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Abstract: The rise and rapid development of bicycle sharing brings great convenience to residents’
travel and transfer, and also has a profound impact on the travel structure of cities. As college students
make up a major share of shared bicycle users, it is necessary to analyze the factors that influence
their travel mode and riding frequency choice and to explore how these factors affect their riding
behavior. To analyze the bicycle riding characteristics of college students, this paper processes many
factors with unknown correlations by using a factor analysis method based on revealed preference
(RP) questionnaire data. Then, taking the significant common factors as explanatory variables, a
two-layer nested logit (NL) model combining riding frequency and travel mode is established to
study college students’ riding behavior. The results suggest that the comprehensive hit rate of the
upper and lower levels of the model (riding frequency and travel mode) are, respectively, 76.8% and
83.7%, and the two-layer NL model is applicable. It is also shown that environmental factors (“cheap,”
“mixed traffic,” “signal lights at intersection,” and so on) have a significant impact on the choice of
travel mode and riding frequency. Also, improving the level of bicycle service can increase the shift
from walking to riding. Such findings are meaningful for policy-makers, planners, and others in
formulating operational management strategies and policies.

Keywords: college students; bicycle sharing; nested logit model; factor analysis method;
sensitivity analysis

1. Introduction

Due to urban traffic congestion, environmental pollution, traffic accidents, and other issues,
many scholars and policy-makers are paying attention to more sustainable travel modes. As an
environmentally friendly, convenient, and low-cost travel mode, bicycle sharing helps to adjust
the unbalanced traffic structure and provide an alternative travel mode for short trips, commutes,
and transfer trips. Moreover, it can guide multimodal travel and provide a low-carbon solution for the
“last mile” problem. In the past 50 years, bicycle sharing systems have experienced three mature stages:
The white bikes system [1], the coin-deposit system [2], and the information technology (IT)-based
system [3]. The latest bicycle sharing system allows users to use shared bicycles at dockless points.
Borrowing and returning bikes is on a self-service basis, which greatly improves the convenience of
access and return [4,5]. China’s Mobike and ofo bicycle sharing systems are two typical representatives.
By the end of 2017, China had developed more than 300 service systems, with more than 10 million
shared bicycles, more than 100 million registered users, and more than 1 billion passengers, shaping
the world’s largest bicycle sharing market [6]. Among shared bicycle users, the 20-to-30-year-old
age group accounted for 50.3% [7], and college students are the main component of this age group.
Generally, college students have a strong ability to accept new things, a high degree of education,
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and limited daily expenditures; and they usually have a strong sense of safety and environmental
protection. It is necessary to analyze their travel choice behavior under these influencing factors.

Relevant research on shared bicycles and traditional bicycles has been carried out in terms of
riding frequency, riding influence factors, and travel mode selection. Public bicycles and electric
bicycles are chosen as research objects to analyze the impacts of the physical environment [8], season [9],
temperature [10], and traffic facilities [11]. Campbell et al. explored riders’ individual factors (including
gender, age, education level, etc.) influencing the riding choice of Beijing residents, and concluded
that female riders tend to choose public bicycles, older riders are more inclined to choose electric
bicycles, and riders with a higher education level tend to choose public bicycles [12]. Dickinson and
Mohanty et al. found that the number of nonmotorized lanes is proportional to bicycle usage, and the
width of the sidewalk, intersection status, and land use around the site are important factors affecting
nonmotorized transportation [13,14]. Moudon et al. emphasized that perceived environmental factors
represented by road environment safety, traffic congestion, group effect, etc., have different degrees of
impact on the choice of riding [15].

The discrete selection model is the most extensive and mature analysis method to study travel
mode choice and riding frequency. Through combined travel mode–trip chain type (nested logit) [16],
place of residence–travel mode–departure time (cross-nested logit) [17], and travel time–travel mode
(mixed logit) [18] models, researchers have analyzed travel behaviors. Tang et al. established a binary
logit (BL) model to analyze the main factors affecting riding frequency in Shanghai [6]. Faghih-Imani
et al. explored the impact of bicycle infrastructure attributes and land use characteristics on shared
bicycle riding frequency with a linear mixed logit model [19].

Some scholars have studied the travel preferences of specific travel groups. Hess and Mitra et al.
modeled the travel structure of commuter groups and student groups, respectively, and found that
parking fees and transfer time are important factors affecting commuter groups, while the distance
between home and school, and the built environment around their place of residence has a significant
impact on students’ choice of travel mode [20,21]. Guo and Davidov’s research on travel psychology
and travel habits showed that residents’ satisfaction with a bicycle operation system is an important
factor. Travel habits have a greater impact on the choice of riding than the built environment [22,23].

On the whole, there are many individual studies on riding characteristics or factors affecting riding.
However, there is still no comprehensive study of travel characteristics, influencing factors, travel
modes, and frequency selection of shared bicycle users; and related research on operation optimization
measures and policy formulation of shared bicycle systems is also relatively lacking. In addition,
the latest statistics show that college students account for a relatively high proportion of daily active
users of shared bicycles. However, there is still a lack of specific research on the travel characteristics
and behaviors of this user group [7]. Therefore, based on an analysis of the individual characteristics,
riding habits, travel characteristics, and influencing factors of college students, this paper takes the
college student group as the research object and uses a factor analysis method to process a large
number of influencing factors with unknown correlations. Then, the significant common factors are
selected as the model explanatory variables to establish the riding frequency–travel mode combined
nested logit (NL) model. Finally, this paper proposes optimization measures and suggestions through
sensitivity analysis.

2. Data and Methods

2.1. Data Acquisition and Travel Characteristics

College students are better able to accept new things and thus have become the main shared
bicycle users. Usually, they have a higher level of knowledge and good travel habits, and travel more
frequently, for mostly short-distance trips [24]. The area selected for this research along the South
Second Ring Road in Xi’an is a center of science, education, culture, health, trade, and tourism. There are
many colleges and universities within 6 km (total) on both sides of the South Second Ring Road,
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where we got good representation and high data quality. Considering land use and transportation
facilities, 15 universities (19 survey areas) were selected, of which Chang’an University and Xi’an
Jiaotong University are each divided into three campuses.

The basic data for this paper was obtained through an RP survey conducted from 27 December 2017
to 20 January 2018. According to the number of samples allocated by each survey point, questionnaires
were randomly distributed in the library, student dormitories, etc., at each survey site. In total,
600 questionnaires were distributed, and 483 valid questionnaires were collected. The content of the
questionnaire included three parts: Individual characteristics, riding habits, and travel characteristics.
College students’ travel modes include walking; taking the bus, metro, or taxi; and riding a bicycle
(including ofo, Mobike, public, and personal bicycles; ofo and Mobike are the two commonly used
shared bicycle services; public bicycles need fixed parking piles). Based on the questionnaires, the travel
characteristics are analyzed as follows.

2.1.1. Individual Characteristics and Riding Habits

The distribution of respondents’ individual characteristics and riding habits is summarized in
Tables A1 and A2 in Appendix A. In order to more intuitively reflect the travel characteristics of college
students using shared bicycles, we summarize some important travel information (such as riding
frequency, acceptable riding time, acceptable cycling mileage, etc.) in Figure 1.
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Figure 1. Individual characteristics and riding habits.

This paper establishes a 10-point Likert scale to investigate satisfaction with the riding environment,
and uses very low, low, high, and very high to describe road safety for college students. Of the
total respondents, 58.5% marked their satisfaction with the road riding environment below 6 points,
while 24.2% marked it above 8 points; 60% of respondents rated the road safety as low or very low.
Based on the above data, the respondents’ basic requirements for shared bicycle travel can be roughly
determined as: Easy of use and return, and that they are mainly used for short-distance travel and to
meet commuting or transfer needs.

2.1.2. Trip Characteristics

As shown in Table 1, the daily travel of college students is mainly based on walking and riding a
bicycle, accounting for about 48% and 41%, respectively. The public bicycle travel mode accounts for
only 2%, which means that shared bicycles, represented by Mobike and ofo, occupy a large proportion
(94.9%). More than 85% of travel distances were within 2 km, and travel time is within 20 minutes.
This also proves that bicycle travel is mainly for short-distance commuting and transfer.
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Table 1. Distribution of respondents’ trip characteristics.

Survey Content Option Sample Percent Survey Content Option Sample Percent

Travel mode

Walking 232 48%

Travel purpose

Attending class 135 28%

ofo 125 26% Returning 112 23%

Mobike 63 13% Shopping 72 15%

Transit 24 5% Entertainment 72 15%

Subway 24 5% Lab attendance 53 11%

Public bicycle 10 2% Transferring 24 5%

Personal bicycle 0 0% Visiting friends 15 3%

Taxi 5 1%

Travel distance
(km)

≤0.5 59 12.2%

Travel time
(min)

≤5 42 8.7%

0.5–1 65 13.4% 5–10 156 32.3%

1–1.5 197 41.0% 10–15 122 25.3%

1.5–2 96 19.8% 15–20 97 20.1%

2–4 33 6.8% 20–25 46 9.5%

>4 33 6.8% >25 20 4.1%

2.2. Methods

2.2.1. Nested Logit Model

The logit model is one of the commonly used methods for travel behavior analysis. It is based on
random utility theory, assuming that the traveler is absolutely rational and always chooses the most
effective travel plan to complete his/her trip. Travel utility can be expressed by

U jn = V jn + ε jn, V jn =
M∑

m=1

αmx jnm (1)

where V jn is fixed utility, usually described as a linear function of measurable factors; ε jn is random
utility; X jnm is the independent variable; αm is the coefficient of independent variable x jnm; and m is
the number of independent variables.

The nested logit (NL) model is different from the multinomial logit (MNL) model and binary
logit (BL) model, by setting up a multiple or multilayer nest structure, which overcomes the IIA
(Independence of irrelevant alternatives) characteristic of the traditional logit model to a certain extent.
In the statistical analysis of survey data, we found that the riding frequency has a greater impact on the
travel behavior of college students than the travel mode. In addition, we extracted 80 questionnaires
for pre-modeling, then compared the goodness of fit of the riding frequency-travel mode model with
the travel mode-riding frequency model. In the actual measurement, the travel mode-riding frequency
model showed that the models do not converge. Therefore, referring to previous research [16,17,25],
this paper takes the average daily riding frequency as the model’s upper level and the travel mode as
the lower level, establishing a double-layer NL model. The upper model contains three nests: Riding
frequency ≤0.5 (Q1), riding frequency >0.5 but ≤1 (Q2), and riding frequency >1 (Q3). The lower
model contains six branches: walking (Y1), public bicycles (Y2), Mobike (Y3), ofo (Y4), transit (Y5),
and subway (Y6). Due to the large statistical differences in travel characteristics between the daily
users of Mobike, ofo, and public bicycles, the performance, coverage, and billing standards of the three
types of bicycles are also significantly different, and the user groups also have higher independence.
Therefore, in this paper, three types of bicycles are used as independent travel modes for model
construction. The structure of the NL model is shown in Figure 2.
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Taking nest Q1 and its selection branch as an example, the probability of each branch under the
established selection conditions of nest A is as follows:

P(i|Q1 ) =
exp

(
Vi|Q1

)
6∑

k=1
exp

(
Vk|Q1

) (2)

where i is the branch under nest Q1, and P(i
∣∣∣Q1) is the probability of selecting branch i under the

condition of selecting nest Q1.
The selection probability of each branch is as follows:

P(i) = P(i|Q1 ) × P(Q1) (3)

P(Q1) =
exp

(
VQ1

)
exp

(
VQ1

)
+ exp

(
VQ2

)
+ exp

(
VQ3

) (4)

VQ1 = θQ1 ·XQ1 + V′Q1
(5)

V′Q1
=

1
uQ1

ln

 6∑
i=1

exp(Vi)

 (6)

where θ is the coefficient of the independent variable of the utility function (corresponding to the nest),
X is the independent variable of the utility function (corresponding to the nest), V′ is the total utility
value of the lower branches, u is dissimilar parameters of each nest, 1/u is inclusive value, and P(i) is
the probability of branches.

2.2.2. Factor Analysis Method

College students’ travel mode choices are affected by many factors. However, the correlations
between factors are not clear, and the basic data obtained are mostly in the form of 0–1 or ordered.
If the NL model is directly constructed without data form transformation and correlation analysis of
explanatory variables, serious multicollinearity problems might occur. In addition, it is not possible to
ensure that the explanatory variables are independent of each other. Therefore, this paper first uses the
factor analysis method to deal with the original influencing factors; then, the common factor is selected
as the model independent variable to build the NL model.

The essence of factor analysis is the linear representation of observable variables as a number of
unobservable variables. The mathematical expression for factor analysis is shown in Equation (7):

Ψ =
(

Ψ1 · · · Ψk · · · Ψm
)T

= A · F (7)
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A =



a11 · · · a1 j · · · a1n
...

...
...

...
...

ak1 · · · akj · · · akn
...

...
...

...
...

am1 · · · amj · · · amn


(8)

F =
(

F1 · · · F j · · · Fn
)T

(9)

where Ψ is the explanatory variable of the model dependent variable, F is the common factor vector,
akj is the coefficient of linear expression, m is the number of explanatory variables, and n is the number
of common factors.

According to the formula, the linear function that expresses the common factor as an explanatory
variable is as follows:

F = A−1
·Ψ (10)

It can then be used as the logit model branches’ independent variable of utility function, as follows:

Logistic(i) = Vi = θi · F (11)

Based on the above analysis, the process of these two methods, as used in this work, is shown in
Figure 3.
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3. Results

3.1. Setting of Upper and Lower Model Explanatory Variables

We combined the characteristics of the survey data, setting the variable types to categorical,
ordered, 0–1, and continuous in SPSS software (version 20, IBM, United States), and analyzed the
correlation between the model dependent variable (upper: riding frequency; lower: travel mode) and
influencing factors. According to the analysis, there is a strong correlation between travel mode and 56
factors, and between riding frequency and 36 factors, as shown in Tables A3 and A4 (see Appendix B).
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3.2. Exploratory Factor Analysis of Explanatory Variables

Further analysis of the Spearman coefficients of the lower and upper models (1008, 648) shows
that there are 631 (about 63%) and 233 (about 37%) significant values corresponding to the Spearman
coefficients less than or equal to 0.05, respectively. This indicates that the explanatory variables are
highly correlated. In addition, we analyzed the explanatory variables according to their grouping,
and extracted 10 groups (upper: Four groups; lower: Six groups) for the correlation test, and eight
groups showed significant intervariable correlation. Taking variables Z13–Z19 belonging to “Cycling
experiences” as an example, the results of correlation analysis between explanatory variables are
shown in Table 2.

Table 2. Correlation analysis between influence factors (Z13–Z19).

Variables (Z13) (Z14) (Z15) (Z16) (Z17) (Z18) (Z19)

Operational convenience (Z13)
Pearson 1.000 0.335 0.316 0.264 0.241 0.229 0.382

Sig. 0.000 0.000 0.000 0.000 0.000 0.000

Searching convenience (Z14)
Pearson 0.335 1.000 0.335 0.314 0.215 0.185 0.480

Sig. 0.000 0.000 0.000 0.000 0.001 0.000

Returning convenience (Z15)
Pearson 0.316 0.335 1.000 0.233 0.210 0.187 0.391

Sig. 0.000 0.000 0.000 0.000 0.001 0.000

Bicycle quality scores (Z16)
Pearson 0.264 0.314 0.233 1.000 0.343 0.229 0.421

Sig. 0.000 0.000 0.000 0.000 0.000 0.000

Deposit security scores (Z17)
Pearson 0.241 0.215 0.210 0.343 1.000 0.301 0.431

Sig. 0.000 0.000 0.000 0.000 0.000 0.000

Riding promotion scores (Z18)
Pearson 0.229 0.185 0.187 0.229 0.301 1.000 0.270

Sig. 0.000 0.001 0.001 0.000 0.000 0.000

Overall satisfaction scores (Z19)
Pearson 0.382 0.480 0.391 0.421 0.431 0.270 1.000

Sig. 0.000 0.000 0.000 0.000 0.000 0.000

To overcome the multicollinearity that occurs when the explanatory variables are highly correlated
in the modeling process, this paper uses the factor analysis method to construct new variables by an
organic combination of explanatory variables to make the new variables independent of each other,
and better explain the model.

Kaiser–Meyer–Olkin (KMO) and Bartlett’s spherical tests were conducted on the explanatory
variables of the upper and lower models to judge whether the data were suitable for factor analysis.
The KMO values of the lower and upper model explanatory variables are 0.747 and 0.803, respectively,
and the significant value of the Bartlett’s test of upper and lower models is 0. Therefore, the explanatory
variables of the upper and lower models are suitable for factor analysis.

The initial eigenvalues and variance contributions of the explanatory variables were determined,
as shown in Table 3. There are 19 common factor eigenvalues greater than 1.0 (lower model), and the
cumulative variance contribution is 69.43%; there are 15 common factor eigenvalues greater than
1.0 (upper model), and the cumulative variance contribution is 68.43%. The information retention
of the upper and lower layers meet the requirements, so these common factors were extracted for
model construction.
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Table 3. Total variance of lower/upper models.

Component
Initial Eigenvalues Extraction Sums of Squared Loadings Rotation Sums of Squared Loadings

Eigenvalue % of Variance Total %
Variance Eigenvalue % of Variance Total %

Variance Eigenvalue % of Variance Total %
Variance

Lower Level

1 5.05 9.02 9.02 5.05 9.02 9.02 4.03 7.21 7.21

2 3.86 6.90 15.92 3.86 6.90 15.92 3.30 5.89 13.10

19 1.04 1.88 69.43 1.04 1.86 69.43 1.22 2.18 69.43

20 0.99 1.77 71.20

56 0 0 100

Upper Level

1 3.54 9.83 9.83 3.54 9.83 9.83 2.46 6.84 6.84

2 2.35 6.54 16.38 2.35 6.54 16.38 2.36 6.55 13.40

15 1.02 2.85 68.43 1.02 2.85 68.43 1.25 3.47 68.43

16 0.95 2.64 71.07

36 0.78 2.17 80.60

NOTE: Lower level components 1–56 are lower layer influencing factors (see Table A3 in Appendix B); upper level components 1–36 are upper layer influencing factors (see Table A4 in
Appendix B).
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3.3. Common Factor Redefinition

In order to make the common factor express the original explanatory variables more clearly and
in a more concentrated form, factor rotation of the common factor load-matrix using the maximum
variance method was conducted. Common factors were constructed based on the linear expression of
the selected highly correlated explanatory variables. Common factors are summarized in Table A5 (see
Appendix B).

The common factor X1 is taken as an example. The scores of explanatory variable factors are
shown in Table 4.

Table 4. Factor scores (X1).

Factor Score Factor Score Factor Score Factor Score Factor Score Factor Score

Z1 0.009 Z11 0.004 Z21 −0.005 Z31 0.007 Z41 −0.001 Z51 0.007

Z2 −0.009 Z12 −0.008 Z22 −0.003 Z32 −0.008 Z42 −0.001 Z52 0.005

Z3 0.005 Z13 0.207 Z23 −0.007 Z33 0.008 Z43 0.008 Z53 −0.009

Z4 −0.005 Z14 0.201 Z24 −0.005 Z34 −0.002 Z44 0.006 Z54 0.002

Z5 −0.003 Z15 0.207 Z25 −0.004 Z35 −0.003 Z45 0.004 Z55 0.002

Z6 −0.004 Z16 0.160 Z26 0.000 Z36 0.009 Z46 −0.010 Z56 −0.009

Z7 0.004 Z17 0.173 Z27 −0.001 Z37 −0.007 Z47 −0.016

Z8 −0.005 Z18 0.182 Z28 0.006 Z38 −0.006 Z48 0.008

Z9 0.006 Z19 0.208 Z29 0.003 Z39 0.002 Z49 0.001

Z10 −0.008 Z20 0.001 Z30 0.004 Z40 −0.005 Z50 0.001

Excluding the nonsignificant factors in which the absolute value of the factor score is less than
0.005, the expression of the common factor X1 is

X1 = 0.207Z13 + 0.201Z14 + 0.207Z15 + 0.160Z16 + 0.173Z17 + 0.182Z18 + 0.208Z19 (12)

where Z13–Z19 belong to the “Cycling experiences” variable; therefore, the common factor X1 is named
the “Cycling experiences” factor, and 19 lower and 15 upper common factors are treated in the same
way. The results are summarized in Appendix B, Table A5.

3.4. Construction of NL Model Based on Common Factors

Using 19 common factors as the lower model explanatory variables and 15 common factors as
the upper model explanatory variables, the riding frequency–travel mode combined NL model can
be constructed.

3.4.1. Calculation Results of Lower Model

Taking the subway as the reference category and eliminating the insignificant factors (significant
values are less than 0.05), the results of the calibration of the lower model are shown in Table 5.
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Table 5. Calculation results of lower model.

Travel Mode Explanatory Variables Coefficient Standard Error Wald Value df Significance

Walking

Constant 7.521 5.574 7.282 1 0.007

x1 3.061 2.567 5.687 1 0.017

x2 1.586 1.609 3.884 1 0.049

x3 −1.948 1.235 9.954 1 0.002

x5 1.109 1.023 4.697 1 0.030

x7 −2.391 1.998 5.599 1 0.018

x9 −1.748 1.545 5.119 1 0.024

Public bicycle

x1 −1.080 2.756 5.532 1 0.019

x3 0.776 1.580 8.680 1 0.003

x12 −0.631 1.870 4.098 1 0.043

Mobike

Constant 3.420 5.575 6.020 1 0.014

x1 1.445 2.569 5.065 1 0.024

x3 −0.792 1.234 6.582 1 0.010

x5 0.538 1.030 4.367 1 0.037

x7 −1.290 2.008 6.604 1 0.010

x9 −0.797 1.549 4.239 1 0.040

ofo

Constant 5.430 5.575 6.412 1 0.011

x1 2.274 2.568 5.301 1 0.021

x3 −1.367 1.237 8.258 1 0.004

x7 −2.207 2.007 8.170 1 0.004

x9 −1.270 1.547 4.558 1 0.033

Transit

x9 −1.150 1.537 4.365 1 0.037

x10 −0.825 1.004 5.291 1 0.021

x13 −1.045 1.394 4.404 1 0.036

x14 1.145 1.526 4.415 1 0.036

x19 −1.834 2.033 6.378 1 0.012

According to statistical theory, under the condition that the parameter degrees of freedom is 1 and
the confidence level is 0.95, when the Wald value is greater than 3.841, there is a strong correlation
between the independent variable and the dependent variable; when the Wald value is slightly less
than 3.841, there is a weak correlation. If the Wald value is significantly less than 3.841, the dependent
variable is considered to be independent of the independent variable. It can be seen from Table 5 that
the Wald values of the influencing factors of the model are all greater than 3.841, and each influencing
factor has an important influence on the choice of college students’ travel modes. The influencing
factors and mechanism of travel mode choice are as follows:

ln P11
P16

= 7.521 + 3.061x1 + 1.586x2 − 1.948x3 + 1.109x5 − 2.391x7 − 1.748x9

ln P12
P16

= −1.08x1 + 0.776x3 − 0.631x12

ln P13
P16

= 3.420 + 1.445x1 − 0.792x3 + 0.538x5 − 1.29x7 − 0.797x9

ln P14
P16

= 5.43 + 2.274x1 − 1.367x3 − 2.207x7 − 1.27x9

ln P15
P16

= −1.150x9 − 0.825x10 − 1.045x13 + 1.145x14 − 1.834x19

P11 + P12 + P13 + P14 + P15 + P16 = 1

(13)

where P11, P12, P13, P14, P15, and P16, respectively, are the probability of walking, public bicycle use,
Mobike use, ofo use, transit, and subway use when the upper nested values have been selected.
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3.4.2. Calculation Results of Upper Model

Taking riding frequency (times/day) as less than 0.5 as the reference category, the results of the
calibration of the upper model are shown in Table 6.

Table 6. Calculation results of upper model.

Riding Frequency
(Times/Day) Explanatory Variables Coefficient Standard Error Wald Value df Significance

>0.5 to ≤1

Constant 1.999 0.484 17.041 1 0.000

w1 0.808 0.143 32.023 1 0.000

w3 0.465 0.181 6.586 1 0.010

w4 0.306 0.142 4.615 1 0.032

w5 −0.504 0.130 14.957 1 0.000

w6 −0.338 0.131 6.600 1 0.010

w10 0.349 0.125 7.836 1 0.005

w13 0.359 0.142 6.415 1 0.011

w14 0.430 0.156 7.539 1 0.006

w15 0.384 0.158 5.910 1 0.015

Logsum (1/µ) 0.251 0.166 8.437 1 0.000

>1

Constant 1.691 0.538 9.889 1 0.002

w1 1.038 0.168 38.159 1 0.000

w2 0.575 0.161 12.726 1 0.000

w3 0.762 0.196 15.178 1 0.000

w4 0.433 0.161 7.284 1 0.007

w5 −0.611 0.154 15.815 1 0.000

w6 −0.598 0.161 13.868 1 0.000

w7 0.643 0.156 16.979 1 0.000

w8 0.377 0.160 5.583 1 0.018

w9 0.333 0.166 4.044 1 0.044

w10 0.689 0.164 17.746 1 0.000

w11 0.641 0.183 12.253 1 0.000

w13 0.406 0.161 6.361 1 0.012

w14 0.616 0.173 12.675 1 0.000

w15 0.652 0.175 13.925 1 0.000

Logsum (1/µ) 0.373 0.165 6.682 1 0.001

As for the upper model, the parameter degrees of freedom is equal to 1 and the significant value
is less than or equal to 0.05, and each Wald value is greater than 3.841. It shows that the factors in
Table 6 have an important influence on college students’ riding frequency. The influencing factors and
mechanism of riding frequency are as follows:

ln P2
P1

= 1.999 + 0.808w1 + 0.465w3 + 0.306w4 − 0.504w5 − 0.338w6

+0.349w10 + 0.359w13 + 0.430w14 + 0.384w15 + 0.251Logsum
ln P3

P1
= 1.691 + 1.038w1 + 0.575w2 + 0.762w3 + 0.433w4 − 0.611w5 − 0.598w6

+0.643w7 + 0.377w8 + 0.333w9 + 0.689w10 + 0.641w11 + 0.601w12

+0.406w13 + 0.616w14 + 0.619w15 + 0.373Logsum
P1 + P2 + P3 = 1

(14)
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where P1, P2, and P3, respectively, are the probability of riding frequency less than 0.5, between 0.5 and
1, and more than 1.

Therefore, combined with the estimation results of the upper and lower parameters of the NL
model, according to the basic principle of the model, the calculation formula for the selection probability
of college students’ travel mode is as follows:

P(r, k) = Pk · P1r (15)

where Pk is the probability of riding frequency as grade k, and P1r is the probability of travel mode r
under the condition of riding frequency as grade k.

3.4.3. NL Model Accuracy Test

The model was tested from four aspects: Inclusive value, likelihood ratio, goodness of fit, and hit
rate. It was verified that the structure of the model is reasonable, and the upper and lower levels
are both significant. The detailed results of inclusive value, likelihood ratio, and goodness of fit are
omitted here. Taking the individual traveler as the unit, comparing the choice model predicted the
actual choices respondents made. The predicted hit ratio of the model’s upper and lower levels is
shown in Table 7.

Table 7. Prediction hit rate of model.

Lower Model

Travel Mode
Prediction Results

Walking Public Bicycle Mobike ofo Transit Subway Total

Actual choice

Walking 211 (85.4%) 4 6 14 2 0 237

Public bicycle 1 7 (58.3%) 0 1 0 0 13

Mobike 8 0 51 (72.9%) 2 0 0 61

ofo 24 1 12 117 (86.0%) 1 0 138

Transit 2 0 1 1 21 (84.0%) 1 26

Subway 1 0 0 1 1 26 (96.3%) 29

Total 247 12 70 136 25 27 517 (83.7%)

Upper model

Riding frequency Prediction results

≤0.5 0.5–1 >1 Total

Actual choice

≤0.5 82 (82%) 9 7 98

0.5–1 15 185 (78.39%) 44 244

>1 3 42 130 (71.82%) 175

Total 100 236 181 517 (76.8%)

In Table 7, the data on the diagonal is the number of hits (hit rate) in the corresponding travel
mode/riding frequency. Further analysis shows that the comprehensive hit rates of the upper and
lower level models are 76.8% and 83.7%, respectively, and the NL model has high comprehensive
prediction accuracy. In each individual forecast, the model maintains single forecast accuracy of more
than 70% except for public bicycles. By analyzing questionnaire and forecast data, it is found that
public bicycles had a small share of travel in the survey (only seven trips), which caused low prediction
accuracy of the model.

4. Discussion and Conclusions

Based on the revealed preference (RP) questionnaire data, this paper used the cross-analysis
method to analyze the personal features, riding habits, and trip characteristics of shared bicycle
users. Using the factor analysis method, this paper deals with the original influencing factors. The
common factor with significant influence was selected as the subsequent modeling-explanatory
variable, to realize the dimensionality reduction of explanatory variables, and the continuous variation
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of discrete variables. The double-layer NL model of riding frequency–travel mode was established
to form a comprehensive description of the characteristics of shared bicycle users. The results show
the following:

(1) By restoring explanatory variables and sensitivity analysis, the results show that the main
reasons for riding shared bicycles are low cost, flexibility, the ability to avoid traffic congestion, ease of
use, low carbon impact, close proximity, and lack of transport. Important factors influencing the choice
of cycle types are that they are accessible, easy to find, and economical; they have deposit safety and
are comfortable. Additionally, special offers; cycling experience; and bicycle quality were important
factors. Increasing the level of bicycle service can enable walkers to shift to riding. Ofo’s bicycle sharing
rate is more sensitive to service level than Mobike’s. Bicycle usage has dropped sharply with increased
riding cost. Perfecting the nonmotor vehicle lane transportation facilities of roads and improving the
safety of the riding environment can significantly promote bicycle utilization.

(2) Results also indicate that the daily riding environmental factors represented by “flat road”
and “complete and clear markings and signs” have a significant impact on the choice of travel mode
and riding frequency. With the optimization of the riding environment, the middle- and high-level
riding frequency groups have significantly increased, accompanied by a proportion of low-level
riding frequency shifts. In addition, with the optimization of “flat road,” the walking share decreased
significantly, ofo’s share decreased slightly, and Mobike’s share increased significantly. This is in line
with the situation—Mobike has better-quality bicycles than ofo, but the body is heavier, and travelers
on slopes tend to choose Mobike, while on complex roads they tend to choose ofo.

The findings of this study emphasize the importance of the combination of the NL model and
factor analysis in the study of travel behavior. At present, there are many specific studies on travel
mode choice, riding frequency, riding characteristics, and factors that affect riding. However, there is
still a lack of comprehensive research that combines travel characteristics of users, influencing factors,
travel modes, and riding frequency. In addition, in the selection of influencing factors and the setting of
model independent variables, the common method is still to use basic survey information processed by
statistical analysis and then directly use that for modeling. Independence between variables depends
entirely on the quality of the original data, which often leads to serious multicollinearity problems.
In this paper, correlation analysis is used to reasonably allocate original explanatory variables in the
upper and lower layers of the NL model. Factor analysis is typically used to reconstruct explanatory
variables, while this paper retains the effective information of the original survey and removes the
potential correlation between variables, thereby avoiding potential serious multicollinearity problems.

However, the limitations in this study should be recognized. Although a relatively complete
independent variable selection, configuration, and reconstruction process was formed, in the setting of
the basic questionnaire, some of the content was repeated as an option and question (in a scenario);
that was a defect in the form of information crossover. In addition, due to the influence of the survey
time (winter), the travel data cannot represent the riding habits and daily travels of college students in
other seasons. The model established by stated preference survey data still has a certain degree of
limitations to its applicability and objectivity. Therefore, in subsequent work, the riding habits and
travel survey data of every season should be added to the comprehensive modeling process, and we
will try to use the orthogonal design method to build questionnaires to make the survey information
more comprehensive and targeted.

Author Contributions: Conceptualization, S.M. and Y.Z. (Yechao Zhou); Methodology, S.M. and Y.Z.
(Yechao Zhou); Software, Z.Y.; Validation, S.M., Y.Z. (Yechao Zhou) and Z.Y.; Formal Analysis, S.M., Y.Z. (Yechao
Zhou) and Z.Y.; Investigation, Z.Y. and Y.Z. (Yan Zhang); Resources, Z.Y. and Y.Z. (Yan Zhang); Data Curation,
Z.Y. and Y.Z. (Yan Zhang); Writing Original Draft Preparation, S.M., Y.Z. (Yechao Zhou), and Z.Y.; Writing Review
& Editing, S.M., Y.Z. (Yechao Zhou) and Y.Z. (Yan Zhang); Visualization, Y.Z. (Yan Zhang); Supervision, S.M.;
Project Administration, S.M.; Funding Acquisition, S.M. All authors reviewed the results and approved the final
version of the manuscript.

Funding: This research was funded by the National Key R&D Program of China, grant number 2018YFB1601300.



Sustainability 2019, 11, 4538 14 of 19

Acknowledgments: The authors would like to thank the experienced anonymous reviewers for their constructive
and valuable suggestions to improve the overall quality of this paper.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A Travel Characteristics Data

Table A1. Distribution of respondents’ individual characteristics.

Survey Content Option Sample Percent Survey Content Option Sample Percent

Gender
Male 305 63.1% Will pay attention to

environmental news/events
Yes 357 73.9%

Female 178 36.9% No 96 26.1%

Education
Undergraduate 204 42.2%

Can ride bicycle
Yes 476 98.6%

Postgraduate 279 57.8% No 7 1.4%

Sports frequency
Rarely 109 22.6%

Has public bicycle IC card
Yes 122 25.3%

Occasionally 253 52.4% No 361 74.7%

Often 121 25.0%

Installed bicycle sharing app

Neither 42 8.7%

Disposable living
expenses (yuan)

≤1000 126 26.1% Only Mobike 239 31.5%

1000–1500 239 49.5% Only ofo 133 45.4%

1500–2000 75 15.5% Both 70 14.4%

≥2000 43 9.0%
Has personal bicycle

Yes 72 14.9%

Waiting for traffic
lights and walking on

crosswalks

Will not 5 1.1% No 411 85.1%

Will if police nearby 11 2.2%

Cycling support level

Very unsupported 12 2.4%

Sometimes will 39 8.2% Unsupported 11 2.2%

Will 428 88.6%
Supported 337 69.8%

Has environmental
awareness

Yes 446 92.4%

No 21 4.3% Very supported 123 25.5%
Not clear 16 3.3%

Note: A public bicycle IC card is a value card similar to a bus IC card, which can be used in conjunction with the
urban public bicycle system.

Table A2. Distribution of respondents’ riding habits.

Survey Content Option Sample Percent Survey
Content Option Sample Percent

Riding frequency
≤0.5 106 22.0%

Acceptable
search time

(min)

1 27 5.7%
1 222 45.9% 2 42 8.7%
≥2 155 32.1% 3 60 12.4%

Riding time/period
Only day 182 37.7% 5 249 51.5%

Only night 7 1.4% 10 90 18.7%
Day and night 294 60.9% >10 15 3%

Acceptable riding
time (min)

≤10 42 8.7%
Road safety
evaluation

Very low 41 8.5%
≤15 190 39.4% Low 249 51.5%
≤20 143 29.6% High 181 37.5%
>20 108 22.3% Very high 12 2.5%

Acceptable cycling
distance (km)

1 26 5.3%

Satisfaction of
riding

environment
(scores)

0, 1, 2 31 6.4%
2 180 37.3% 3 39 8.1%
3 173 35.9% 4 52 10.7%

>3 104 21.5% 5 83 17.2%

Search time before
riding (min)

1 66 13.6% 6 79 16.4%
2 121 25.0% 7 82 17.0%
3 98 20.3% 8 68 14.0%
5 146 30.4% 9, 10 49 10.2%
10 45 9.5%

>10 7 1.4%
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Appendix B Correlation Test Results

Table A3. Correlation test of travel mode and influence factors.

Variable Category Original Influence Factor (Code) Type Spearman
Coefficient Sig. Variable

Category Original Influence Factor (Code) Type Spearman
Coefficient Sig.

(1) Personal features and travel mode

Gender
Male (Z1) 0–1 0.091 * 0.039

Education
Undergraduate (Z3) 0–1 0.098 * 0.026

Female (Z2) 0–1 −0.091 * 0.039 Postgraduate (Z4) 0–1 0.098 * 0.026

Environmental awareness Will pay attention to environmental news or not (Z5) 0–1 0.141 ** 0.001 Riding frequency Daily riding frequency (Z6) Continuous 0.114 ** 0.010

(2) Riding habits and travel mode

Cycling expectations

Acceptable cycling distance < 2 km (Z8) 0–1 0.051 * 0.046

Cycling reasons

Cheap (Z22) 0–1 −0.092 * 0.036

Acceptable cycling distance < 3 km (Z9) 0–1 0.117 * 0.010 Flexible (Z23) 0–1 −0.077 0.036

Acceptable cycling distance > 3 km (Z10) 0–1 0.112 * 0.030 Low carbon (Z24) 0–1 0.128 ** 0.003

Acceptable riding time (Z11) Ordered −0.0109 * 0.013 Avoid traffic congestion (Z25) 0–1 0.093 * 0.035

Acceptable searching time (Z12) Ordered −0.110 * 0.012 Lack of transport (Z26) 0–1 0.115 * 0.017

Cycling experiences

Road safety evaluation (Z7) Ordered 0.111 * 0.012

Cycling season

Summer only (Z27) 0–1 −0.106 * 0.016

Operational convenience (Z13) Ordered −0.110 * 0.012 Autumn only (Z28) 0–1 −0.094 * 0.033

Searching convenience (Z14) Ordered −0.164 ** 0.000 Except winter (Z29) 0–1 −0.176 ** 0.000

Returning convenience (Z15) Ordered −0.096 * 0.028 All seasons (Z30) 0–1 0.248 ** 0.000

Bicycle quality scores (Z16) Ordered −0.208 ** 0.000
Daily riding time

Only day (Z31) 0–1 −0.165 ** 0.000

Deposit security scores (Z17) Ordered −0.152 ** 0.001 Day and night (Z32) 0–1 0.169 ** 0.000

Riding promotion scores (Z18) Ordered −0.137 ** 0.002

Daily riding
environment

Isolated bicycle lane (Z33) 0–1 0.093 * 0.035

Overall satisfaction scores (Z19) Ordered −0.171 ** 0.000 Signal lights at intersections (Z34) 0–1 −0.119 ** 0.007

Traveling purpose
Attending class (Z20) 0–1 −0.136 ** 0.002 Flat road (Z35) 0–1 0.042 * 0.038

Transferring (Z21) 0–1 0.099 * 0.025 Campus interior (Z36) 0–1 −0.115 ** 0.009

Many pedestrians (Z37) 0–1 −0.103 * 0.014

(3) Trip information and travel mode

Traveling characteristics

Entertainment (Z38) 0–1 −0.149 ** 0.001

Traveling road
environment

Bicycle lanes (Z48) 0–1 0.107 * 0.015

Shopping (Z39) 0–1 0.105 * 0.044 Road congestion (Z49) 0–1 0.463 ** 0.000

Returning (Z40) 0–1 −0.082 * 0.031 Many cars (Z50) 0–1 0.428 ** 0.000

Visiting friends (Z41) 0–1 0.098 * 0.026 Many pedestrians (Z51) 0–1 0.106 * 0.016

Laboratory attendance (Z42) 0–1 0.174 ** 0.000 Many intersections (Z52) 0–1 0.237 ** 0.000

Travel time (min) (Z43) Continuous 0.229 ** 0.000 Flat road (Z53) 0–1 0.098 * 0.027

Travel distance (km) (Z44) Continuous 0.533 ** 0.000 Through pedestrian bridge (Z54) 0–1 0.117 ** 0.008

Traveling natural environment

Cloudy (Z45) 0–1 0.180 ** 0.000 Complete and clear markings and signs (Z55) 0–1 0.376 ** 0.000

Sunny (Z46) 0–1 −0.169 ** 0.000 Trips on campus (Z56) 0–1 −0.121 ** 0.006

Perceived temperature (Z47) 0–1 −0.116 ** 0.008

Note: ** Significantly correlated at the 0.01 level (two-sided); * significantly correlated at the 0.05 level (two-sided).
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Table A4. Correlation test of riding frequency and influence factors.

Variable Category Original Influence Factor
(Influence Factor Code) Type Spearman

Coefficient Sig. Variable Category Original Influence Factor Type Spearman
Coefficient Sig.

(1) Personal features and riding frequency

Gender
Male (M1) 0–1 0.183 ** 0.000 Disposable living

expenses
1000–1500 (yuan) (M11) 0–1 −0.142 ** 0.001

Female (M2) 0–1 −0.183 ** 0.000 1500–2000 (yuan) (M12) 0–1 0.147 ** 0.001

Sports frequency
Rarely (M3) 0–1 −0.116 ** 0.009 IC card Has bus IC card (M6) 0–1 0.146 ** 0.001

Occasionally (M4) 0–1 0.106 * 0.016 Bicycle usage As major travel mode (M7) 0–1 0.426 ** 0.000

Installed bicycle sharing app
Neither (M8) 0–1 0.089 * 0.043 Environmental

awareness
Will pay attention to environmental news or not (M5) 0–1 0.115 ** 0.009

Only ofo (M9) 0–1 0.125 ** 0.005

Both (M10) 0–1 −0.208 ** 0.000

(2) Riding habits and riding frequency

Daily riding time
Only day (M13) 0–1 −0.293 ** 0.000

Cycling reasons

Cheap (M25) 0–1 0.192 ** 0.000

Day and night (M14) 0–1 0.299 ** 0.000 Habit (M26) 0–1 0.173 ** 0.000

Cycling expectations
Acceptable riding time (M15) Ordered 0.123 ** 0.005 Low carbon (M27) 0–1 0.199 ** 0.000

Acceptable searching time (M16) Ordered 0.132 ** 0.003 Avoid traffic congestion (M28) 0–1 0.125 ** 0.005

Cycling season

Summer only (M17) 0–1 −0.135 ** 0.002 For exercise (M29) 0–1 0.088 * 0.046

All seasons (M18) 0–1 0.120 ** 0.007

Daily riding
environment

Isolated bicycle lane (M30) 0–1 0.091 * 0.040

Spring and autumn (M19) 0–1 −0.131 ** 0.003 Mixed traffic (M31) 0–1 −0.096 * 0.030

Travel purpose
Attending class (M20) 0–1 0.297 ** 0.000 Signal lights at intersections (M32) 0–1 0.134 ** 0.002

Shopping (M21) 0–1 0.112 * 0.011 Not pass pedestrian bridge (M33) 0–1 0.106 * 0.016

Daily bicycle riding

Public bicycle (M22) 0–1 0.155 ** 0.000 Campus interior (M34) 0–1 0.093 * 0.036

Mobike (M23) 0–1 0.110 * 0.012 Traveling road
environment

Road congestion (M35) 0–1 0.161 ** 0.000

ofo (M24) 0–1 −0.092 * 0.038 Trips on campus (M36) 0–1 0.114 ** 0.010

Note: ** Significantly correlated at the 0.01 level (two-sided); * significantly correlated at the 0.05 level (two-sided).
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Table A5. Common factor definitions and reliability test.

Lower Model

Common Factor Code Renamed Common Factor Expression Cronbach α Reliability Coefficient

x1 Cycling experiences factor x1 = 0.207Z13 + 0.201Z14 + 0.207Z15 + 0.160Z16 + 0.173Z17 + 0.182Z18 + 0.208Z19 0.857

x2 Traveling road environment factor 1 x2 = 0.173Z48 + 0.262Z51 + 0.215Z52 − 0.309Z56 0.704

x3 Traveling road environment factor 2 x3 = 0.234Z39 + 0.253Z50 + 0.240Z53 − 0.270Z54 + 0.232Z55 0.748

x4 Traveling characteristics factor x4 = 0.296Z43 + 0.348Z44 + 0.208Z49 0.801

x5 Daily riding time factor 1 x5 = −0.401Z31 + 0.412Z32 0.823

x6 Gender factor 1 x6 = 0.475Z1 − 0.475Z2 0.743

x7 Education factor 1 x7 = −0.389Z3 + 0.389Z4 0.798

x8 Cycling expectation factor 1 x8 = 0.465Z10 + 0.446Z11 0.720

x9 Traveling natural environment factor x9 = 0.404Z45 − 0.399Z46 − 0.35Z47 0.827

x10 Cycling expectation factor 2 x10 = −0.463Z8 + 0.520Z9 0.767

x11 Cycling season factor 1 x11 = −0.464Z29 + 0.369Z30 0.832

x12 Comprehensive factor 1 x12 = 0.416Z21 + 0.266Z24 − 0.418Z26 − 0.141Z28 + 0.204Z33 0.661

x13 Comprehensive factor 2 x13 = 0.449Z6 + 0.297Z20 0.773

x14 Daily riding environment factor 1 x14 = 0.331Z25 + 0.436Z34 + 0.274Z35 0.804

x15 Comprehensive factor 3 x15 = 0.269Z5 − 0.468Z37 + 0.404Z42 0.693

x16 Traveling purpose factor 1 x16 = 0.434Z38 − 0.56Z40 0.819

x17 Cycling season factor 2 x17 = 0.541Z27 –

x18 Comprehensive factor 4 x18 = 0.327Z7 + 0.191Z12 + 0.502Z23 0.732

x19 Traveling purpose factor 2 x19 = −0.566Z41 –

Upper model

w1 Daily riding time factor 2 w1 = −0.399M13 + 0.399M14 0.823

w2 Gender factor 2 w2 = 0.445M1 − 0.445M2 0.743

w3 Comprehensive factor 5 w3 = −0.493M8 − 0.445M24 0.657

w4 Comprehensive factor 6 w4 = 0.511M9 + 0.462M23 0.710

w5 Education factor 2 w5 = 0.511M3 − 0.547M4 0.798

w6 Disposable living expenses factor w6 = −0.561M11 + 0.531M12 0.836

w7 Comprehensive factor 7 w7 = 0.205M7 + 0.427M21 + 0.428M29 0.749

w8 Daily riding environment factor 2 w8 = 0.554M34 + 0.503M36 0.715

w9 Comprehensive factor 8 w9 = 0.272M18 − 0.364M19 + 0.365M25 + 0.44M30 0.802

w10 Comprehensive factor 9 w10 = −0.329M10 − 0.547M17 + 0.267M20 0.735

w11 Comprehensive factor 10 w11 = 0.351M5 − 0.339M26 + 0.411M32 + 0.353M35 0.651

w12 Public bicycle factor w12 = 0.376M6 + 0.497M22 0.809

w13 Cycling reasons factor w13 = 0.613M27 + 0.210M28 0.763

w14 Cycling expectation factor 3 w14 = 0.574M15 + 0.506M16 0.776

w15 Daily riding environment factor 3 w15 = −0.507M31 + 0.632M33 0.808
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