,⋯,Kj;h=1,⋯,Hi



(3)







Different from previous studies, our objective functions are client-centered. In this mode, it is suitable to use the pay-per-use method to meet the needs of clients and improve their satisfaction. In order to promote the sustainability of CMfg, the average satisfaction of clients with the time, cost quality and environmental cost of their tasks are considered in this paper, expressed as Ut, Uc, Uq, Uec. Therefore, multiple objectives are as follows:


f1=Ut=(∑j=1Nμjt)/N



(4)






f2=Uc=(∑j=1Nμjc)/N



(5)






f3=Uq=(∑j=1Nμjq)/N



(6)






f4=Uec=(∑j=1Nμjec)/N



(7)




where, μjt, μjc, μjq, μjec are respectively the satisfaction of the client (task) j.



Satisfaction of the clients are all calculated based on the limits given by clients, shown as:


μjt={1tj≥tjmax(tj−tjmin)/(tjmax−tjmin)tjmin≤tj<tjmax0tj<tjmin



(8)






μjc={1cj≥cjmax(cj−cjmin)/(cjmax−cjmin)cjmin≤cj<cjmax0cj<cjmin



(9)






μjq={1qj≥qjmin1−(qj−qjmin)/(qjmax−qjmin)qjmin≤qj<qjmax0qj<qjmax



(10)






μjec={1ecj≥ecjmax(ecj−ecjmin)/(ecjmax−ecjmin)ecjmin≤ecj<ecjmax0ecj<ecjmin



(11)




where tjmax, tjmin, cjmax, cjmin, qjmax, qjmin, ecjmax, ecjmin are the upper and lower limits of time, cost, quality, and environmental cost given by clients. They are the upper and lower limits of time, cost, quality, and environmental cost given by the user. For example, the completion period given by client j is tjmax, and the ideal completion time is tjmin. Client j is most dissatisfied when the actual completion time tj exceeds tjmax, and most satisfied when tj is less than tjmax. Detailed calculations of tj, cj, qj and ecj, are shown in our previous paper [26].



The above objectives (4)–(7) need to be maximized, and the following equation is introduced to indicate the satisfaction of DM with each objective.


μfg={1fg≥fgmax(fg−fgmin)/(fgmax−fgmin)fgmin≤fg<fgmax0qj<qjmin



(12)




where, fgmin and fgmax are obtained directly by DM or solving each objective.



Then the objective function becomes:


max(μf1,μf2,μf3,μf4)



(13)







When DM has priority requirements for each objective, the multi-objective optimization problem is expressed as:


max[P1(f11,⋯,fN11),⋯,Pl(f1l,⋯,fNll),⋯,PL(f1L,⋯,fNLL)]



(14)




where Pl represents the set of objectives with priority l. In Equation (14), if P(fg)=l, then fg∈Pl. Pl has higher priority than Pl+1, for l=1,⋯,L.



Usually, this kind of problem is solved by lexicographic optimization. However, considering its low computation efficiency, some researchers simplified the original optimization problem. Chen and Tsai [29] proposed that objectives with high priority have high satisfactions. According to their ideas, the priority order could be expressed as:


μfg≥μfg′, ∀P(fg)<P(fg′)



(15)




where P(fg)<P(fg′) mean that the priority level of the jth objective is higher than the j’th.



Then they transformed the objective function (14) into the following problem by FGP method:


{max TS=∑g=1Gμfg μfg≥μfg′, P(fg)<P(fg′)



(16)







However, Equation (15) narrows the scope of feasible solutions and is not conducive to optimization. Therefore, in order to avoid this situation, ε is introduced to relax the comparison relationship:


μfg−μfg′≥ε,∀P(fg)<P(fg′), g,g′=1,2,⋯,G



(17)




only when ε≥0, the result meets the priority requirement.



In order to make the method more suitable for real decision making, Li and Hu [30] proposed a two-step interactive satisfactory method. We combine it with genetic algorithm and introduce into the SSS problem. GA algorithm is widely used in various types of scheduling problems and has strong applicability. While GA is not necessary, other intelligent algorithms may get better results. On the basis of previous research, we introduce the order of priority satisfaction, and propose a two-phase method based on the order of priority satisfaction (TP-OPS). In phase 1, comprehensive satisfaction λ is maximized.



Phase 1:


{max λs.t. μfg≥λ,g=1,2,⋯,G 0≤μfg≤1(1)~(3)



(18)




where, the decision variable is xj,ki,h. We define the optimal solution λ* as the maximum comprehensive satisfaction.



Phase 2:



Through Equation (17), the priorities are divided into different levels. At the same time, Δδ is introduced in the following equation.


μfg≥λ*·Δδ



(19)




where Δδ (0≤Δδ≤1) is used to relax λ*, which in turn expands the search space. Then, the model in phase 2 is built as:


{max εs.t. μfg≥λ*·Δδ,g=1,2,⋯,G μfg−μfg′≥ε,∀P(fg)<P(fg′),g,g′=1,2,⋯,N 0≤μfg≤1 (1)~(3)



(20)




where xj,ki,h and ε are the decision variables. Maximizing ε means to maximize satisfaction differences of different objectives.



To illustrate the principle of TP-OPS approach, a simple two-objective example is constructed as follows.


{max (μf1,μf2) s.t. Ax≤b



(21)







Suppose that f2 has a higher priority than f1, expressed as:



Priority level 1: f2



Priority level 2: f1



According to Equation (17), we can get that:


μf2−μf1≥ε



(22)







With this example, the priciple of TP-OPS method is shown in Figure 2. As can be seen from Figure 2a, the optimal solution found in phase 1 of maximizing λ is very close to the straight line μf1=μf2, that is, the difference of objective satisfaction is very small. If DM is not satisfied with this optimal solution, then set a new Δδ and maximize ε, as shown in Figure 2b. The optimal solution found at this time deviates from the straight line μf1=μf2 along the Pareto front. If DM still feels that the difference in satisfaction is small, then he could choose a smaller Δδ and look for a larger ε. In Figure 2c, the optimal solution is further shifted to the left and further away from the straight line μf1=μf2. By repeating ② and ③ in this figure, DM can find a final optimal solution. By objective priorities, TP-OPS does not need to preserve a complete set of Pareto solutions in the calculation process, which is helpful to improve the computational efficiency. If we deal with more objectives, this effect will be more obvious.




3.2. Optimization Method


3.2.1. Different SSS Methods


As mentioned earlier, the tasks that this paper focuses on are all complex tasks. Each complex task must be decomposed into a few simple subtasks that can be executed by existing resource services. The SSS model described in Section 3.1 considers not only DM’s priority preferences, but also the optimization of all tasks from a client-centered perspective. In order to solve the proposed model, we developed the TP-OPS method. In this subsection, the detailed steps will be introduced, while two other methods, the max–min method and the FGP method, will also be introduced for comparison. Figure 3 shows the framework of the three methods.



(1) Max–min method



The max–min method is a conservative method, taking into account the objective of lowest satisfaction. The objective of this method can be expressed by maxmin(μfg) or Equation (18). So phase 1 of TP-OPS method is also called Max–min method. However, objective priorities are not considered in this method, which results in that constraint (15) is not necessarily satisfied. We implement this method directly with GA algorithm, and the encoding rules are introduced later.



(2) FGP method



The FGP method is advantageous to consider from the whole point of view, and its objective is expressed in Equation (16). Unlike the Max–min method, this method maximizes the total satisfaction of the objectives, and makes the objective which is easy to improve the satisfaction better satisfied. In addition, DM’s preference is taken into account, and only solutions satisfying priority satisfaction are selected. Similarly, this method is also implemented by GA algorithm, except that only solutions satisfying constraint (15) would be used to compute TS value.



(3) TP-OPS method



The TP-OPS method decomposes the original problem into two sub-problems, corresponding to two phases respectively. The pseudo codes of the TP-OPS method is shown in Table 3 and Table 4.



In Phase 1, first, DM chooses a minimum λ0 as the criterion for saving the feasible solution. Then, Max–min method is performed. In particular, each chromosome that meets λKa>λ0 and μfgKa>μfg′Ka encountered during the iteration will be stored in the set S, and the corresponding satisfaction μfgKa will also be stored in the set UF. Every chromosomes in S corresponds to a feasible solution that satisfies constraint (15). If λ0 is set to a smaller value, then the more chromosomes are saved, the more storage space is occupied. Finally, phase 1 outputs the maximum comprehensive satisfaction λ*, the feasible solution set S and the corresponding satisfaction set UF.



In phase 2, first, λ*, S and UF are imputed. In addition, DM chooses the criterion of satisfaction difference εs, and change amount H of Δδ in each iteration. Secondly, all individuals satisfying μfgKc>λ*⋅Δδ are selected from S to calculate their εKc. When ε>εs, the difference in satisfaction of different priority targets reaches the set value, and we believe that we have found a satisfactory solution approved by the decision maker. If ε<εs, then Δδ is reduced by H, expanding the searched space until a satisfactory solution is found ε*>εs or the maximum number of iterations is reached Nc>Ncmax. Finally, Phase 2 outputs the satisfaction difference ε* and the corresponding chromosome Ch*.




3.2.2. The GA Algorithm


All three methods are based on a GA algorithm, and multi-layer integer coding rules are adopted to encode chromosomes. When the total number of tasks is N and the number of subtasks of task Tj is Kj, the length of individual is 2∑j=1NKj. Among them, the first half of the chromosome represents the service order of all tasks in the enterprise, and the second half represents the enterprise services matched by each subtask. For example:


[1334221423142563]



(23)







This individual (23) expresses a service order of 4 tasks on 3 enterprises, where each task has 2 subtasks and each enterprise has 2 services. In individual (23), the first 8 bits indicate the order of the task, which is task 1-3-3-4-2-2-1-4; Bits 9 to 16 represent the services, which is 2-3-1-4-2-5-6-3. For easy representation in figures, we also use 302 to represent ST3,2, and the same is true for other subtasks. Then the order 1-3-3-4-2-2-1-4 indicates that the sequence of task execution is 101-301-302-401-201-202-102-402, shown in Figure 4.



For the Max–min method and phase 1 of TP-OPS method, the fitness is:


fitness(Ka)=λKa=maxmin(μfgKa)



(24)




where λKa and μfgKa are respectively λ and μfg for individual Ka.



For the FGP method, the fitness is:


fitness(Ka)=TSKa=∑g=1GμfgKa



(25)




where TSKa and μfgKa are, respectively, TS and μfg for individual Ka.



Roulette is used to select chromosomes with better fitness. The probability that an individual is selected is:


Fit(Ka)=1/fitness(Ka)



(26)






pi(Ka)=Fit(Ka)/∑i=1nFit(Ka)



(27)




where pi(Ka) indicates the probability that individual Ka is selected in each selection and Fit(Ka) is used to simplify expressions of Equation (27).



The integer crossover method is used for crossover operations. First, two chromosomes are randomly selected from the population, and the first ∑j=1NKj bits of each chromosome are taken out, and then the intersection positions are randomly selected. After the crossover, the subtasks of some tasks are redundant or missing. Therefore, it is necessary to adjust the redundant subtasks to the missing subtasks and adjust the corresponding services. The crossover operation is shown in Figure 5.



The mutation operator first randomly selects an individual from the population, then randomly selects two mutation bits, and finally exchanges the two subtasks and the corresponding service numbers in the individual. If the modified chromosome does not meet the requirements, adjustments are performed on it. The mutation operation is shown in Figure 6.






4. Computational Experiments and Results


In this section, a small-scale example is first used to illustrate the effect of the proposed method. Then a number of computational experiments with problems of various sizes are designed to demonstrate its effectiveness and efficiency. At last, performance stability of the proposed method is tested.



4.1. A Small-Scale Example


A small-scale SSS problem on a client-centered CMfg platform is built as an example. In this example, we considered 3 enterprises on the platform, each offering two types of services for clients to choose from. At the same time, 4 tasks are accepted, and each task is decomposed into four subtasks that are executed in sequence. The detail parameters of this example are shown in Table 5 and Table 6. Table 5 presents the information about tasks and services, such as: alternative services, time, cost, quality, environmental cost and weight of product. For example, the subtask 3 of task 3 could be executed on service SE2,2, SE3,1, SE3,2. If subtask ST3,3 is assigned to service SE2,2, then st3,32,2=1, sc3,32,2=47, q3,32,2=0.26, ec3,32,2=7, we3,32,2=27. The measurement unit of time is days, and the unit of cost is US dollar.



The distance between enterprises is shown in Table 6. For example, d2,3=190. The logistics time parameter α=0.08, the logistics cost parameter β=0.005. The measure ment unit for distande is kilometer.



DM considers the four objectives shown in Equations (4)–(7) and each objective has different priority. The priority order of the four objectives is 3-1-2-2, which means that:



Priority level 1: f2,



Priority level 2: f3 and f4,



Priority level 3: f1.



According to Equation (15), the priority relationship can be expressed as


μf2≥(μf3, μf4)≥μf1



(28)







To verify the effectiveness of the TP-OPS method, two other methods (the max–min method and the FGP method) are adopted for comparison. Then, this example is solved by three methods. In the TP-OPS method, Δδ in Equation (20) is set as 0.9. The max–min method is actually the phase 1 in the TP-OPS method, see Equation (18). The FGP method is to solve Equation (16). In particular, ε is not considered in the max–min method and the FGP method. In order to make a comparative analysis, the optimal μfg obtained by these two methods is introduced into Equation (29) to obtain the corresponding ε, which is then compared with the result of the TP-OPS method.


{max ε μfg−μfg′≥γ,∀P(fg)<P(fg′), g,g′=1,2,⋯,G



(29)







Figure 7 is the Gantt chart of the results for this example found by the three methods. It can be observed that the completion time found by three methods is different. Different methods get different solutions mainly for two reasons. First, FPG method and TP-OPS method consider objective priorities, while max–min method does not. Second, the selection criteria of the optimal solutions of the three methods are different. In this example, the objective about time f1 is the least important. The max–min method does not take into account the different priorities of the objectives, so the corresponding completion time is shorter than the TP-OPS method and the FGP method. Therefore, compared with max–min method, the solutions obtained by FGP method and TP-OPS method can better ensure that important objectives are preferentially satisfied.



In addition, satisfaction μfg, priority variable ε and total satisfaction TS=∑g=1Gμfg of the above three schemes were calculated separately and shown in Figure 8. From this figure, we can see ε=−0.054<0 in (a), which means that the satisfactions does not meet priority order 3-1-2-2, and TS=2.641 in (a) is the largest of all methods. In Equation (16), the objective function of the FGP method is to maximize TS. However due to the priority requirement, TS=2.469 in (c) is less than TS=2.641 in (a). Compared with (a) and (c), ε=0.032 in (b) achieves the maximization of differences in satisfaction between objectives with different priority. Therefore, the results of both TP-OPS method and FGP method can satisfy the priority constraint, but the max–min method could not. In addition, in the case of fixed Δδ=0.9, TP-OPS method can obtain ε larger than FGP method. If iterated, TP-OPS method may also achieve a larger ε. When DM wants ε to be larger, then TP-OPS method will be more suitable.



In the above result of the TP-OPS method, Δδ=0.9. By gradually reducing Δδ, different results are obtained by the TP-OPS method and shown in Table 7. It can be found that as Δδ becomes smaller, ε gradually increases, which indicates that the difference in satisfaction between objectives with different priorities is becoming more and more obvious.



When DM considers different priority orders, the satisfactions will also be different. The results found by the TP-OPS method with six different sets of priority orders are shown in Table 8. It can be found that with the change of preference, satisfaction also changes.



From this example, it can be seen that the TP-OPS method has higher flexibility compared to the other two methods. It is still necessary to investigate the performance of problems of different scales; a more detailed analysis is provided in the next section.




4.2. Computational Experiments


4.2.1. Data Generation


The number of services, tasks, and subtasks are selected from three sets, namely {9,12,15}, {6,11,16} and {8,13,18}. Then 33=27 combinations of problem sizes could be generated, and we chose 9 of them for the experiment, i.e., 9s6t8st, 9s11t13st, 9s16t18st, 12s6t8st, 12s11t13st, 12s16t13st, 15s11t8st, 15s11t13st, 15s16t18st. For each of these combinations, one set of data is randomly generated, in which each parameter is uniform distributed. Their range is shown in Table 9. These parameters represent service time (st), service cost (sc), service quality (q), environmental cost (ec), weight of product (we), distance between enterprises (di,i′) and priority level of objectives (P(fg)) in turn.




4.2.2. Define GA in Full Term


In this study, we selected 50 individuals per generation, performed 100 iterations with a crossover probability of 0.8 and a mutation probability of 0.1, which has been used in our previous research on SSS problem. For each selected question, statistical results for ten runs were obtained and shown in the following subsection for each method. For the TP-OPS method, two cases (Δδ=0.9 and Δδ=0.7) are considered to preliminarily observe the effect of Δδ on results. All algorithms are implemented in Matlab software.




4.2.3. Test Results


The following performance indicators are considered:



μmin=min(μ(fg))(g=1,2,⋯,G): the minimum satisfaction of all objectives, representing the optimization of the least important objectives. The mean and standard deviation of μmin for 10 runs are denoted as μmin¯ and Sμmin.



ε: priority variable, which means the difference in satisfaction between objectives with different priority. The mean and standard deviation of ε for 10 runs is denoted as ε¯ and Sε.



TS=∑g=1Gufg: total satisfaction, which means the optimization of all objectives. The mean and standard deviation of TS for ten runs is denoted as TS¯ and STS.



NFS: the number of times that a feasible solution satisfying priority constraints is found in 10 runs. For example, If the optimal solution found by the max–min method satisfies constraint (15) in a certain run, then NFS=NFS+1, otherwise, it is not included in NFS. Similarly, if ε>0, it also means that constraint (15) is satisfied and counted in NFS.



NFS for 10 runs obtained by different methods are shown in Table 10. For the max–min method, the optimal solution can only satisfy priority constraint (15) by a small random probability, so most ε obtained by Equation (29) is less than 0. For the TP-OPS method, when Δδ=0.9, the search space is not large enough, resulting in NFS<10. When Δδ=0.7, feasible solutions are found for each run, and NFS=10. For the FGP method, feasible solutions are found for each run and each combination. Therefore, both TP-OPS method and FGP method can meet the requirements in finding feasible solutions satisfying priority constraints. But TP-OPS method may need to reduce Δδ in phase 2, for example Δδ changes from 0.9 to 0.7 in Table 10. It needs to be noted that statistical results refer to the feasible solutions counted in NFS.



The mean and standard deviation of μmin for 10 runs obtained by three method are summarized in Table 11. It can be seen from the table that for any combination, μmin¯ of TP-OPS method is less than that of the max–min method. The objectives of the max–min method and phase 1 of TP-OPS method are both to maximize μmin, so μmin¯ of the max–min method is the limit value of TP-OPS method. For the FGP method, μmin¯ is smaller than that of the max–min method, but this gap seems to remain within a certain level, because too small μmin is not conducive to maximize TS.



Table 12 shows the results of ε¯ and Sε for the three methods, in which “-” means all ε<0. It can be seen that for different combinations, ε¯ of the max–min method is the smallest due to the neglect of priority. For the TP-OPS method, the limitation of search space leads to smaller ε¯ when Δδ=0.9. By adjusting Δδ to 0.7, the broader search space also makes ε¯ larger. For the FGP method, ε¯ is sometimes larger than TP-OPS Δδ=0.7 (such as: combination 9s11t13st), and sometimes smaller than TP-OPS Δδ=0.9 (such as: combination 9s6t8st). This instability is not conducive to DM’s judgment on the appropriateness of the current result.



In terms of TS, the FGP method has an advantage because its objective function is to maximize TS. For three methods, TS¯ and STS are summarized in Table 13. It can be seen from this table that for most combinations, TS¯ of FGP method is still the largest of the three methods, although an exception has occurred for combination 12s6t8st. This phenomenon that TS of FPG method is smaller than the max–min method in some individual case (which can also be seen in Figure 8) is mainly due to the influence of the constraint (15). Both TP-OPS method and the max–min method focus on maximizing μmin without paying attention to the highest priority objective, so it is not easy to make individual satisfaction particularly high like FGP method shown in Figure 3c. In addition, compared to the max–min method, TP-OPS method performs the optimization of phase 2 according to Equation (20), which further affects TS¯.



Figure 9 shows the mean CPU time for 10 runs obtained by different methods. It can be seen that the CPU time of three methods is affected by the scale of the problem. The larger the scale, the more time it takes. Here, tp20.7 and tp20.9 indicate the time consumed by phase 2 when Δδ=0.7 and Δδ=0.9 respectively. Then it can be seen from Figure 9 that in all combinations, tp20.7 and tp20.9 both are much smaller than the time of the max–min method.



The effects of Δδ on results is tested on a selected data set, i.e., 12t11s18st. For each different Δδ from 0.95 to 0.7, TP-OPS method runs 10 times. Table 14 shows the mean of performance indicators found with different Δδ. As can be seen from this table that as Δδ becomes smaller, the satisfactions of high priority objectives (uf2 and uf4) tend to increase, while the satisfaction of low priority objective (uf3) gradually decreases. This leads to the gradual increase of ε. However, with the change of Δδ, TS has no obvious change trend and is relatively stable in a certain range. In addition, the smaller the Δδ, the larger the NFS.



The effects of P(fg) on results is also tested on the selected data set (i.e., 12t11s18st), and six priority orders are considered. For each priority order, TP-OPS method also runs ten times. The following can be found in Table 15. ε¯ is relative larger when there are more low priority objectives (cases 1 and 6) than when there are more high priority objectives (cases 2 and 5). A smaller mean of ε represents an increase in the probability that ε<0. ufg is affected not only by its own priority P(fg), but also by priorities of other objective. For example, P(f1)=2 in case 2 and P(f1)=3 in case 3, however 0.446<0.461.





4.3. Applicability of Different Methods


In order to test the applicability of different methods, we increase the number of services, tasks and subtasks in this section. In addition, different number of objectives and priority levels are also considered.



4.3.1. Different Scales of Services and Tasks/Subtasks


In this subsection, the number of services increases from [9, 12, 15] to [300, 600, 900], the number of tasks from [6, 11, 16] to [16, 30, 50], and the number of subtasks from [8, 13, 18] to [18, 50]. The ranges of other parameters follow the data in Table 9. Each dataset is also tested 10 times. The averages of μmin, ε, TS, CPU time for 10 runs are computed respectively, and the test results of different methods are summarized in Table 16. From this table, it can be seen that: when the number of services increases from 300 to 900, both μmin¯ and TS¯ have an increasing trend, which shows that the more services, the better the clients’ needs can be met. When the number of services remains at 900 and the number of tasks/subtasks increases, μmin¯ and TS¯ have a tendency to decrease, which shows that clients’ satisfaction will also be reduced if resources are limited. In addition, some of the statistical results also have some deviations from this trend, mainly due to the random generation of data. For large-scale problems, the TP method can still obtain reasonable results. From the perspective of ε¯, the max–min method can hardly produce solutions satisfying priority constraints for larger-scale problems, while TP-OPS method can still get reasonable results.



The CPU time of all methods increases with the number of services and tasks/subtasks, as shown in Figure 10. As can be seen from the figure, the change in CPU time caused by the increase in the number of services from 300 to 900 is much smaller than the increase in the number of tasks and subtasks from 16t18st to 50t50st. Faced with the task flow of additional tasks in and released products out in dynamic market, this paper chooses to treat a decision period as static, so fast decision-making is very important. For FGP method, If DM is not satisfied with the results, recalculation will consume a lot of time. Compared with the FGP method, the TP-OPS method has advantages, and only requires less time to adjust Δδ.




4.3.2. Different Number of Objectives and Priority Levels


For most multi-objective optimization problems in manufacturing, the number of objectives is usually between 2 and 4. In the previous small-scale example and computational experiments, four objectives and three priority levels were considered, i.e., the number of objectives G=4, the number of priority levels L=3. Therefore, further experiments are necessary to test the effects of different G and L on the results. In this subsection, we chose the common situation, where G∈[2, 3, 4], L∈[2, 3, 4], L≤G. Combination 18s4t15st is selected for the experiment, and other parameters are the same as Table 9. The test results are summarized in Table 17 and it can be seen that the TP-OPS method is applicable for these selected G and L, and the conclusions drawn in the previous sections are still valid. It can also be found that the larger G and L, the smaller μmin¯ and ε¯ are. In this paper, we do not consider G>4, mainly for two reasons. On the one hand, this situation rarely occurs in the actual manufacturing process. On the other hand, if μmin¯ and ε¯ become too small, the effect of any optimization method will not be obvious. Therefore, the TP-OPS method is suitable for multi-objective optimization problem which need to achieve the optimization of all objectives, while maximizing the difference in optimization effects among objectives of different importance.






5. Conclusions


This paper proposes a two-phase method based on the order of priority satisfaction (TP-OPS) for the service selection and scheduling problem with different objective priorities in cloud manufacturing. In the proposed method, the order of priority satisfaction is introduced to represent priority requirements of different objectives. As a very convenient method, the TP-OPS only requires decision maker to judge whether the current solution is satisfactory and give the parameters for the next optimization decision. By relaxing the maximum comprehensive satisfaction, the difference between satisfaction of objectives with different priority is gradually expanded. Furthermore, TP-OPS method can achieve a balance between the improvement of maximum comprehensive satisfaction and the control of satisfaction differences. In addition, just a short time is needed to find a new solution after adjusting the parameters, which saves a lot of time for the decision process of large-scale problems. and the method could be applied to small and medium-sized market environments. The TP-OPS proposed in this paper can be applied to many kinds of cloud platforms, such as automobile manufacturing, clothing customization, aerospace and so on. The decision-maker can select a satisfactory solution only by determining objective priorities according to the status of resources and tasks on the platform.



Further research can consider the following two directions. First, other types of satisfaction could be taken into account. For the simplification of calculation, this paper considers that all satisfactions of clients are linear. However, in reality, many clients’ satisfactions show curves or discount forms. Therefore, how to coordinate these different types of clients has become a meaningful research direction. In addition, dynamic and static combination approaches should be designed to adapt to rapid changes in the market. This paper considers the market as static within a certain decision period. However, when faced with the flow of additional tasks in and released products out, centralized optimization and rapid response are essential. So dynamic and static combination approaches will also become a very important research direction.
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Figure 1. The abstract model of service selection and scheduling (SSS) in CMfg. 
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Figure 2. The schematic diagram of TP-OPS method in the two-objective example. (a) Phase 1 (b) Phase 2 (c) Phase 3. 
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Figure 3. Framework of the three SSS methods. 
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Figure 4. Schematic diagram of coding. 
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Figure 5. The crossover operation. 
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Figure 6. The mutation operation. 
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Figure 7. Gantt chart of the results for the problem found by (a) the Max–min method (b) the TP-OPS method (c) the FGP method for example 4.1. 
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Figure 8. The satisfaction corresponding to the results found by (a) the Max–min method (b) the TP-OPS method (c) the FGP method for example 4.1. 
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Figure 9. Mean of CPU time for 10 runs obtained by different methods. 
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Figure 10. Mean of CPU time for 10 runs obtained by different methods for larger scale problems. 
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Table 1. Classification of SSS Problem Based on Preference Information and Operation Mode.






Table 1. Classification of SSS Problem Based on Preference Information and Operation Mode.





	

	
Mode

	
Client

Centered

	
Provider

Centered

	
Operator

Centered

	
System

Centered




	
Preference

	






	
Linguistic terms

	

	

	

	
Previouse work




	
Objective priorities

	
This paper

	

	

	




	
Others

	

	
Future work

	
Future work
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Table 2. A list of some important notations.
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	Notation
	Meaning





	tj
	Completion time of task Tj.



	cj
	Service cost of task Tj.



	qj
	Service quality of task Tj.



	ecj
	Environmental cost of task Tj. (client j).



	stj,ki,h
	Service time of subtask STj,k, if it is assigned to service SEi,h.



	scj,ki,h
	Service cost of subtask STj,k, if it is assigned to service SEi,h.



	qj,ki,h
	Service quality of subtask STj,k, if it is assigned to service SEi,h.



	ecj,ki,h
	Environmental cost of subtask STj,k, if it is assigned to service SEi,h.



	wej,ki,h
	Weight of products needed to be transported, if subtask STj,k is assigned to service SEi,h.



	atj,k
	Start time of subtask STj,k.



	ctj,k
	Completion time of subtask STj,k.



	wtj,k
	Waiting time of subtask STj,k.



	ltj,k
	Logistics time from subtask STj,k to STj,k+1.



	lcj,k
	Logistics cost from subtask STj,k to STj,k+1.



	di,i′
	Geographical distance between enterprises Ei and Ei.



	α
	Logistics time for unit distance.



	β
	Logistics cost for unit weight and unit distance.



	aj,ki,h
	aj,ki,h=1, if service SEi,h can perform subtask STj,k; otherwise aj,ki,h=0.



	xj,ki,h
	xj,ki,h=1, if subtask STj,k is assigned to service SEi,h; otherwise xj,ki,h=0.
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Table 3. The pseudo codes of Phase 1.
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Phase 1






	
1.

	
Initialization:




	
2.

	
  Set Na=0; S=∅; Namax; Kamax; λ0; UF=∅




	
3.

	
Generate an initial population;




	
4.

	
Iteration:




	
5.

	
WhileNa<Namaxdo




	
6.

	
  Na←Na+1;




	
7.

	
  Ka=0;




	
8.

	
  While Ka<Kamaxdo




	
9.

	
    Ka←Ka+1;




	
10.

	
    Evaluate μf1Ka,⋯,μf4Ka and λKa according to Equation (18);




	
11.

	
    If λKa>λ0and μfgKa>μfg′Kathen




	
12.

	
      S←S∪ {ChKa}; UF←UF∪ {μfgKa};




	
13.

	
    end if




	
14.

	
    If λ>λ*then




	
15.

	
      λ*←λ;




	
16.

	
    end if




	
17.

	
  end while




	
18.

	
  Crossover and mutation




	
19.

	
end while




	
20.

	
Output:




	
21.

	
  λ*, S and UF.
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Table 4. The pseudo codes of Phase 2.
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Phase 2






	
1.

	
Initialization:




	
2.

	
  Imput λ*; S; UF;




	
3.

	
  Set Nc=0; εs; Ncmax; H; ε*=0; Δδ=1;




	
4.

	
Iteration:




	
5.

	
Whileε*<εsandNc<Ncmaxdo




	
6.

	
  Nc←Nc+1;




	
7.

	
  For every ChKc⊂Sdo




	
8.

	
    Read μfgKc from UF;




	
9.

	
    If μfgKc>λ*⋅Δδthen




	
10.

	
      Calculate εKc according to Equation (20);




	
11.

	
      If εKc>ε*then




	
12.

	
        ε*←εKc; Ch*←ChKc;




	
13.

	
      end if




	
14.

	
    end if




	
15.

	
  end for




	
16.

	
  If ε*<εsthen




	
17.

	
    Δδ←Δδ−H;




	
18.

	
  end if




	
19.

	
end while




	
20.

	
Output:




	
21.

	
  ε* and Ch*.
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Table 5. Task and service information.
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STj,k

	

	
STj,1 

	
STj,2

	
STj,3

	
STj,4




	
Tj

	






	
T1

	
SEi,h

	
(1,2)

	
(3,1)

	
(3,2)

	
(2,1)

	
(2,2)

	
(3,1)

	
(1,1)

	
(1,2)

	
(3,1)

	
(1,1)

	
(3,1)

	
(3,2)




	

	
st

	
9

	
10

	
8

	
5

	
6

	
5

	
7

	
6

	
7

	
7

	
6

	
6




	

	
sc

	
55

	
46

	
63

	
67

	
55

	
67

	
67

	
46

	
53

	
43

	
79

	
57




	

	
q

	
0.48

	
0.25

	
0.16

	
0.81

	
0.40

	
0.32

	
0.85

	
0.73

	
0.96

	
0.35

	
0.45

	
0.33




	

	
ec

	
10

	
13

	
6

	
7

	
15

	
13

	
14

	
15

	
14

	
8

	
11

	
12




	

	
we

	
18

	
19

	
20

	
22

	
17

	
17

	
23

	
16

	
19

	
14

	
19

	
15




	
T2

	
SEi,h

	
(1,1)

	
(1,2)

	
(3,1)

	
(1,1)

	
(1,2)

	
(3,1)

	
(1,1)

	
(1,2)

	
(2,2)

	
(1,1)

	
(3,1)

	
(3,2)




	

	
st

	
8

	
7

	
8

	
5

	
8

	
7

	
6

	
5

	
3

	
7

	
3

	
3




	

	
sc

	
43

	
65

	
80

	
52

	
47

	
62

	
49

	
70

	
71

	
70

	
48

	
48




	

	
q

	
0.94

	
0.48

	
0.40

	
0.59

	
0.60

	
0.91

	
0.37

	
0.53

	
0.56

	
0.72

	
0.25

	
0.30




	

	
ec

	
9

	
9

	
12

	
5

	
9

	
7

	
13

	
14

	
12

	
14

	
14

	
15




	

	
we

	
20

	
19

	
11

	
19

	
14

	
15

	
23

	
14

	
18

	
24

	
19

	
27




	
T3

	
SEi,h

	
(1,2)

	
(2,2)

	
(3,1)

	
(2,2)

	
(3,1)

	
(3,2)

	
(2,2)

	
(3,1)

	
(3,2)

	
(1,1)

	
(1,2)

	
(2,2)




	

	
st

	
4

	
3

	
6

	
7

	
6

	
5

	
6

	
4

	
5

	
7

	
7

	
7




	

	
sc

	
64

	
56

	
45

	
52

	
72

	
49

	
47

	
55

	
60

	
48

	
59

	
44




	

	
q

	
0.72

	
0.90

	
0.55

	
0.48

	
0.40

	
0.55

	
0.26

	
0.36

	
0.70

	
0.73

	
1.0

	
0.85




	

	
ec

	
6

	
14

	
15

	
7

	
13

	
13

	
7

	
6

	
6

	
9

	
5

	
13




	

	
we

	
12

	
14

	
19

	
21

	
24

	
19

	
27

	
24

	
21

	
24

	
16

	
17




	
T4

	
SEi,h

	
(1,2)

	
(2,1)

	
(3,2)

	
(1,1)

	
(2,1)

	
(3,2)

	
(1,1)

	
(1,2)

	
(2,1)

	
(1,2)

	
(2,1)

	
(3,2)




	

	
st

	
5

	
8

	
10

	
4

	
6

	
5

	
3

	
6

	
4

	
6

	
3

	
7




	

	
sc

	
63

	
49

	
60

	
65

	
46

	
78

	
79

	
79

	
56

	
67

	
73

	
60




	

	
q

	
0.39

	
0.46

	
0.16

	
0.22

	
0.62

	
0.50

	
0.16

	
0.98

	
0.36

	
0.95

	
0.20

	
0.75




	

	
ec

	
11

	
6

	
11

	
6

	
13

	
15

	
15

	
13

	
13

	
5

	
5

	
8




	

	
we

	
11

	
11

	
13

	
14

	
22

	
14

	
18

	
25

	
23

	
14

	
21

	
14
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Table 6. Geographical distance di,i′ between enterprises.






Table 6. Geographical distance di,i′ between enterprises.





	Enterprise
	E1
	E2
	E3





	E1
	0
	125
	111



	E2
	125
	0
	190



	E3
	111
	190
	0
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Table 7. The results found by the TP-OPS method with different Δδ for example 4.1.






Table 7. The results found by the TP-OPS method with different Δδ for example 4.1.





	Δδ
	P(fg)
	μfg
	ε
	TS





	0.95
	[3 1 2 2]
	[0.572 0.653 0.590 0.645]
	0.016
	2.460



	0.9
	[3 1 2 2]
	[0.482 0.660 0.528 0.628]
	0.032
	2.298



	0.85
	[3 1 2 2]
	[0.534 0.679 0.577 0.601]
	0.043
	2.388



	0.8
	[3 1 2 2]
	[0.488 0.639 0.566 0.579]
	0.060
	2.271



	0.75
	[3 1 2 2]
	[0.433 0.631 0.517 0.502]
	0.068
	2.080



	0.7
	[3 1 2 2]
	[0.475 0.697 0.600 0.586]
	0.097
	2.356
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Table 8. The results found by the TP-OPS method with different P(fg) for example 4.1.






Table 8. The results found by the TP-OPS method with different P(fg) for example 4.1.





	P(fg)
	Δδ
	μfg
	ε
	TS





	[1 3 3 2]
	0.85
	[0.633 0.534 0.534 0.579]
	0.044
	2.280



	[2 1 1 3]
	0.85
	[0.602 0.660 0.676 0.561]
	0.041
	2.500



	[3 2 2 1]
	0.85
	[0.510 0.548 0.603 0.674]
	0.038
	2.335



	[2 3 1 2]
	0.85
	[0.578 0.514 0.695 0.561]
	0.047
	2.348



	[3 1 2 1]
	0.85
	[0.548 0.638 0.595 0.645]
	0.042
	2.426



	[1 2 3 3]
	0.85
	[0.694 0.648 0.593 0.579]
	0.045
	2.512
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Table 9. The ranges of parameters.






Table 9. The ranges of parameters.





	st
	sc
	q
	ec
	we
	di,i′
	P(fg)





	[5, 20]
	[50, 100]
	[0.01, 1]
	[10, 30]
	[15, 35]
	[50, 600]
	[1, 3]
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Table 10. NFS for 10 runs obtained by different methods.






Table 10. NFS for 10 runs obtained by different methods.





	
Dataset

	
Max–Min

	
TP-OPS

	
FGP




	
Δδ=0.9

	
Δδ=0.7

	






	
9s6t8st

	
3

	
10

	
10

	
10




	
9s11t13st

	
1

	
8

	
10

	
10




	
9s16t18st

	
0

	
9

	
10

	
10




	
12s6t8st

	
0

	
8

	
10

	
10




	
12s11t13st

	
0

	
10

	
10

	
10




	
12s16t13st

	
1

	
10

	
10

	
10




	
15s11t8st

	
1

	
10

	
10

	
10




	
15s11t13st

	
1

	
10

	
10

	
10




	
15s16t18st

	
0

	
10

	
10

	
10
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Table 11. Mean and standard deviation of μmin for 10 runs obtained by different methods.






Table 11. Mean and standard deviation of μmin for 10 runs obtained by different methods.





	
Dataset

	
Max–Min

	
TP-OPS

	
FGP




	
μmin¯

	
Sμmin

	
Δδ=0.9

	
Δδ=0.7

	
μmin¯

	
Sμmin




	
μmin¯

	
Sμmin

	
μmin¯

	
Sμmin






	
9s6t8st

	
0.536

	
0.030

	
0.467

	
0.030

	
0.397

	
0.027

	
0.482

	
0.058




	
9s11t13st

	
0.433

	
0.036

	
0.395

	
0.036

	
0.329

	
0.038

	
0.258

	
0.092




	
9s16t18st

	
0.463

	
0.030

	
0.426

	
0.023

	
0.362

	
0.028

	
0.340

	
0.119




	
12s6t8st

	
0.527

	
0.025

	
0.472

	
0.035

	
0.421

	
0.044

	
0.402

	
0.093




	
12s11t13st

	
0.505

	
0.033

	
0.441

	
0.035

	
0.391

	
0.028

	
0.425

	
0.059




	
12s16t13st

	
0.514

	
0.041

	
0.463

	
0.040

	
0.368

	
0.030

	
0.420

	
0.065




	
15s11t8st

	
0.493

	
0.044

	
0.434

	
0.039

	
0.365

	
0.035

	
0.374

	
0.075




	
15s11t13st

	
0.471

	
0.040

	
0.412

	
0.036

	
0.353

	
0.023

	
0.390

	
0.053




	
15s16t18st

	
0.483

	
0.042

	
0.428

	
0.040

	
0.359

	
0.032

	
0.403

	
0.056
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Table 12. Mean and standard deviation of ε for ten runs obtained by different methods.






Table 12. Mean and standard deviation of ε for ten runs obtained by different methods.





	
Dataset

	
Max–Min

	
TP-OPS

	
FGP




	
ε¯

	
Sε

	
Δδ=0.9

	
Δδ=0.7

	
ε¯

	
Sε




	
ε¯

	
Sε

	
ε¯

	
Sε






	
9s6t8st

	
0.014

	
0.015

	
0.076

	
0.032

	
0.143

	
0.019

	
0.037

	
0.026




	
9s11t13st

	
0.001

	
0.000

	
0.033

	
0.020

	
0.073

	
0.023

	
0.106

	
0.071




	
9s16t18st

	
-

	
-

	
0.023

	
0.013

	
0.057

	
0.023

	
0.071

	
0.039




	
12s6t8st

	
-

	
-

	
0.031

	
0.017

	
0.055

	
0.014

	
0.032

	
0.024




	
12s11t13st

	
-

	
-

	
0.037

	
0.012

	
0.084

	
0.019

	
0.036

	
0.025




	
12s16t13st

	
0.005

	
0.000

	
0.047

	
0.020

	
0.103

	
0.025

	
0.070

	
0.048




	
15s11t8st

	
0.001

	
0.000

	
0.031

	
0.018

	
0.064

	
0.027

	
0.070

	
0.063




	
15s11t13st

	
0.005

	
0.000

	
0.032

	
0.013

	
0.066

	
0.014

	
0.065

	
0.025




	
15s16t18st

	
-

	
-

	
0.028

	
0.012

	
0.066

	
0.020

	
0.047

	
0.024
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Table 13. Mean and standard deviation of TS for 10 runs obtained by different methods.






Table 13. Mean and standard deviation of TS for 10 runs obtained by different methods.





	
Dataset

	
Max–Min

	
TP-OPS

	
FGP




	
TS¯

	
STS

	
Δδ=0.9

	
Δδ=0.7

	
TS¯

	
STS




	
TS¯

	
STS

	
TS¯

	
STS






	
9s6t8st

	
2.261

	
0.121

	
2.211

	
0.128

	
2.117

	
0.083

	
2.569

	
0.102




	
9s11t13st

	
1.833

	
0.156

	
1.783

	
0.148

	
1.632

	
0.189

	
2.055

	
0.153




	
9s16t18st

	
2.000

	
0.160

	
1.897

	
0.147

	
1.770

	
0.090

	
2.022

	
0.175




	
12s6t8st

	
2.218

	
0.096

	
2.074

	
0.168

	
1.961

	
0.136

	
2.144

	
0.152




	
12s11t13st

	
2.102

	
0.142

	
2.005

	
0.140

	
1.923

	
0.132

	
2.276

	
0.115




	
12s16t13st

	
2.158

	
0.179

	
2.084

	
0.173

	
1.915

	
0.176

	
2.466

	
0.106




	
15s11t8st

	
2.077

	
0.159

	
1.948

	
0.133

	
1.833

	
0.140

	
2.158

	
0.128




	
15s11t13st

	
1.952

	
0.192

	
1.909

	
0.175

	
1.870

	
0.127

	
2.229

	
0.125




	
15s16t18st

	
2.041

	
0.192

	
1.920

	
0.160

	
1.776

	
0.166

	
2.164

	
0.120
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Table 14. Mean of performance indicators for 10 runs found by TP-OPS method with different Δδ.






Table 14. Mean of performance indicators for 10 runs found by TP-OPS method with different Δδ.





	Δδ
	P(fg)
	uf1¯
	uf2¯
	uf3¯
	uf4¯
	ε¯
	TS¯
	NFS





	0.95
	[2 1 3 1]
	0.484
	0.460
	0.432
	0.445
	0.009
	1.821
	2



	0.9
	[2 1 3 1]
	0.452
	0.480
	0.423
	0.466
	0.018
	1.821
	6



	0.85
	[2 1 3 1]
	0.452
	0.499
	0.428
	0.507
	0.020
	1.886
	10



	0.8
	[2 1 3 1]
	0.475
	0.543
	0.424
	0.523
	0.031
	1.965
	10



	0.75
	[2 1 3 1]
	0.424
	0.500
	0.366
	0.483
	0.041
	1.773
	10



	0.7
	[2 1 3 1]
	0.440
	0.524
	0.369
	0.547
	0.059
	1.880
	10
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Table 15. Mean of performance indicators for 10 runs found by TP-OPS method with different P(fg).






Table 15. Mean of performance indicators for 10 runs found by TP-OPS method with different P(fg).





	Case
	P(fg)
	Δδ¯
	uf1¯
	uf2¯
	uf3¯
	uf4¯
	ε¯
	TS¯
	NFS





	1
	[1 3 3 2]
	0.85
	0.607
	0.448
	0.440
	0.507
	0.047
	2.002
	10



	2
	[2 1 1 3]
	0.85
	0.446
	0.466
	0.454
	0.385
	0.020
	1.751
	9



	3
	[3 2 2 1]
	0.85
	0.461
	0.481
	0.470
	0.507
	0.014
	1.919
	8



	4
	[2 3 1 2]
	0.85
	0.484
	0.433
	0.521
	0.472
	0.024
	1.910
	10



	5
	[3 1 2 1]
	0.85
	0.465
	0.505
	0.478
	0.505
	0.017
	1.953
	8



	6
	[1 2 3 3]
	0.85
	0.601
	0.519
	0.441
	0.450
	0.062
	2.011
	10
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Table 16. μmin¯, ε¯, TS¯ obtained by different methods for larger scale problems.






Table 16. μmin¯, ε¯, TS¯ obtained by different methods for larger scale problems.





	
Dataset

	
Max–Min

	
TP-OPS

	
FGP




	
μmin¯

	
ε¯

	
TS¯

	
Δδ=0.85

	
Δδ=0.7

	
μmin¯

	
ε¯

	
TS¯




	
μmin¯

	
ε¯

	
TS¯

	
μmin¯

	
ε¯

	
TS¯






	
300s16t18st

	
0.431

	
-

	
1.872

	
0.392

	
0.001

	
1.739

	
0.330

	
0.034

	
1.617

	
0.326

	
0.058

	
1.717




	
600s16t18st

	
0.431

	
-

	
1.874

	
0.386

	
0.015

	
1.734

	
0.330

	
0.041

	
1.647

	
0.305

	
0.044

	
1.623




	
900s16t18st

	
0.516

	
-

	
2.226

	
0.459

	
0.026

	
2.111

	
0.380

	
0.067

	
2.021

	
0.405

	
0.037

	
2.126




	
900s30t18st

	
0.512

	
-

	
2.232

	
0.456

	
0.018

	
2.035

	
0.399

	
0.033

	
1.890

	
0.313

	
0.027

	
1.649




	
900s16t50st

	
0.491

	
-

	
2.086

	
0.432

	
0.018

	
1.890

	
0.369

	
0.054

	
1.781

	
0.351

	
0.026

	
1.813




	
900s50t50st

	
0.458

	
-

	
1.962

	
0.418

	
0.020

	
1.873

	
0.358

	
0.053

	
1.725

	
0.343

	
0.059

	
1.903
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Table 17. Performance stability of different methods for different scales.






Table 17. Performance stability of different methods for different scales.





	
G

	
L

	
Max–Min

	
TP-OPS

	
FGP




	
NFS

	
μmin¯

	
ε¯

	
Δδ=0.85

	
Δδ=0.7

	
NFS

	
μmin¯

	
ε¯




	
NFS

	
μmin¯

	
ε¯

	
NFS

	
μmin¯

	
ε¯






	
2

	
2

	
5

	
0.879

	
0.020

	
10

	
0.773

	
0.120

	
10

	
0.643

	
0.230

	
10

	
0.854

	
0.059




	
3

	
2

	
3

	
0.804

	
0.022

	
10

	
0.701

	
0.132

	
10

	
0.585

	
0.249

	
10

	
0.739

	
0.078




	
3

	
3

	
1

	
0.654

	
0.001

	
10

	
0.580

	
0.036

	
10

	
0.486

	
0.085

	
10

	
0.569

	
0.034




	
4

	
2

	
3

	
0.519

	
0.008

	
10

	
0.452

	
0.081

	
10

	
0.386

	
0.153

	
10

	
0.398

	
0.140




	
4

	
3

	
1

	
0.519

	
0.004

	
9

	
0.466

	
0.018

	
10

	
0.377

	
0.044

	
10

	
0.360

	
0.035




	
4

	
4

	
1

	
0.509

	
0.012

	
9

	
0.455

	
0.017

	
10

	
0.384

	
0.031

	
10

	
0.278

	
0.023
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