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Abstract: As an attractive generalization of the intuitionistic fuzzy set (IFS), q-rung orthopair fuzzy
set (q-ROFS) provides the decision makers (DMs) with a wide window for preference elicitation.
Previous studies on q-ROFS indicate that there is an urge for a decision framework which can make
use of the available information in a proper manner for making rational decisions. Motivated by
the superiority of q-ROFS, in this paper, a new decision framework is proposed, which provides
scientific methods for multi-attribute group decision-making (MAGDM). Initially, a programming
model is developed for calculating weights of attributes with the help of partially known information.
Later, another programming model is developed for determining the weights of DMs with the
help of partially known information. Preferences from different DMs are aggregated rationally by
using the weights of DMs and extending generalized Maclaurin symmetric mean (GMSM) operator
to q-ROFS, which can properly capture the interrelationship among attributes. Further, complex
proportional assessment (COPRAS) method is extended to q-ROFS for prioritization of objects by
using attributes’ weight vector and aggregated preference matrix. The applicability of the proposed
framework is demonstrated by using a renewable energy source prioritization problem from an
Indian perspective. Finally, the superiorities and weaknesses of the framework are discussed in
comparison with state-of-the-art methods.

Keywords: generalized Maclaurin symmetric mean; optimization model; renewable energy source
and q-rung orthopair fuzzy set

1. Introduction

Energy from fossil fuels such as coal, petroleum, and natural gas act as a dominant contributor
to the economic development of the nation. Most countries in the world exploit these fuels to create
massive globalization and expansion of the market. India makes a significant contribution to the global
market with a total energy consumption of about 73.46% in 2014 (https://tradingeconomics.com/). In a
recent survey by Indragandhi et al. [1], it was claimed that by 2040 fossil fuels will run out of inventory
and countries have to switch to renewable energy sources for managing global demands. Pillai and
Banerjee [2] made an analysis of renewable energy from India’s standpoint and found that India
only consumes 4% of the world’s primary energy. Reddy and Painuly [3] and Indragandhi et al. [1]
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inferred from their analysis that India has a high scope for renewable energy sources and it can
effectively manage energy crisis by proper planning and management. Recently, Mardani et al. [4]
conducted a detailed analysis on the use of multi-attribute group decision-making (MAGDM) methods
for solving energy management problems, and it can be inferred from the analysis that energy source
evaluation and selection can be effectively solved by using MAGDM perspectives. Furthermore, there
is uncertainty in the process of selection, which can be effectively managed by using fuzzy sets and its
variants [5]. Baek and Lee et al. [6] proposed a new design strategy for optimal selection of renewable
energy system (RES) in buildings. Gonzalez et al. [7] presented a conceptual model to understand
the relationship among different factors that correspond to the sustainability and acceptance of RES
projects. Cavallaro et al. [8,9] presented decision frameworks under intuitionistic fuzzy context to
rationally select solar-hybrid power plants.

Motivated by these claims, in this paper, we propose a new decision framework for rational
prioritization of renewable energy sources. The preference information used here is q-rung orthopair
fuzzy set (q-ROFS) [10], which is a powerful generalization of the intuitionistic fuzzy set (IFS) [11] and
Pythagorean fuzzy set [12]. q-ROFS provides a wider window to decision makers (DMs) for preference
elicitation by relaxing the constraint (sum of the degree of membership and non-membership less
than or equal to one). Inspired by the power of q-ROFS, many researchers used it for MAGDM
applications. Yager and Alajlan [13] introduced q-ROFS for approximate reasoning. Later, Du [14]
proposed different distance measures viz., Minkowski, Hamming, Euclidian, etc., under q-ROFS
context and used the same for decision-making. Li et al. [15] provided a new variant for q-ROFS by
combing the concept of picture fuzzy set [16] with q-ROFS and applied the same for decision-making.
Liu et al. [17] extended the power Maclaurin symmetric mean operator to q-ROFS and used the same
for MAGDM. Further, Wei et al. [18] and Liu et al. [19] extended the idea of Heronian mean and
Bonferroni mean to q-ROFS context, respectively, and demonstrated its practicality by using MAGDM
problems. Bai et al. [20] introduced partitioned Maclaurin symmetric mean operator for q-ROFS and
applied it for MAGDM. Moreover, Wang et al. [21] presented q-ROFS based Muirhead mean operator
and validated its usefulness from MAGDM problem.

From the brief review conducted above, following challenges can be inferred:

1. A scientific decision framework which is comprised of aggregation operator for aggregating
preferences, attributes’ weight calculation method, DMs’ weight calculation method, and ranking
method is missing under the q-ROFS context;

2. Aggregation operators that can properly capture the interrelationship among attributes are
needed for effective aggregation of preferences under q-ROFS context;

3. To the best of our knowledge, DMs’ weights are directly provided for aggregation in a q-ROFS
context, which causes inaccuracies and imprecision in the decision-making process [22];

4. Calculation of attributes’ weight values with the help of partially known information under
q-ROFS context is an open challenge;

5. Prioritization of objects by considering the nature of attributes is an interesting challenge under
q-ROFS context.

To tackle these challenges, motivation is gained, and the contributions are presented below:

1. A scientific decision framework is proposed under q-ROFS context, and it is used for effective
prioritization of renewable energy sources;

2. A new operator is proposed to aggregate preferences of DMs by extending generalized Maclaurin
symmetric mean (GMSM) operator to q-ROFS. This operator not only captures the interrelationship
among attributes but also utilizes a systematic procedure for calculating weights of the DMs;

3. Koksalmis and Kabak [22] strongly emphasized the need for a systematic method for calculating
DMs’ weight values. Inspired by the claim, in this paper, we propose a programming model
under q-ROFS context for effectively determining DMs’ weights with the help of available
partial information;
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4. Attributes’ weight values are also calculated sensibly by proposing a new programming model
under q-ROFS context, which could use the partially known information effectively;

5. Mousavi-Nasab et al. [23] conducted a comprehensive analysis of the complex proportional
assessment (COPRAS) method with other methods and showcased its simplicity and advantage
of handling prioritization from different angles. This inspired our focus on extending COPRAS
for q-ROFS;

6. Finally, the strengths and weaknesses of the proposed scientific decision framework are analyzed
by comparison with other methods. Refer to Section 5 for details on references.

The rest of the paper is constructed as follows. Section 2 provides a preliminary review on some
of the basic concepts of IFS and q-ROFS. In Section 3, the proposed decision framework is discussed
in detail where the methods for calculating DMs’ and attributes’ weights are proposed along with
methods for aggregation of preferences and prioritization of alternatives. Section 4 provides the
numerical example of renewable energy source selection from the Indian perspective. Comparative
analysis of the proposed framework with other methods is provided in Section 5, and Section 6 presents
the concluding remarks and future directions.

2. Preliminaries

This section presents some basics of IFS and q-ROFS.

Definition 1 [9]. Let U be a fixed set such that T ⊂ U is also fixed. Now IFS T̃ is given by

T̃ =
(
u,µT̃(u), υT̃(u)

∣∣∣uεU)
, (1)

where µT̃(u) is the degree of membership, υT̃(u) is the degree of non-membership. µT̃(u) ∈ [0, 1], υT̃(u) ∈ [0, 1],
and µT̃(u) + υT̃(u) ≤ 1.

Definition 2 [8]. Let U be a fixed set with u being an element of U. Q on U is a q-ROFS given by

Q =
(
u,µQ(u), υQ(u)

∣∣∣uεU)
, (2)

where µQ(u) is the degree of membership, υT̃(u) is the degree of non-membership. µQ(u) ∈ [0, 1], υQ(u) ∈ [0, 1],
µ

q
Q(u) + υ

q
Q(u) ≤ 1 with q ≥ 1.

Here, Qi = (µi(u), υi(u)) is a q-ROFN and the collection of such q-ROFNs forms the q-ROFS.
Furthermore, πq

i = 1−
(
µ

q
i + υ

q
i

)
is called the degree of hesitation.

Definition 3 [8]. Let Q1, Q2 be two q-ROFNs, and the operational laws are given by

Q1 ⊕Q2 =
((

1−
(
1− µq

1

)(
1− µq

2

))1/q
, υ1υ2

)
, (3)

Qλ
1 =

(
µλ1 ,

(
1−

(
1− υq

1

)λ)1/q
)
, (4)

Q1 ⊗Q2 =
(
µ1µ2,

(
1−

(
1− υq

1

)(
1− υq

2

))1/q
)
, (5)

λQ1 =

((
1−

(
1− µq

1

)λ)1/q
, υλ1

)
, λ > 0, (6)

S(Q1) = µq
− υq, (7)

A(Q1) = µq + υq, (8)

Qc
1 = (υi,µi), (9)
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where S and A are the score and accuracy measure of a q-ROFN.

3. Proposed Decision Framework

3.1. Programming Model for Attribute Weight Calculation

This section puts forward a new programming model for calculating the weights of the attributes.
Common weight calculation methods are analytic hierarchy process (AHP) [24,25] and entropy
measures [26,27] which determine weights when the information is completely unknown. Since the
information about each attribute is partially known, a programming model is an effective way of using
the information to calculate the weight values. Moreover, attributes’ weight calculation in the context
of q-ROFS is an interesting area for exploration.

Motivated by these claims, in this section, we present the procedure for calculation weights of
attributes using a newly proposed programming model.

Step 1: Construct a matrix with q-ROFNs of order d× n where d represents the number of DMs
and n represents the number of attributes.

Step 2: Determine the positive ideal solution (PIS) and negative ideal solution (NIS) for each
attribute using Equations (10) and (11).

Q+
j = max j∈bene f it

(
A
(
Q j

))
or min j∈cost

(
A
(
Q j

))
(10)

Q−j = max j∈cost
(
A
(
Q j

))
or min j∈bene f it

(
A
(
Q j

))
(11)

where A(Qi) is the accuracy measure from Equation (8), Q+
j is the PIS value of the jth attribute and Q−j

is the NIS value of the jth attribute.
It must be noted that the PIS and NIS values are calculated for each attribute, and they are q-ROFNs.
Step 3: Use the PIS and NIS values from Step 2 to construct an objective function as given below:
Model 1:

Min Z =
n∑

j=1

ω j

m∑
i=1

(
d
(
Qi j, Q+

j

)
− d

(
Qi j, Q−j

))
Subject to:

0 ≤ ω j ≤ 1∑
j
ω j = 1

Here, the distance between two q-ROFNs is given by Equation (12).

d(Q1, Q2) =

√((
µ

q
i j

)
Q1

−

(
µ

q
i j

)
Q2

)2

+

((
υ

q
i j

)
Q1

−

(
υ

q
i j

)
Q2

)2

+

((
π

q
i j

)
Q1

−

(
π

q
i j

)
Q2

)2

(12)

where Q1 and Q2 are two q-ROFNs.

3.2. Proposed Programming Model for DMs’ Weight Calculation

This section provides the proposed programming model for calculating DMs’ weight values.
Most often, DMs’ weight values are directly provided as input, which causes inaccuracies in
the decision-making process [28]. As argued by Koksalmis and Kabak [22], the calculation of
DMs’ weight values is substantial for rational decision-making, and it prevents inaccuracies in the
decision-making process.

Motivated by this claim, in this paper, efforts are made to calculate DMs’ weights in a systematic
manner by making use of the partially available information. A programming model is proposed
under q-ROFS context, and the procedure is given below:
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Step 1: Obtain d matrices of order m × n where m is the number of alternatives, and n is the
number of attributes.

Step 2: Calculate the PIS and NIS values for each attribute by using Equations (13) and (14).
The values are determined for all d matrices.

QPIS
j = max j∈bene f it

(
A
(
Q j

))
or min j∈cost

(
A
(
Q j

))
(13)

QNIS
j = max j∈cost

(
A
(
Q j

))
or min j∈bene f it

(
A
(
Q j

))
(14)

where QPIS
j is the PIS calculated for each attribute, QNIS

j is the NIS calculated for each attribute.
It must be noted that Equations (13) and (14) are applied to all d matrices.
Step 3: By using the result from Step 2, an objective function is formulated, which can be used for

calculating the weights of the DMs.
Model 2:

Min Z =
d∑

k=1

wk

(
d
(
Qi j, QPIS

j

)
− d

(
Qi j, QNIS

j

))
Subject to:

0 ≤ wk ≤ 1
∑

k

wk = 1

Here, the distance is calculated by using Equation (15).

d(Q1, Q2) =

√√√ m∑
i=1

n∑
j=1

((µq
i j

)
Q1

−

(
µ

q
i j

)
Q2

)2

+

((
υ

q
i j

)
Q1

−

(
υ

q
i j

)
Q2

)2

+

((
π

q
i j

)
Q1

−

(
π

q
i j

)
Q2

)2 (15)

where Q1 and Q2 are any two q-ROFNs.

3.3. Proposed q-ROFGMSM Operator

This section provides a new extension to GMSM operator under q-ROFS context. The GMSM
operator [29] is a generalization of Maclaurin symmetric mean (MSM) operator which can effectively
capture the interrelationship between attributes. The GMSM operator can also readily derive other
operators as special cases. q-ROFS [10] is an attractive generalization of IFS [11] which can provide a
wider scope for DMs to offer their preferences.

Motivated by the superiority of GMSM operator and q-ROFS, in this paper, we propose q-rung
orthopair fuzzy generalized Maclaurin symmetric mean (q-ROFGMSM) operator who utilizes the
power of both q-ROFS and GMSM for aggregation of preferences.

Definition 4. The q-ROFNs are aggregated using a q-ROFGMSM operator which produces a mapping
Qn
→ Q given by

q−ROFGMSM(r,λ1,...,λr)(Q1, Q2, . . . , Qd) =


1−

d∏
k=1

1−
r∏

l=1

(
µ

q
i j

)λl
wk


1
q


1∑
l λl

,

1−

1−
d∏

k=1

1−
r∏

l=1

(
1− υq

i j

)λl
wk


1∑
l λl


1/q

, (16)

where r = d
2 is a parameter that determines the number of risk appetite values, λ1,λ2, . . . ,λr is risk appetite

values which can take possible values from the set {1, 2, . . . , d}, wk is the weight of the kth DM calculated by
using the procedure given in Section 3.2.
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Property 1. Idempotency.
If q-ROFNs Q1 = Q2 = . . . = Qd = Q then, q−ROFGMSM(r,λ1,...,λr)(Q1, Q2, . . . , Qd) = Q.

Proof. From Equation (16), we get

q−ROFGMSM(r,λ1,...,λr)(Q1, Q2, . . . , Qd) =


1−

d∏
k=1

1−
r∏

l=1

(
µ

q
i j

)λl
wk


1
q


1∑
l λl

,

1−

1−
d∏

k=1

1−
r∏

l=1

(
1− υq

i j

)λl
wk


1∑
l λl


1/q

,

By expanding the risk appetite, we get

q−ROFGMSM(r,λ1,...,λr)(Q1, Q2, . . . , Qd) =


1−

d∏
k=1

1−
r∏

l=1

(
µ

q
i j

)λ1+λ2+...+λr
wk


1
q


1∑
l λl

,

1−

1−
d∏

k=1

1−
r∏

l=1

(
1− υq

i j

)λ1+λ2+...+λr
wk


1∑
l λl


1/q

.

Similarly DMs’ weights are expanded and since
∑
k

wk = 1, we get

q−ROFGMSM(r,λ1,...,λr)(Q1, Q2, . . . , Qd) =


1−

d∏
k=1

1−
r∏

l=1

(
µ

q
i j

)λ1+λ2+...+λr



1
q


1∑
l λl

,

1−

1−
d∏

k=1

1−
r∏

l=1

(
1− υq

i j

)λ1+λ2+...+λr



1∑
l λl


1
q

= Q.

�

Property 2. Commutativity.
If q-ROFNs Q∗i are any permutation of Qi ∀i = 1, 2, . . . , d then, q −

ROFGMSM(r,λ1,...,λr)(Q1, Q2, . . . , Qd) = q−ROFGMSM(r,λ1,...,λr)
(
Q∗1, Q∗2, . . . , Q∗d

)
.

Proof. Since Q∗i are any permutation of Qi ∀i = 1, 2, . . . , d, we get

q−ROFGMSM(r,λ1,...,λr)
(
Q∗1, Q∗2, . . . , Q∗d

)
=


1−

d∏
k=1

1−
r∏

l=1

(
µ
∗q
i j

)λ1+λ2+...+λr
wk


1
q


1∑
l λl

,

1−

1−
d∏

k=1

1−
r∏

l=1

(
1− υ∗qi j

)λ1+λ2+...+λr
wk


1∑
l λl


1
q

,
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=


1−

d∏
k=1

1−
r∏

l=1

(
µ

q
i j

)λ1+λ2+...+λr
wk


1
q


1∑
l λl

,

1−

1−
d∏

k=1

1−
r∏

l=1

(
1− υq

i j

)λ1+λ2+...+λr
wk


1∑
l λl


1
q

= q−ROFGMSM(r,λ1,...,λr)(Q1, Q2, . . . , Qd),

�

Property 3. Monotonicity.
If Q′i is another collection of q-ROFNs such that Q′i ≥ Qi∀i = 1, 2, . . . , d then, q −

ROFGMSM(r,λ1,...,λr)(Q1, Q2, . . . , Qd) ≤ q−ROFGMSM(r,λ1,...,λr)
(
Q′1, Q′2, . . . , Q′d

)
.

Proof. Consider µ′i =


(
1−

∏d
k=1

(
1−

∏r
l=1

(
µ
∗q
i j

)λ1+λ2+...+λr
)wk

) 1
q


1∑
l λl

and υ′i =

1−
(
1−

∏d
k=1

(
1−

∏r
l=1

(
1− υ∗qi j

)λ1+λ2+...+λr
)wk

) 1∑
l λl


1
q

.

The q-ROFNs Qi is also defined similarly. Let q−ROFGMSM(r,λ1,...,λr)(Q1, Q2, . . . , Qd) = Q and
q−ROFGMSM(r,λ1,...,λr)

(
Q′1, Q′2, . . . , Q′d

)
= Q′ and Q′i ≥ Qi∀i = 1, 2, . . . , d. By using score and accuracy

measures from Equations. (7) and (8), if S(Q) ≥ S(Q′) then, Q ≥ Q′. When S(Q) = S(Q′) then,
calculate accuracy. If A(Q) ≥ A(Q′) then, Q ≤ Q′. Thus, q − ROFGMSM(r,λ1,...,λr)(Q1, Q2, . . . , Qd) ≤

q−ROFGMSM(r,λ1,...,λr)
(
Q′1, Q′2, . . . , Q′d

)
. �

Property 4. Boundedness.
If Q− = mini(Qi) and Q+ = maxi(Qi) then, Q− ≤ q−ROFGMSM(r,λ1,...,λr)(Q1, Q2, . . . , Qd) ≤ Q+.

Proof. By monotonicity and idempotency, we get

q−ROFGMSM(r,λ1,...,λr)(Q1, Q2, . . . , Qd) ≤ q−ROFGMSM(r,λ1,...,λr)
(
Q+, Q+, . . . , Q+

)
,

q−ROFGMSM(r,λ1,...,λr)(Q1, Q2, . . . , Qd) ≥ q−ROFGMSM(r,λ1,...,λr)(Q−, Q−, . . . , Q−).

By integrating, we get

Q− ≤ q−ROFGMSM(r,λ1,...,λr)(Q1, Q2, . . . , Qd) ≤ Q+.

�

Theorem 1. Aggregation of q-ROFNs using q-ROFGMSM operator produces a q-ROFN.

Proof. To prove the theorem, we need to show that the result of q-ROFGMSM operator
follows Definition 2. From Property 4, it is clear that the proposed operator produces
a result, which is bounded. That is, Q− ≤ q − ROFGMSM(r,λ1,...,λr)(Q1, Q2, . . . , Qd) ≤ Q+.

By generalizing the idea, we get 0 ≤


(
1−

∏d
k=1

(
1−

∏r
l=1

(
µ

q
i j

)λl
)wk

) 1
q


1∑
l λl

≤ 1 and 0 ≤

1−
(
1−

∏d
k=1

(
1−

∏r
l=1

(
1− υq

i j

)λ1+λ2+...+λr
)wk

) 1∑
l λl


1
q

≤ 1.
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By integrating, we get

0 ≤


(
1−

∏d
k=1

(
1−

∏r
l=1

(
µ

q
i j

)λl
)wk

) 1
q


1∑
l λl

+

1−
(
1−

∏d
k=1

(
1−

∏r
l=1

(
1− υq

i j

)λ1+λ2+...+λr
)wk

) 1∑
l λl


1
q

≤
∑
k

wk = 1.

Thus, the aggregation of q-ROFNs using q-ROFGMSM operator produces a q-ROFN. �

3.4. q-ROFS Based COPRAS Method

This section puts forward a new extension to COPRAS ranking method under q-ROFS context.
COPRAS method was initially developed by Zavadskas et al. [30]. Later, Zavadskas et al.’s method [31]
was applied for the evaluation of dwellers for walls. Further, a comprehensive review was made
on different ranking methods, and it was inferred that the COPRAS ranking method was simple,
effective, and rational for various MAGDM problems [32]. Inspired by these desirable properties of
COPRAS, many researchers extended the method for different MAGDM problems. Mondal et al. [33],
Vahdani et al. [34], and Gorabe et al. [35] extended the COPRAS method for the evaluation and
selection of industrial robots. Zavadskas et al. [36,37] introduced gray COPRAS method and used
the same for the evaluation of project managers and contractors. Razavi Hajiagha et al. [38] and
Wang et al. [39] proposed interval-valued intuitionistic fuzzy COPRAS method for investor selection
problem. Valipour et al. [40] presented a hybrid method by integrating SWARA (step-wise weight
assessment ratio analysis) with the COPRAS method and used the same for risk evaluation in the
excavation project. Recently, Mardani et al. [41] conducted an interesting survey on various utility-based
MCDM methods, including COPRAS, and presented several application areas under the MCDM
context. Following this, Stefano et al. [42] conducted a deep review of the COPRAS method and
demonstrated its variants and use in many MCDM problems. Bielinskas et al. [43] put forward a
new strategic decision framework for the selection of a suitable scenario for urban brownfield using
COPRAS method. Yazdani et al. [44] proposed a hybrid model for the evaluation of green suppliers by
using quality functional deployment (QFD) and the COPRAS method. Bausys et al. [45] presented
an interesting extension of COPRAS to neutrosophic fuzzy set and demonstrated its use in MAGDM.
Roy et al. [46] proposed a decision-making method for hotel selection by extending the COPRAS
method under weighted rough context. Ayrum et al. [47] gave a new extension to the COPRAS
method under the stochastic model and applied the same to decision-making problems. Moreover,
Chatterjee et al. [48,49] and Mousavi-Nasab et al. [23] extended the COPRAS method for material
selection. Zheng et al. [50] proposed a hesitant fuzzy linguistic COPRAS method and applied the same
for medical application. Chatterjee and Kar [5,51] presented a hybrid model by extending the COPRAS
method fuzzy and Z-number context and used the same for the evaluation of the telecommunication
industry and renewable energy sources.

From the brief analysis made above, it is clear that the COPRAS method is a simple, effective,
and rational method for decision-making. Furthermore, it can be inferred that the COPRAS method
ranks objects from different angles and considers the direct and proportional relationship between
objects and attributes. Motivated by the superiority of the COPRAS method, in this section, we extend
the method for q-ROFS context. The procedure for the proposed q-ROFS based COPRAS method is
given below:

Step 1: Get a decision matrix of order m× n where m denotes the number of alternatives and n
denotes the number of attributes with PLTS information.

Step 2: Obtain the weight vector of the attributes (refer Section 3.1) for calculating the ranks of
the alternatives.

Step 3: Determine the COPRAS parameters Pi and Ri by using Equations (17) and (18).

Pi = ω jQi j ⊕
#bene f it
j=1 ω j+1Qi( j+1)∀ j = 1, 2, . . . , n (17)
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Ri = ω jQi j ⊕
#cost
j=1 ω j+1Qi( j+1)∀ j = 1, 2, . . . , n (18)

where ω j is the weight of the jth attribute, ω j+1 is the weight of the next attribute, Qi j is the q-ROFN of
the ith alternative, and jth attribute and Qi( j+1) is the q-ROFN of the ith alternative and next attribute.

It must be noted that the process occurs for every attribute over a specific alternative.
Step 4: Calculate the TRi by using Equation (19) to determine the prioritization order of alternatives.

TRi = ϕA(Pi) + (1−ϕ)

∑m
i=1 A(Ri)

A(Ri)
(

1∑m
i=1 A(Ri)

) (19)

where ϕ is the strategy value of the DM in unit interval.
The physical interpretation of strategy value is that when ϕ < 0.5, the DM is pessimistic in nature

and hence, high value is associated as weight to the cost type attributes. On the other hand, when
ϕ > 0.5, the DM is optimistic in nature and hence, high value is associated as weight to the benefit
type attributes. Finally, when ϕ = 0.5, the DM is neutral in nature and equal weight is associated with
both benefit and cost type attributes. This realization can be easily inferred from Equations (17)–(19).
It must be noted that Pi is with respect to benefit type attributes and Ri is with respect to cost type
attributes. TRi values are determined for each alternative, and they are arranged in descending order
to form the prioritization vector.

Figure 1 shows the working model of the proposed decision framework under q-ROFS context.

1. Each DM provides a decision matrix of order m×n with q-ROFNs as preferences. Here,
m represents the number of alternatives/objects and n represents the number of attributes
considered for evaluation of these alternatives/objects;

2. These matrices are aggregated into a single decision matrix of order m×n by using a q-ROFGMSM
operator. This operator uses DMs’ weights as input, which are calculated in a systematic manner
by using proposed programming model. The operator captures the interrelationship among
attributes effectively;

3. Later, DMs provide an evaluation matrix of order d×n, (d represents the number of DMs and n
represents the number of attributes) for calculating the weights of the attributes using proposed
programming model;

4. The aggregated matrix of order m×n and the weight vector of order 1×n are used as input to
prioritize the energy sources by extending the popular COPRAS method under q-ROFS context.
A vector of order 1×m is obtained as the prioritization order. The main advantage of the proposed
ranking method is that it mitigates information loss effectively by properly retaining the q-rung
orthopair fuzzy information throughout the study;

5. Finally, the comparison is done to analyze the strengths and weaknesses of the
proposed framework.
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4. Illustrative Examples of Renewable Energy Source Selection

This section puts forward an illustrative example of renewable energy source selection under the
Indian perspective. India owing to its diversified set of population and technological advancements,
seek high demand for energy. Due to deep exploitation of traditional form of energy sources like coal,
petroleum, and natural gas, there is a tremendous deal of energy crisis in the world. As discussed
earlier, Indragandhi et al. [1] argued that by 2040, there would be an urge for renewable forms of
energy to meet out the demands of the fast-growing country. They also claimed that the traditional
resources would reach its limits by close 2050 due to wider exploitation and usage of such resources.
Moreover, Chatterjee and Kar [5] presented the substantial need for a renewable energy source in
India and identified potential attributes for evaluating the energy sources. We adapt the attributes
from [5] for this study, and they are given by energy efficiency z1, job creation z2, the complexity of
technology z3, land usage z4, CO2 emission z5, and total cost z6. A brief description on each of these
attributes is given below:

• Energy efficiency: This attribute defines the energy obtained from a renewable energy source,
by considering the second law of thermodynamics. It is placed in benefit category as energy
efficiency is expected to be high;

• Job creation: This attribute defines the job opportunities created by the renewable energy source
supply, starting from installation to maintenance. From [5], it is clear that it is a substantial
attribute to be considered and it is placed in benefit category as opportunities are expected to
be high;

• Complexity of technology: This attribute defines the complexity involved in bringing a renewable
energy based technology to practice. It includes geographic restrictions, lack of technology transfer,
and structural complexity. Since the idea of renewable energy source has just started in India,
evaluation from this perspective is important. It is placed in cost type as complexity is expected to
be low;
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• Land usage: This attribute defines the judicious usage of land by a renewable energy source.
From [5], it is clear that different energy sources need different land space and hence, this attribute
is placed in benefit type. Due to the population of India, judicious land usage is highly encouraged;

• CO2 emission: The major factor for global warming is carbon-dioxide and hence, this attribute is
used to measure the amount of carbon-dioxide emitted by different energy source. Obviously, it is
placed in cost type;

• Total cost: This attribute defines the overall cost incurred by an energy source, starting from
the installation, maintenance, to the final delivery to customers. Obviously, this attribute is also
placed in cost type.

Further from the research of Luthra et al. [52], we chose suitable sources of energy under Indian
context, and they are given by tidal es1, geothermal es2, solar es3, wind es4, and hydrogen es5. Three
DMs are chosen for evaluation viz., d1, d2, and d3 who have high experience in the field of sustainable
energy science and energy resource selection and evaluation. These DMs rate the sources over each
attribute and use q-ROFNs.

Example 1. Renewable energy source selection.

The procedure for rational decision-making with the help of a proposed decision framework is
given below:

Step 1: Begin.
Step 2: Construct three decision matrices with q-ROFNs, and their order is given by 5× 6 (refer to

Table 1).

Table 1. Decision makers’ (DMs) preference information under q-ROFS context.

Evaluation Attributes for Energy Sources

Energy Sources z1 z2 z3 z4 z5 z6

d1

es1 (0.69,0.43) (0.26,0.70) (0.61,0.83) (0.11,0.82) (0.55,0.36) (0.58,0.75)
es2 (0.28,0.31) (0.53,0.59) (0.66,0.39) (0.14,0.24) (0.26,0.57) (0.51,0.47)
es3 (0.76,0.72) (0.73,0.43) (0.84,0.12) (0.13,0.50) (0.60,0.16) (0.29,0.34)
es4 (0.13,0.43) (0.46,0.69) (0.66,0.62) (0.41,0.88) (0.46,0.45) (0.74,0.24)
es5 (0.66,0.81) (0.39,0.15) (0.16,0.44) (0.25,0.60) (0.79,0.29) (0.74,0.49)

d2
es1 (0.63,0.16) (0.20,0.88) (0.87,0.29) (0.54,0.54) (0.42,0.77) (0.37,0.14)
es2 (0.23,0.13) (0.63,0.36) (0.64,0.27) (0.71,0.28) (0.37,0.75) (0.50,0.44)
es3 (0.84,0.28) (0.12,0.85) (0.35,0.48) (0.34,0.72) (0.46,0.60) (0.52,0.69)
es4 (0.57,0.14) (0.65,0.77) (0.79,0.20) (0.27,0.86) (0.31,0.17) (0.26,0.23)
es5 (0.86,0.50) (0.50,0.65) (0.69,0.67) (0.50,0.36) (0.11,0.12) (0.45,0.17)

d3
es1 (0.17,0.77) (0.72,0.29) (0.32,0.28) (0.17,0.19) (0.29,0.75) (0.80,0.68)
es2 (0.48,0.67) (0.22,0.30) (0.17,0.52) (0.86,0.67) (0.86,0.39) (0.27,0.66)
es3 (0.58,0.50) (0.72,0.48) (0.77,0.29) (0.52,0.66) (0.48,0.34) (0.32,0.53)
es4 (0.83,0.41) (0.58,0.57) (0.76,0.48) (0.44,0.13) (0.84,0.36) (0.34,0.34)
es5 (0.56,0.37) (0.84,0.35) (0.62,0.53) (0.37,0.11) (0.37,0.57) (0.45,0.44)

Note: The preferences given by each DM is a q-ROFN. It has the form
(
µi j, υi j

)
where µi j is the degree of

membership/preference and υi j is the degree of non-membership/non-preference. As an example, the physical
interpretation of an instance (0.69,0.43) by the DM d1 is that the energy source es1 has a preference value of 0.69 and
a non-preference value of 0.43 with respect to the attribute z1.

From Table 1, the PIS and NIS values (from Equations (13) and (14)) for each attribute are calculated
over each DM, and it is shown in Table 2. These values are used to derive the objective function, and the
constraints are set to determine the weights of the DMs. From Model 2, the objective function is given
by −1.51w1 − 0.60w2 − 0.21w3 and the constraints are w1 + w2 ≤ 0.65, w1 ≤ 0.35, w2 ≤ 0.38, w3 ≤ 0.35.
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By solving the above objective function using Matlab® optimization toolbox, we get w1 = 0.35,
w2 = 0.30, and w3 = 0.35.

Table 2. Ideal solutions for each attribute from each DM.

Ideal Solution
Evaluation Attributes for Energy Sources

z1 z2 z3 z4 z5 z6

PIS (0.76,0.72) (0.73,0.43) (0.61,0.83) (0.41,0.88) (0.60,0.16) (0.29,0.34)
NIS (0.13,0.43) (0.39,0.15) (0.16,0.44) (0.14,0.24) (0.79,0.29) (0.58,0.75)
PIS (0.86,0.50) (0.65,0.77) (0.69,0.67) (0.27,0.86) (0.11,0.12) (0.26,0.23)
NIS (0.23,0.13) (0.12,0.85) (0.35,0.48) (0.50,0.36) (0.42,0.77) (0.52,0.69)
PIS (0.83,0.41) (0.72,0.48) (0.76,0.48) (0.86,0.67) (0.48,0.34) (0.34,0.34)
NIS (0.56,0.37) (0.22,0.30) (0.32,0.28) (0.17,0.19) (0.86,0.39) (0.80,0.68)

Note: The positive ideal solution (PIS) and negative ideal solution (NIS) values are determined for each attribute for
every decision matrix provided by the DMs. By applying Equations (13) and (14), the results are straightforward.
q-ROFN that is associated with the corresponding accuracy value is considered as PIS and NIS for each attribute.
The physical interpretation of PIS for an attribute belonging to the benefit category is that value which has the
highest accuracy. In other words, it means that this value is the most preferred value from the set of values provided
by the DM for an energy source over a specific attribute. Similar interpretations can be drawn for NIS also.

Step 3: Form an evaluation matrix with q-ROFNs for determining the weights of each attribute
and their order is given by 3× 6.

Step 4: Calculate weights of the attributes and DMs by using the matrices from Step 3 and 2,
respectively, and the procedure for calculation is provided in Sections 3.1 and 3.2, respectively.

Table 3 provides the weight evaluation matrix for each attribute. Using this table and by
applying Model 1, we form the objective function and the constraints. The objective function is given
by −0.436ω1 + 0.283ω2 − 0.753ω3 + 0.326ω4 + 0.615ω5 − 1.163ω6, and the constraints are given by
ω1 +ω2 +ω3 ≤ 0.6, ω4 ≤ 0.2, ω5 +ω6 ≤ 0.3, ω6 ≤ 0.1, ω1 ≤ 0.15, and ω3 ≤ 0.2. Weights of the attributes
are given by 0.15, 0.25, 0.20, 0.20, 0.10, and 0.10.

Table 3. Evaluation matrix for weight calculation of attributes.

DMs
Evaluation Attributes for Energy Sources

z1 z2 z3 z4 z5 z6

d1 (0.31,0.53) (0.27,0.12) (0.34,0.63) (0.27,0.20) (0.15,0.63) (0.69,0.64)
d2 (0.78,0.28) (0.30,0.36) (0.70,0.26) (0.47,0.34) (0.30,0.46) (0.34,0.84)
d3 (0.49,0.60) (0.69,0.39) (0.53,0.83) (0.37,0.49) (0.17,0.69) (0.34,0.79)

Step 5: Aggregate the matrices from Step 2 by using the operator proposed in Section 3.3.
The order of the aggregated matrix is also 5× 6.

Table 4 shows the aggregated matrix, which is formed by using Equation (16). The risk appetite
values are given by λ1 = λ2 = 2, and the DMs’ weights are calculated using Model 1, and it is given by
0.35, 0.3, and 0.35.

Table 4. Aggregated preference information using the proposed operator.

Energy Sources
Evaluation Attributes for Energy Sources

z1 z2 z3 z4 z5 z6

es1 (0.48,0.59) (0.61,0.56) (0.64,0.43) (0.78,0.75) (0.42,0.57) (0.57,0.80)
es2 (0.46,0.46) (0.77,0.77) (0.75,0.72) (0.40,0.66) (0.65,0.39) (0.33,0.59)
es3 (0.75,0.89) (0.54,0.73) (0.51,0.68) (0.56,0.36) (0.61,0.61) (0.43,0.76)
es4 (0.77,0.90) (0.57,0.68) (0.70,0.86) (0.61,0.86) (0.33,0.54) (0.69,0.85)
es5 (0.82,0.64) (0.83,0.58) (0.36,0.46) (0.80,0.41) (0.68,0.74) (0.56,0.49)
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Step 6: Use the aggregated matrix from Step 5 and the attributes’ weight vector from Step 4 to
prioritize the renewable energy sources.

Table 5 shows the parameter values for the extended COPRAS method under q-ROFS context.
At v = 0.50, the final ranking order is calculated, and it is given by es1 > es3 > es2 > es4 > es5. Figure 2
presents the sensitivity analysis of strategy values at regular step size from 0.10 to 0.90. From the
analysis, we observe that the ranking order does not change, which concludes that the proposed
framework is stable.

Table 5. Prioritization order at strategy value 0.50.

Energy Sources Pi Ri TRi

es1 (0.62,0.00) (0.30,0.09) 0.84
es2 (0.63,0.00) (0.33,0.01) 0.70
es3 (0.56,0.00) (0.32,0.10) 0.73
es4 (0.62,0.09) (0.35,0.10) 0.61
es5 (0.73,0.00) (0.38,0.05) 0.54
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Step 7: Compare the performance of the proposed framework with other state-of-the-art methods
by using the factors discussed in Section 5.

Table 6 shows the ranking order obtained from different ranking methods, which are given as
input to the Spearman correlation [53] for understanding the consistency of the proposed framework.
Four methods viz., Liu et al. method [17], Liu et al. [19] method, Wei et al. [18], and Wang et al. [21] are
taken for comparison with the view of maintaining homogeneity. From Figure 3, we observe that the
proposed framework is highly consistent with other methods.

Table 6. Rank values from different methods.

Energy Sources
Methods

[17] [19] [21] [18] Proposed

es1 1 1 1 1 1
es2 3 2 3 2 3
es3 2 3 2 3 2
es4 4 4 4 4 4
es5 5 5 5 5 5
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Step 8: End.

Example 2. Renewable energy source selection.

This is another example that demonstrates the practical use of the proposed framework by selecting
a suitable energy source from the set of sources based on certain evaluation attributes. As mentioned
above, the energy sources and the attributes for evaluation are kept unchanged. The DMs adopt
q-ROFNs for preference elicitation and the procedure for selection of a suitable renewable energy
source is provided below:

Step 1: Begin.
Step 2: Construct three decision matrices of order 5 × 6 as of Example 1. q-ROFN is used

as preference information. The renewable energy sources and the evaluation attributes are kept
unchanged. Table 7 provides the preference information from different DMs.

Step 3: These matrices are aggregated by using newly proposed q-ROFGMSM operator and it is
shown in Table 7. The DMs’ weights are adapted from Example 1.

The risk appetite values are given by λ1 = 2 and λ2 = 1. The weight of each DM is adapted from
Example 1 and Table 7 presents the input information and the aggregated matrix obtained by applying
Equation (16). From Table 7, it is inferred that the order of the aggregated matrix remains unchanged
as that of the input.

Step 4: Attributes’ weights are also adapted from Example 1. By using the aggregated matrix
(from Step 3) and the attribute weight vector (from Example 1), renewable energy sources are prioritized
by using proposed q-ROFS based COPRAS method. The sensitivity analysis is performed over strategy
values to realize its effect on prioritization order.

The attributes’ weights are adapted from Example 1 and Table 8 presents the COPRAS parameter
values. From Table 8, the prioritization order is given by es1 > es2 > es3 > es4 > es5. Thus, tidal energy
is chosen as a suitable source among the set of renewable energy sources.
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Table 7. Preference information from each DM and aggregated preference information.

Energy Sources
Attributes

z1 z2 z3 z4 z5 z6

d1
es1 (0.36,0.70) (0.86,0.51) (0.13,0.32) (0.10,0.41) (0.69,0.13) (0.32,0.68)
es2 (0.79,0.18) (0.16,0.14) (0.48,0.22) (0.87,0.58) (0.42,0.76) (0.12,0.32)
es3 (0.18,0.86) (0.32,0.64) (0.50,0.88) (0.46,0.77) (0.25,0.48) (0.16,0.70)
es4 (0.85,0.29) (0.28,0.61) (0.18,0.78) (0.57,0.42) (0.23,0.21) (0.38,0.43)
es5 (0.30,0.61) (0.58,0.87) (0.14,0.45) (0.12,0.33) (0.27,0.37) (0.56,0.78)

d2
es1 (0.42,0.78) (0.15,0.46) (0.20,0.69) (0.28,0.76) (0.75,0.23) (0.11,0.13)
es2 (0.43,0.54) (0.36,0.64) (0.39,0.84) (0.55,0.17) (0.52,0.57) (0.72,0.23)
es3 (0.60,0.28) (0.27,0.48) (0.68,0.86) (0.24,0.13) (0.25,0.76) (0.75,0.79)
es4 (0.13,0.31) (0.67,0.76) (0.69,0.38) (0.51,0.51) (0.47,0.51) (0.45,0.39)
es5 (0.56,0.42) (0.52,0.63) (0.64,0.56) (0.36,0.77) (0.18,0.86) (0.72,0.64)

d3
es1 (0.38,0.73) (0.50,0.81) (0.42,0.13) (0.60,0.45) (0.42,0.69) (0.19,0.68)
es2 (0.21,0.67) (0.25,0.15) (0.61,0.38) (0.38,0.35) (0.17,0.12) (0.21,0.79)
es3 (0.39,0.47) (0.71,0.35) (0.56,0.48) (0.72,0.86) (0.57,0.16) (0.51,0.60)
es4 (0.35,0.19) (0.81,0.70) (0.59,0.84) (0.61,0.12) (0.79,0.14) (0.46,0.67)
es5 (0.19,0.13) (0.57,0.34) (0.47,0.28) (0.76,0.73) (0.44,0.20) (0.64,0.31)

Aggregated Matrix
es1 (0.39,0.83) (0.77,0.87) (0.37,0.39) (0.53,0.65) (0.69,0.80) (0.28,0.79)
es2 (0.71,0.78) (0.31,0.42) (0.55,0.60) (0.78,0.58) (0.46,0.39) (0.63,0.86)
es3 (0.53,0.66) (0.63,0.58) (0.61,0.66) (0.64,0.90) (0.50,0.43) (0.66,0.74)
es4 (0.76,0.45) (0.73,0.80) (0.62,0.89) (0.58,0.39) (0.71,0.41) (0.44,0.79)
es5 (0.49,0.39) (0.56,0.57) (0.57,0.53) (0.68,0.82) (0.39,0.46) (0.66,0.56)

Table 8. Parameters of complex proportional assessment (COPRAS) ranking method under
q-ROFS context.

Energy Sources
Parameters

Pi Ri TRi(0.5)

es1 (0.57,0.01) (0.34,0.25) 0.91
es2 (0.60,0.00) (0.34,0.04) 0.86
es3 (0.57,0.01) (0.36,0.03) 0.8
es4 (0.64,0.00) (0.37,0.03) 0.77
es5 (0.55,0.00) (0.34,0.02) 0.66

Table 8 shows the merit function at v = 0.50. To further understand the effects of different strategy
values on the prioritization order, sensitivity analysis test is performed. The strategy values are varied
in a step wise manner from 0.1 to 0.9 and its effect on the merit function is presented in Figure 4.
The physical meaning of strategy value is provided in Example 1 for clarity. From Figure 4, it is
observed that the proposed framework is unaffected by the adequate changes to strategy values and is
robust in nature.

Step 5: Finally, the consistency of the proposed framework is analyzed by comparison with other
methods using Spearman correlation.

From Table 9 and Figure 5, it is clear that the proposed framework produces unique prioritization
order for the provided preference information. Based on the majority wins principle, tidal energy es1

is a suitable source and the reason for unique prioritization order in this situation can be intuitively
understood from the fact that the proposed framework mitigates human intervention and information
loss by retained the q-rung orthopair fuzzy nature. From Figure 5, the proposed framework is consistent
with other state-of-the-art methods.
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Table 9. Prioritization order from different methods.

Energy Sources
Methods

[17] [19] [21] [18] Proposed

es1 2 1 1 1 1
es2 1 3 3 3 2
es3 3 2 2 2 3
es4 4 4 5 5 4
es5 5 5 4 4 5
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Step 6: End.

5. Comparative Investigation of Proposed Decision Framework

This section provides a comparative investigation of the proposed framework with other
state-of-the-art methods under both theoretical and numerical factors. Proposed decision framework is
compared with four methods mentioned above under both theoretical and numerical contexts. Table 10
presents a comparative investigation.
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Table 10. Characteristics of different methods.

Context
Methods

Proposed [17] [19] [21] [18]

Data q-ROFS based preference information

Operator GMSM Power MSM
Extended

Bonferroni
mean

Muirhead
mean Heronian mean

DMs’ weights Calculated systematically Directly provided
Attributes’

weights Calculated systematically Provided
directly

Entropy
method

Provided
directly

Interrelationships yes, among attributes yes, among
attributes

yes, between
attributes

yes, among
attributes

yes, between
attributes

Prioritization
method Extended COPRAS no

Nature of
information

Partial information on each
DM and attribute is known n/a

Complexity

O(dmn + dn + dmn + mn) =
O(2dmn + n(d + m) where d
is the number of DMs, m is

the number of energy
sources, and n is the number

of evaluation attributes

O(dmn + mn) = O(mn(d + 1))

Efficiency

Though the proposed
framework is complex

compared to its
counterparts, (i) it is highly

systematic and produces
rational decision-making; (ii)
reduces human intervention

effectively; and (iii)
produces consistent, robust,
and broad prioritization of

energy sources.

The aggregation operator and the ranking method extended from the
operator are specific cases of proposed framework. Morrover, human

intervention is high compared to proposed framework.

Easiness

Proposed framework is
complicated in the short run,

but in the long run, the
methods are highly

systematic and produce
rational decision with fewer

inaccuracies (caused by
human intervention) and

proper justification.

Though these methods appear easy in the short run, they involve human
intervention which causes inaccuracies in decision-making. Parameters

like DMs‘ weights and attributes‘ weights are not calculated in a
systematic manner.

The following are the strengths of the proposed framework analyzed from Table 10:

1. Uncertainty and vagueness are handled effectively by using a generalized preference style viz.,
q-ROFS. This allows DMs to flexibly provide their membership and non-membership values over
a specific instance;

2. Preferences are aggregated rationally by properly capturing the interrelationship among attributes.
Moreover, the DMs’ weights are calculated in a systematic manner for proper aggregation
of information;

3. Further, attributes’ weights are calculated rationally by making use of the partially known
information about each attribute;

4. Energy sources are prioritized by considering the nature of the attributes (extended COPRAS
method under q-ROFS);

5. The proposed framework is highly consistent with other state-of-the-art methods which can be
observed from Figure 3;

6. Furthermore, the framework is stable even after strategy values are changed at regular step size.
It can be observed from Figure 2;

7. The broadness of rank values is also an important strength of the proposed decision framework.
To realize the same, 300 matrices of order 5× 6 are considered as input for the framework and
rank values are determined for each matrix. The deviation is calculated for each vector (rank
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value), and they are depicted in Figure 6. From the analysis, it is inferred that the proposed
framework produces a broad rank value set compared to other state-of-the-art methods.
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The weaknesses of the framework are as follows:

1. Optimal selection of risk appetite values for each DM during the process of aggregation is complex;
2. Furthermore, DMs must be trained with the preference style for effective elicitation of preferences.

Though the window for preference elicitation is wider compared to its counterparts, DMs must
be trained for better elicitation of preferences.

The weaknesses of the framework are as follows:

3. Optimal selection of risk appetite values for each DM during the process of aggregation is complex;
4. Furthermore, DMs must be trained with the preference style for effective elicitation of preferences.

6. Conclusions

This paper provides a new decision framework under q-ROFS context for rational selection of
renewable energy sources under the Indian perspective. The framework presents a new extension to
the GMSM operator by calculating weights of DMs in a systematic manner when partial information is
known. Moreover, attributes’ weights are also calculated under the same context. Further, prioritization
of energy sources is done by using an extended COPRAS method under q-ROFS. The stability of
the framework is realized by a sensitivity analysis of strategy values. Furthermore, consistency is
discussed by using the Spearman correlation. The broadness of the rank value set is realized by using
simulation analysis.

Some managerial implications are:

1. The proposed framework is readily available for the rational selection of energy sources. However,
the same framework is flexible for other MAGDM problems as well;

2. Uncertainty is handled effectively by using q-ROFS, which is a generalized form that provides a
wider window for preference elicitation;

3. The framework can be used for effective energy planning and can help people to gain awareness
of the urge for renewable energy alternatives.

As a future direction to the research, new decision frameworks are planned for rational selection
of renewable energy sources under linguistic context, and energy utilization schemes can be developed
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for sustainable growth of the nation. Situations where both the DMs’ weights and attributes’ weights
are unknown can also be addressed under the context of q-ROFS based MAGDM problems.
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