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Abstract: Staying at the top is getting tougher and more challenging due to the fast-growing and
changing digital technologies and AI-based solutions. The world of technology, mass customization,
and advanced manufacturing is experiencing a rapid transformation. Robots are becoming even more
important as they can now be coupled with the human mind by means of brain–machine interface
and advances in artificial intelligence. A strong necessity to increase productivity while not removing
human workers from the manufacturing industry is imposing punishing challenges on the global
economy. To counter these challenges, this article introduces the concept of Industry 5.0, where robots
are intertwined with the human brain and work as collaborator instead of competitor. This article also
outlines a number of key features and concerns that every manufacturer may have about Industry
5.0. In addition, it presents several developments achieved by researchers for use in Industry 5.0
applications and environments. Finally, the impact of Industry 5.0 on the manufacturing industry and
overall economy is discussed from an economic and productivity point of view, where it is argued
that Industry 5.0 will create more jobs than it will take away.
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1. Industrial Revolutions

Traced back to 1780s, the First Industrial Revolution was born with the generation of mechanical
power from water, steam, and fossil fuels. In the second such revolution, electrical energy was favored
by manufacturers with assembly lines and mass production in the 1870s. Employing electronics and
information technologies (IT), the Third Industrial Revolution familiarized the production industries
with the concept of automation in the 1970s. The fourth phase of revolution utilizes the Internet
of Things (IoT) and cloud computing for the provision of a real-time interface between the virtual
and physical worlds—the so-called cyber-physical systems. Although Industry 4.0 is not yet well
grown, many industry pioneers and technology leaders are looking ahead to the Fifth Industrial
Revolution: autonomous manufacturing with human intelligence in and on the loop (see Figure 1 for
a visual representation). With the aggressive growth and spread of the Internet, it is anticipated that
an additional 3 billion people will access the Internet by 2025. Hence, we should put great effort and
care into what we are doing and what we are going to do; change is certain, success is not (adapted
from historian E.H. Carr [1], also used in Duszak’s work [2]).
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Figure 1. Industrial Revolutions (some pictures used from pixabay). 

2. Background 

Manufacturers are competing to satisfy the ever-changing market demands. This requires 
production lines to be adaptive, intelligent, and flexible enough to meet the updated requests. 
Business leaders and manufacturing managers have concluded that they should achieve an 
integration of business and industrial production. Such an integration requires considerable 
advancement in industrial process and strategies. Moreover, it is achievable only by integrating 
various facets of a company, including suppliers, production lines, and customers. This multi-faceted 
integration has been termed the Internet of Things (IoT), which is the main asset of Industry 4.0. 

Originating from a German government strategy project [3], the Fourth Industrial Revolution 
was an initiative strategy to transform manufacturing agents from fully physical systems to cyber-
physical systems (CPS). Therefore, the foundation of Industry 4.0 is based on the CPS communicating 
with each other through the IoT. Real-time information exchange between CPS results in a large 
amount of data that requires an efficient and secure method of storage. Cloud storage is the most 
common solution. A great deal of analyses and processes is also required to obtain useful information 
from raw and huge data lakes. Combining the analyzed data with IoT, Industrial Internet was the 
next concept that emerged to bridge the digital and physical worlds. 

The main drivers of Industry 4.0 can be listed as follows: 
• The Internet and IoT being available almost everywhere; 
• Business and manufacturing integration; 
• Digital twins of real-world applications; 
• Efficient production lines and smart products. 

The new concepts introduced by Industry 4.0 include CPS, IoT, the smart factory, big data, cloud 
storage, and cybersecurity. When it comes to efficiency and costs, Industry 4.0 has decreased [4] 
• Production costs by 10–30%; 
• Logistic costs by 10–30%; 
• Quality management costs by 10–20%. 

Industry 4.0 applies IoT in the manufacturing workspaces and then analyzes the big data 
collected on cloud storage to efficiently increase autonomy and cybersecurity levels. 

3. What is Industry 5.0 and Why is it Required? 

Industry 4.0 is about automating processes and introducing edge computing in a distributed and 
intelligent manner. Its sole focus is to improve the efficiency of the process, and it thereby 
inadvertently ignores the human cost resulting from the optimization of processes. This is the biggest 
problem that will be evident in a few years when the full effect of Industry 4.0 comes into play. 
Consequently, it will face resistance from labor unions and politicians, which will see some of the 
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2. Background

Manufacturers are competing to satisfy the ever-changing market demands. This requires
production lines to be adaptive, intelligent, and flexible enough to meet the updated requests.
Business leaders and manufacturing managers have concluded that they should achieve an integration
of business and industrial production. Such an integration requires considerable advancement in
industrial process and strategies. Moreover, it is achievable only by integrating various facets of
a company, including suppliers, production lines, and customers. This multi-faceted integration has
been termed the Internet of Things (IoT), which is the main asset of Industry 4.0.

Originating from a German government strategy project [3], the Fourth Industrial Revolution was
an initiative strategy to transform manufacturing agents from fully physical systems to cyber-physical
systems (CPS). Therefore, the foundation of Industry 4.0 is based on the CPS communicating with
each other through the IoT. Real-time information exchange between CPS results in a large amount
of data that requires an efficient and secure method of storage. Cloud storage is the most common
solution. A great deal of analyses and processes is also required to obtain useful information from raw
and huge data lakes. Combining the analyzed data with IoT, Industrial Internet was the next concept
that emerged to bridge the digital and physical worlds.

The main drivers of Industry 4.0 can be listed as follows:

• The Internet and IoT being available almost everywhere;
• Business and manufacturing integration;
• Digital twins of real-world applications;
• Efficient production lines and smart products.

The new concepts introduced by Industry 4.0 include CPS, IoT, the smart factory, big data,
cloud storage, and cybersecurity. When it comes to efficiency and costs, Industry 4.0 has decreased [4]

• Production costs by 10–30%;
• Logistic costs by 10–30%;
• Quality management costs by 10–20%.

Industry 4.0 applies IoT in the manufacturing workspaces and then analyzes the big data collected
on cloud storage to efficiently increase autonomy and cybersecurity levels.

3. What is Industry 5.0 and Why is It Required?

Industry 4.0 is about automating processes and introducing edge computing in a distributed and
intelligent manner. Its sole focus is to improve the efficiency of the process, and it thereby inadvertently
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ignores the human cost resulting from the optimization of processes. This is the biggest problem that
will be evident in a few years when the full effect of Industry 4.0 comes into play. Consequently,
it will face resistance from labor unions and politicians, which will see some of the benefits of Industry
4.0 neutralized as pressure to improve the employment number increases. However, it is not really
necessary to be on the back foot when it comes to introducing process efficiency by means of introducing
advanced technologies. It is proposed that Industry 5.0 is the solution we will need to achieve this
once the backward push begins.

Furthermore, the world has seen a massive increase in environmental pollution beginning from
the Second Industrial Revolution. However, unlike in the past several decades, the manufacturing
industry is now more focused on controlling different aspects of waste generation and management
and on reducing adverse impacts on the environment from its operation. Having environmental
awareness is often considered a competitive edge due to the vast amount of support from government;
international organizations like the UN, WHO, etc.; and even an ever-growing niche customer base
that supports environmentally friendly companies. Unfortunately, Industry 4.0 does not have a strong
focus on environmental protection, nor has it focused technologies to improve the environmental
sustainability of the Earth, even though many different AI algorithms have been used to investigate
from the perspective of sustainability [5–8] in the last decade. While the existing studies linking AI
algorithms with environmental management have paved the way, the lack of strong focus and action
leads to the need for a better technological solution to save the environment and increase sustainability.
We envisage this solution to come out of Industry 5.0.

Bringing back human workers to the factory floors, the Fifth Industrial Revolution will pair
human and machine to further utilize human brainpower and creativity to increase process efficiency
by combining workflows with intelligent systems. While the main concern in Industry 4.0 is
about automation, Industry 5.0 will be a synergy between humans and autonomous machines.
The autonomous workforce will be perceptive and informed about human intention and desire.
The human race will work alongside robots, not only with no fear but also with peace of mind,
knowing that their robotic co-workers adequately understand them and have the ability to effectively
collaborate with them. It will result in an exceptionally efficient and value-added production process,
flourishing trusted autonomy, and reduced waste and associated costs. Industry 5.0 will change the
definition of the word “robot”. Robots will not be only a programmable machine that can perform
repetitive tasks but also will transform into an ideal human companion for some scenarios. Providing
robotic productions with the human touch, the next industrial revolution will introduce the next
generation of robot, commonly termed as cobots, that will already know, or quickly learn, what to do.
These collaborative robots will be aware of the human presence; therefore, they will take care of the
safety and risk criteria. They can notice, understand, and feel not only the human being but also the
goals and expectations of a human operator. Just like an apprentice, cobots will watch and learn how
an individual performs a task. Once they have learned, the cobots will execute the desired tasks as
their human operators do. Therefore, the human experiences a different feeling of satisfaction while
working alongside cobots.

The concept of Industry 5.0 can be visualized using a production line example (shown in Figure 2).
It shows a human worker working on the assembly of an electro-mechanical machine. The human
worker starts a task, and a robot observes the process using a camera on a gimbal. This camera works
as the eye of the robot. The robot is also connected with a processing computer that takes the image,
performs image processing, and learns the patterns using machine learning. It also observes the
human, monitors the environment, and infers what the operator will do next using human intention
analysis powered by deep learning. A crucial sensor that can be used to understand human intention
is functional near-infrared spectroscopy (fNIRS) over a wireless communication channel to retrieve
signals from the human brain. fNIRS is better suited for this task as it comes in the form of a headset
and does not need time-consuming setup and calibration steps. Once the robot is confident about its
prediction, it will attempt to help the human worker. It will be like another human standing with
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the human worker and attempting to help them, which will increase the overall process efficiency.
In this example, the robot predicts that the human operator will use a certain part in the next step of
the task. It then goes and fetches the part ahead of time and delivers it to the human when needed.
The process occurs seamlessly so the human operator does not have to make any adjustments in his/her
work process.
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(2) Robot analyzing the human intention. Visual observation (RGB camera) and functional near-
infrared spectroscopy (fNIRS) sensors can be used for human intention prediction, for example. (3) 
and (4) Robot starts to move to pick up an object from the workbench to help the human worker. (5) 
Robot picks up an object of interest for the human worker. (6) Robot bringing the object to the worker. 
(7) Robot delivers the object to the worker when it is required and is accepted by the human worker. 
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Figure 2. The case for Industry 5.0: Robots work with humans to increase production efficiency, not to
replace the human workers. (1) A robot is observing a human and understanding the workflow.
(2) Robot analyzing the human intention. Visual observation (RGB camera) and functional near-infrared
spectroscopy (fNIRS) sensors can be used for human intention prediction, for example. (3) and (4)
Robot starts to move to pick up an object from the workbench to help the human worker. (5) Robot picks
up an object of interest for the human worker. (6) Robot bringing the object to the worker. (7) Robot
delivers the object to the worker when it is required and is accepted by the human worker.
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We anticipate that Industry 5.0 will create a new manufacturing role: Chief Robotics Officer
(CRO). A CRO is an individual with expertise in understanding robots and their interactions with
humans. The CRO will be responsible for making decisions for machines or robots to be added or
removed from the environment/factory floor to achieve optimal performance and efficiency. CROs will
have backgrounds in robotics, artificial intelligence, human factors modelling, and human–machine
interaction. The CROs are better equipped with collaborative robotic technologies and, by harnessing
power from advances in computation, will be suitably placed to make a positive impact on environment
management as well. This will eventually increase the sustainability of human civilization by reducing
pollution and waste generation and preserving the Earth.

4. Methodology for the Solution—What is Required for Industry 5.0?

As mentioned in the previous section, Industry 5.0 will solve the problems associated with the
removal of human workers from different processes. However, it will need even more advanced
technologies to achieve this, which are discussed below.

Networked Sensor Data Interoperability

Ranging from smart houses to autonomous manufactures, cobots, and other distributed intelligent
systems, it makes sense that ubiquitous sensing and collection of big data is an unavoidable asset of
the next industrial revolution and it is only possible through networked sensors. This also makes
it possible to achieve faster analyses and customization processes. A network of sensors with some
low-level intelligence and processing power could reduce the need for a high-bandwidth data transfer
mechanism, while also allowing for some local preprocessing of data. This would, in turn, reduce
network latency and overload, while also creating a level of “distributed intelligence” in the network.
A common framework for information transfer, rather than a simple data transfer mechanism, will be
needed to fully benefit from a sensor network. Once implemented, these networked sensors will open
the possibility for unprecedented customization in manufacturing processes.

Multiscale Dynamic Modelling and Simulation: Digital Twins

With the intelligence of autonomous systems arises complexities in evaluation monitoring of
the manufacturing setups. Visualization and modeling of the production line [9] is a very useful
tool for making policies and for managing and personalizing future products and product lines.
A digital twin [10] is “A virtual model of a process, product or service” [11]. Bridging the virtual
and physical worlds, digital twins provide manufacturing units with the ability to analyze data,
monitor the production process, manage risk prior to its occurrence, reduce downtime, and further
develop by simulations. With recent advancements in big data processing and artificial intelligence,
it is now possible to create even more realistic digital twins that properly model different operating
situations and characteristics of a process. When accounting for uncertainty in the process, digital
twins present an immense opportunity by allowing reduced wastage in the process flow and system
design. Coupled with state-of-the-art visualization and modelling techniques, technologies like digital
twins are set to increase the productivity of all sectors in any industry.

Shopfloor Trackers

Shopfloor trackers improve real-time production tracking. They allow the association of sales
orders from customers with production orders and supplementary materials. Subsequently, they lead
to optimal and efficient resource management, which is a critical objective for manufacturers. Shofloor
trackers also allow for real-time tracking of assets and process flow, which paves the way for online
process optimization in the production process. These trackers can be implemented in the form of
networked sensors or by utilizing the benefits offered by networked sensors. They could also lead to
reductions in material wastage, theft prevention, and prevention of mismanagement of assets when
coupled with technologies like IoT and machine learning.
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Virtual Training

This started in 1997 and is a kind of training in which the trainee learns a specific task or skill in
a virtual or simulated environment. In some cases, the trainer and the trainee are based in different
locations. This type of training significantly reduces the costs and time for both parties. It is also
flexible enough to be updated and reconfigured for new training courses. As an example, the haptically
enabled Universal Motion Simulator (UMS) in Figure 3 (Patent #9174344, filed in 2007) [12–14] provides
a safe and accurate yet cost-effective environment for training drivers, pilots, fire fighters, medical
professionals, etc., far from the danger and risks they might face in real venues or without imposing
risk to others.
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Virtual training is also very important in creating a skilled workforce without risking the
productivity of a running process or endangering a human worker. It is especially important in jobs
and tasks that pose some form of risk due to a repeated action or posture during work. For example,
if coupled with human posture analysis, virtual training can largely benefit a broad spectrum of the
workforce by providing them with proper, cost-effective training without exposing them to potentially
dangerous training scenarios.

Virtual training can be facilitated through a combination of virtual and augmented reality
techniques. When combined with recent advances in graphical processing units (GPUs) and potentially
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big data and artificial intelligence, virtual training suddenly becomes a lot more realistic and beneficial
than it was in the past. Furthermore, haptics technologies and devices can be very advantageous in
virtual training as they can mimic the real touch and feel of the actual scenarios and activities involved.

Intelligent Autonomous Systems

Autonomously controlling production lines requires a great deal of artificial intelligence applied
in the software agents operating in the factory. Autonomy in Industry 5.0 is considerably different from
what was referred to as automation in Industry 3.0. Exercising autonomy that performs useful functions
is very difficult if not impossible without artificial intelligence (AI). AI techniques allow machines
to learn and therefore autonomously execute a desired task. State-of-the-art classification [15–17],
regression [18–20], and clustering methodologies [21,22] empowered by deep learning strategies result
in intelligent systems and solutions that can make decisions under unforeseen circumstances [23–25].
Moreover, transfer learning is a critical aspect of implementation and personalization in Industry 5.0
environments, where most of the systems suffer from uncertainties. Transferring the gained knowledge
and skill from a digital/virtual system to its physical twin, securely and robustly, plays a very important
role in the Fifth Industrial Revolution.

Advances in Sensing Technologies and Machine Cognition

Intelligent autonomous systems will greatly depend on replication of the senses that we, humans,
use to cooperate with others and learn in an adaptive manner [26,27]. Computer vision [28], combined
with deep learning [29], reinforcement learning, and GPU-based computation [30], has shown great
promise in replicating primitive vision and sensory capabilities. However, for Industry 5.0 cobots,
these capabilities must be improved significantly. For example, a human worker will stop working
when he/she suspects something unnatural in his/her workspace, even when there is nothing wrong in
plain sight but using their emotional intelligence. This sort of anticipatory behavior is very important in
preventing workplace accidents. At this moment, our vision and cognition technologies cannot achieve
this. In addition to vision and sensory technologies, machine cognition needs to improve in order to
make the best judgements in an ever-changing workplace situation. Developing a highly adaptive
system can achieve this capability, but it is not trivial to build such a system because, with our current
technologies, no model, data, or rule-based system can accomplish this on its own. Furthermore,
other sensory technologies and their analyses must be improved in order to replicate what a human
operator would normally do in a given scenario. Figure 4 describes the recommended operating
principle of cobots for an assistive task in a trivial workplace task.

Even a simple assistive task, as described in Figure 4, is complex for a cobot as a human operator
normally makes, both consciously and subconsciously, many decisions before performing such a task.
They will estimate the need for assistance, judge the risk in offering assistance, watch for safety factors,
and then safely approach to offer help. Since cobots will cooperate with a human in the presence of
other humans and machines, they need to have similar decision-making mechanisms built into their
system, which requires advanced perception, localization, vision, and cognition abilities, along with
improvement in computation power in embedded platforms. The current pace and trend in deep
learning, machine learning, and embedded systems hint that more advances in these fields will greatly
assist in achieving these required capabilities for a cobot.

Deep learning methods have recently shown promising performance in the field of robotic
and computer vision, specifically. These methods have provided robots and intelligent machines
with reliable cognition and visualization capability, which is necessary in autonomous applications,
including in cobots. Deep learning strategies are basically founded on artificial neural networks
with a comparatively large number of layers in their structure. Figure 5 depicts a typical schematic
of a multilayer neural network, generally called a deep neural network (DNN). The main asset of
the deep learning algorithms is that they perform much better than conventional learning methods
as the amount of training data increases. In other words, the more training data, the greater the
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effectiveness of deep learning methods. Interestingly, the performance efficiency of deep learning
techniques improves with increasing quantity of training data, while the performance of traditional
learning methods will become saturated if the training data exceed the optimum level (see Figure 6).
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Another example of smart sensing involves using the human brain as the source of signals.
This can be achieved by electroencephalography (EEG), functional magnetic resonance imaging (fMRI),
or functional near-infrared spectroscopy (fNIRS). Among these devices, fNIRS is portable and easier
to use, due to lower setup time and built-in wireless connectivity for data transfer in most available
headsets. These fNIRS headsets effectively capture brain activations and can be used for a wide
range of tasks, including signal analysis, intention prediction, and contextual awareness. For example,
such fNIRS devices can be used in a medical setup where an operator can control a robotic arm,
equipped with a diagnostic or surgical instrument, to perform a certain task. These tasks can be as
simple as handing over an instrument to the operator or may be as complex as performing an operation
on a human body. Figure 7 depicts such a futuristic setup where a universal robot is equipped with
an ultrasound device and a human operator is controlling it in order to perform a scanning procedure.
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5. How Industry 5.0 Will Affect Manufacturing Systems

Previous industrial revolutions demonstrate that manufacturing systems and strategies have been
continuously changing towards greater productivity and efficiency. Although many conferences and
symposia are being held with a focus on Industry 5.0, there are still several manufacturers and industry
leaders under the belief that it is too soon for a new industrial revolution [31]. On the other hand,
accepting the next industrial revolution requires the adoption, standardization, and implementation of
new technologies, which needs its own infrastructure and developments.

Industry 5.0 will bring unprecedented challenges in the field of human–machine interaction (HMI)
as it will put machines very close to the everyday life of any human. Even though we are obsessed
with machines such as programmable assistive devices and programmable cars, we do not consider
them a version of cobots (even though the differences are not that great from a certain perspective),
mostly because of their shape. Cobots will be very different as their organization and introduction will
contain human-like functionalities such as gripping, pinching, and interaction based on intention and
environmental factors. We also anticipate that Industry 5.0 will create many jobs in the field of HMI
and computational human factors (HCF) analysis.

Industry 5.0 will revolutionize manufacturing systems across the globe by taking away dull,
dirty, and repetitive tasks from human workers wherever possible. Intelligent robots and systems
will penetrate the manufacturing supply chains and production shopfloors to an unprecedented level.
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This will be made possible by the introduction of cheaper and highly capable robots, made up of
advanced materials such as carbon fiber and lightweight but strong materials, powered by highly
optimized battery packs, cyber attack hardened, with stronger data handling processes (i.e., big data
and artificial intelligence), and a network of intelligent sensors. Industry 5.0 will increase productivity
and operational efficiency, be environmentally friendly, reduce work injury, and shorten production
time cycles. However, contrary to immediate intuition, Industry 5.0 will create more jobs than it
takes away. A large number of jobs will be created in the intelligent systems arena, AI and robotics
programming, maintenance, training, scheduling, repurposing, and invention of a new breed of
manufacturing robots. In addition, since repetitive tasks need not be performed by a human worker,
it will allow for creativity in the work process to be boosted by encouraging everyone to innovatively
use different forms of robots in the workplace.

Furthermore, as a direct impact of Industry 5.0, a large number of start-up companies will build
a new ecosystem of providing custom robotic solutions, in terms of both hardware and software,
across the globe. This will further boost the global economy and increase cash flow across the globe.

6. Concerns in Industry 5.0

• In the next industrial revolution, humans are expected to add high-value tasks in manufacturing
policies. Standardization and legalization will help to prevent any serious issues between
technology, society, and businesses.

• Particularly, senior members of a society and stakeholders will find it much more difficult to adapt
with the new industrial revolution [32].

• Fast and highly efficient manufacturing may result in an overproduction phenomenon.
Implementation transparency should also be taken into consideration.

• We must consider how autonomous systems can incorporate ethical principles.
• There should be explainable ethical behavior solutions in autonomous systems.
• Ethical behavior in autonomous systems must be subject to verification and validation.
• Essential skill gaps such as CROs in future management and executive roles must be addressed.

7. Conclusions

The Fifth Industrial Revolution will emerge when its three major elements—intelligent devices,
intelligent systems, and intelligent automation—fully merge with the physical world in co-operation
with human intelligence. The term “automation” describes autonomous robots as intelligent agents
collaborating with humans at the same time, in the same workspace. Trust and reliability between these
two parties will achieve promising efficiency, flawless production, minimum waste, and customizable
manufacturing. In doing so, it will bring more people back to the workplace and improve the
process efficiency.
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