
sustainability

Article

BlockDeepNet: A Blockchain-Based Secure Deep
Learning for IoT Network

Shailendra Rathore 1, Yi Pan 2 and Jong Hyuk Park 1,*
1 Department of Computer Science and Engineering, Seoul National University of Science and Technology,

Seoul 01811, Korea
2 Department of Computer Science, Georgia State University, Atlanta, GA 30302-5060, USA
* Correspondence: jhpark1@seoultech.ac.kr; Tel.: +82-2-970-6702

Received: 26 May 2019; Accepted: 18 July 2019; Published: 22 July 2019
����������
�������

Abstract: The recent development in IoT and 5G translates into a significant growth of Big data
in 5G—envisioned industrial automation. To support big data analysis, Deep Learning (DL) has
been considered the most promising approach in recent years. Note, however, that designing
an effective DL paradigm for IoT has certain challenges such as single point of failure, privacy leak
of IoT devices, lack of valuable data for DL, and data poisoning attacks. To this end, we present
BlockDeepNet, a Blockchain-based secure DL that combines DL and blockchain to support secure
collaborative DL in IoT. In BlockDeepNet, collaborative DL is performed at the device level to
overcome privacy leak and obtain enough data for DL, whereas blockchain is employed to ensure
the confidentiality and integrity of collaborative DL in IoT. The experimental evaluation shows
that BlockDeepNet can achieve higher accuracy for DL with acceptable latency and computational
overhead of blockchain operation.

Keywords: IoT; deep learning; blockchain; security and privacy; collaborative deep learning

1. Introduction

The rapid advancement in 5G-envisioned industrial automation combines IoT and leading mobile
wireless connectivity (5G) to deliver high mobility, availability, and connectivity support in industrial
automation. It further enables significant growth in data generation on the IoT platform due to
the integration of autonomous machine, mobile robot, and many sensors [1,2]. A recent analyst report
valued the global IoT data-management market at around $27.13 billion in 2017 and predicted that
it would reach approximately $94.47 billion in 2024, growing at Compound Annual Growth Rate
(CAGR) of slightly above 19.51 percent between 2018 and 2024 [3]. To support the analysis of large
amounts of data and provide valuable information for the prediction, classification, and detection
of future events in IoT, the Deep Learning (DL) paradigm is often employed. As a strong analytic
tool, DL enables the reliable mining (feature extraction and representation) of IoT big data generated
and collected from various complex and noisy environments [4]. It has become a promising approach
for various informatics applications, such as autonomous driving, human activity recognition, anomaly
detection, bioinformatics, object detection, and face recognition in IoT [5]. The convergence of DL
and IoT has been applied in many real-world tasks and considered the most desirable choice to solve
the IoT big data problems. For instance, DL can support the accurate prediction of electricity power
consumption in the smart home by collecting and processing data from smart meters, which further
help in improving the electricity supply from the smart grid.

With the significant growth in data-driven applications and generated data, however, DL is
expected to be more resource-intensive and to be the dominant computing workload in IoT in
the future. To support efficient big data analysis and handle dominant computing workload in

Sustainability 2019, 11, 3974; doi:10.3390/su11143974 www.mdpi.com/journal/sustainability

http://www.mdpi.com/journal/sustainability
http://www.mdpi.com
https://orcid.org/0000-0003-1831-0309
http://www.mdpi.com/2071-1050/11/14/3974?type=check_update&version=1
http://dx.doi.org/10.3390/su11143974
http://www.mdpi.com/journal/sustainability

Sustainability 2019, 11, 3974 2 of 15

IoT, various DL paradigms have been presented in the recent year. The existing paradigms can be
divided into three categories: (1) Cloud intelligence, (2) Fog intelligence, and (3) Edge intelligence.
In cloud intelligence, a single DL model is deployed at the central cloud server to perform big data
analysis in IoT [6]. Note, however, that the IoT network generates a large amount of data that
impose heavy communication and computation tasks on the cloud server, such as raw data collection,
pre-processing, features extraction, and analysis; hence, the rapid escalation in the server calculation load
and communication frequency that further lead to overwhelming, and sometimes unbearable, load to
the centralized servers. To address these challenges, Fog intelligence—wherein the data collection
and computation tasks of DL are shifted to the fog layer in a distributed manner—was presented [7].
Each fog node prepares a DL model by training its own private data individually and periodically
shares the intermediate parameters of the model to the cloud server. The cloud server then aggregates
the received parameter and continuously updates the individual model at each fog node. Consequently,
the distributed learning at each fog node lowers the computation and communication overhead for
the cloud server. Note, however, that the cloud server has full control over the individual learning
model, which leads to single point of failure. On the other hand, edge intelligence has the cloud server
offloading the intermediate learning and computation tasks to the edge layer. To offload the processing,
edge intelligence distributes the DL model in such a way that the lower layers of the model are
trained into edge nodes and the higher layers of the model are processed into the cloud server. This is
because parts of the DL layers are offloaded at the edge, which, in turn, reduce the intermediate data
computation and processing at the cloud layer [8]. Nonetheless, the cloud server in edge intelligence
still has full control on the DL model as higher layers are trained at the cloud server, which might
result in single point of failure. In addition, all three paradigms do not maintain the full privacy of
the data contributors (IoT devices). This is because IoT devices are excluded from the DL process
as the data for the learning process are collected without the permission of the device owner, which may
cause a privacy leak. Due to the privacy issue, some data contributors do not share their data to
the server; hence the difficulty in accumulating enough training data for the distributed DL model,
which, in turn, leads to a weak DL model with low accuracy. Furthermore, all three forms of intelligence
may suffer from a data poisoning attack wherein any of the entities in the IoT network may demonstrate
adversarial behavior in the distributed DL process, e.g., a malicious server can deliberately implant
misleading training data, which may disrupt the distributed DL process and wrongly update the model
parameters into distributed DL models. Malicious data poisoning at the cloud server may disrupt
the individual DL model at the edge of the IoT network [9].

From the aforesaid discussion of existing DL paradigms, we pointed out four major challenges that
require solving to design an effective DL paradigm for IoT: (a) Single point of failure, (b) Privacy leak,
(c) Training data insufficiency, and (d) Data poisoning attack. Given the migration of the DL platform
on the IoT edge device, the learning task is performed directly on the edge devices without depending
on the cloud server. Recently, Matt and Rei et al. [10] deployed a DL model directly on an edge device
using Google TensorFlow models and Project Flogo. Moreover, Tang, et al. [11] demonstrated that
the DL task on an IoT device can benefit from the tailoring of individual device data on the device itself,
thus maintaining data privacy. Moreover, data training performs nearer to the device, which reduces
the communication overhead and ensures low latency. In this sense, the DL task on an IoT device
can be regarded as advantageous in terms of not only offloading computation overhead, low latency,
and cost saving, but also as a solution to the problem of single point of failure and privacy leak.

On the other hand, a blockchain supporting a secure network over the untrusted parties has
recently become an attractive choice to provide a secure, scalable IoT network [12]. It delivers the silent
features of decentralization and immutable distributed ledger to provide privacy in an IoT network.
Decentralization in blockchain supports secure sharing of resources and data among all the member
nodes in an IoT network that overcomes many-to-one traffic flows and central control dependency
and provides enough data for big data analysis. Consequently, it eliminates the problem of single
point of failure and training data insufficiency and reduces the communication delay. In addition,

Sustainability 2019, 11, 3974 3 of 15

the immutable distributed ledger securely maintains information about all the member nodes of an IoT
network in the form of blocks cryptographically controlled by all member nodes. This feature prevents
malicious tampering of training data, which, in turn, responds very well to data poisoning attacks in
an IoT network.

The DL task on an IoT device (device intelligence) and Blockchain can jointly solve the challenges
in the existing DL paradigms for IoT. Therefore, the primary goal of our study is the integration of
device intelligence and blockchain technique to support a collaborative, secure DL paradigm for IoT.
The research contributions of our study include:

• Introduction of BlockDeepNet, a Blockchain-based secure DL for IoT network that can support
a secure, collaborative DL at the device level and which provides data integrity and confidentiality
in the IoT network.

• Introduction of a collaborative DL mechanism in the blockchain environment to support local
learning models at the device level and aggregation of these local learning models at the edge
server through blockchain transactions.

• Presentation of prototype implementation and experimental evaluation to demonstrate
the practicability and feasibility of the BlockDeepNet system.

2. Related Work

Along with the recent advancement in the IoT, many researchers have presented their
methodologies to provide an efficient big data analysis in IoT. The recent methodologies are mainly
focused on the use of DL model that typically contains three layers: input layer, hidden layer, and output
layer. A multiple hidden layer (called depth of the model) is used in the DL model, wherein each hidden
layer contains a certain number of neurons to provide an accurate feature representation and extraction
at the different level. Typically, the neurons at each layer are responsible for the learning of hierarchical
features from the input data and give a final output at the output layer in terms classification, prediction,
and many more [5]. A neuron takes multiple inputs and gives a single output. The neurons at the lth

layer take input from the output of the neurons at the previous (l− 1)th layer. To connect the neurons
from the subsequent layer, weight and bias parameters are used. For instance, a neuron j at the lth

layer relates to a neuron i at the previous (l− 1)th layer using model parameters
(
wi j, bi

)
. These model

parameters are required to be learned to minimize the model error (i.e., the difference between final
model output and targeted value) for accomplishing the DL task successfully. A back-propagation
approach that relies on the gradient descent method is used to learn the model parameters efficiently.
The detailed process for the back-propagation approach can be found in Abeshu et al. [7].

The abovementioned process to train a multilayer and complex DL model entails a high
computational overhead. To mitigate this issue, various novel DL paradigms have been proposed by
many researchers at the different layer of IoT such as cloud edge, and fog [4–8]. Zhang et al. [6] presented
a DL approach wherein the learning task is performed at the cloud layer to improve the learning
efficiency for big data analysis. In Abeshu et al. [7], the authors proposed an innovative distributed
deep learning approach called a Fog-to-Things Computing, wherein various fog nodes at the fog layer
are responsible for carrying out the DL task to mitigate issue of less scalability and low accuracy in big
data analysis. They evaluated their proposed approach using a case study of attack detection in IoT
and demonstrated the effectiveness of the distributed DL. Li at al. [8] examined the possibility of DL
into the edge computing environment and designed a new offloading methodology to offload the deep
learning task from cloud to edge layer in IoT. The authors demonstrated that the DL task can be carried
out by training the lower layer of DL at the edge nodes and the higher layer of the DL at the cloud
layer. Mohammadi et al. [4] summarized and analyzed existing researches reported of DL in IoT.

As described in the preceding section, the existing research faces major challenges, such as Single
point of failure, Privacy leak, Training data insufficiency, and Data poisoning attack. To mitigate
these challenges, our research focused on performing the collaborative DL task at the device level
with the integration of blockchain technology. In Tang et al. [11], the authors demonstrated that

Sustainability 2019, 11, 3974 4 of 15

the DL task at the device level supports protecting the data privacy at the device by performing data
analysis on the device itself. On the other hand, our recent research, Rathore et al. [12] provides
the integration of Blockchain and IoT to support a secure and scalable IoT network, wherein blockchain
can overcome the single point of failure and Training data insufficiency by performing the DL task
in a decentralized way. As benefited from the integration of device intelligence and blockchain,
BlockDeepNet, a Blockchain-based secure DL for IoT network, is introduced in the subsequent section.

3. System Infrastructure of BlockDeepNet

The system infrastructure proposed in this paper describes a novel decentralized big data analysis
approach wherein the learning task is performed at the device level and distributed by employing
blockchain technology. A modern IoT network employs three basic steps for big data analysis:
a) the data is collected from the IoT device and preprocessed at the connected server; b) The intelligent
learning paradigms are used to analyzed the processed data; and, c) with the help of the analyzed
data, the IoT device is remotely controlled. A centralized management and control are supported
by the existing big data analysis mechanisms; however, an attacker can exploit a significant amount
of data maliciously. The proposed BlockDeepNet system remarkably lowers the possibility of data
being manipulated adversely by facilitating a secure and collaborative DL paradigm. Consequently,
some components of the IoT network must be reconfigured to support the working procedure
of BlockDeepNet.

3.1. Reconfigured IoT Network

A reconfigured IoT network is employed to carry out a collaborative DL task. A layered architecture
of the IoT network is general as in Li et al. [8], but with a distinct device and edge layer, as shown in
Figure 1. Each IoT device at the device layer is configured with blockchain application and the DL
model. An edge server at the edge layer is reconfigured for a collaborative DL and blockchain mining
task. The operations and interaction in the device and edge layer are facilitated through the transaction
implemented using blockchain technology in BlockDeepNet, which is isolated or independent from
the central cloud server. In the reconfigured IoT network, each device performs the DL task by
collecting and processing their private data.

3.2. Functional Module of BlockDeepNet

In this subsection, we describe the BlockDeepNet system and its functional components. Figure 2
shows an overview of the system design, wherein IoT devices interact with their associated edge server
through blockchain to carry out a collaborative and secure DL task. Along the path between IoT devices
and the edge server, six key components of BlockDeepNet, as depicted in Figure 3, are described
as follows:

1) Local model: Each IoT device prepares a local learning model by employing DL over its own
private data.

2) Smart Contract: The smart contract defines all the policies and rules for operating and governing
the BlockDeepNet system. It consists of two main modules: learning and mining contracts.
Through learning contract, each IoT device sends out the parameters of its local model referred to
as local update to the blockchain network. The edge server downloads the learning contract for
further processing wherein a collaborative DL model is trained by the edge server with the help
of a local model update shared through its associated IoT devices. Finally, the parameters of
the collaborative DL model referred to as global update are mined by the edge server and sent
out to the blockchain network, which is called the mining contract. The corresponding global
update is downloaded by each IoT device, and their local model is updated.

3) Smart contract interface: It connects an IoT device and the edge server to the smart contract.
It automatically triggers smart contract operations and activities at the IoT device layer, such as IoT

Sustainability 2019, 11, 3974 5 of 15

device registration, communication among IoT devices, sharing of local models of the IoT devices
with the edge server, and IoT device requesting for collaborative DL model. In the proposed
BlockDeepNet system, we employed a JavaScript-based Application Programming Interface (API)
called Web3 protocol to deploy the smart contract interfaces for IoT devices. For each IoT device,
programming functions are called by a smart contract interface to execute the rules defined in
the smart contract.

Figure 1. Reconfigured IoT network for deep learning.

4) Blockchain network: The BlockDeepNet system employs a private blockchain to deliver
a collaborative DL task in IoT, wherein an edge server has more control on the blockchain
network. We chose private blockchain since a very resource-intensive proof of work is not needed
for consensus and there is less possibility of sybil attacks. Moreover, a mining task does not
require an economic incentive, and a less resource-intensive mining task is provided compared
to that of a public blockchain. In this sense, since IoT devices are resource constraints, they
serve as blockchain and smart contract clients in our system, and a mining task is carried out
only by the edge server in the blockchain network of the BlockDeepNet system. In other
words, the entire task of transaction monitoring, new block creation, and propagation is
done by a resource-intensive edge server. The IoT devices interact with the edge server by
installing blockchain and smart contract software (blockchain application), and they are able
to obtain resources and support for offloading their processing job using mechanisms such
as cloud offloading. In the BlockDeepNet implementation, the deployment and distribution
of a smart contract are carried out on the blockchain. The blockchain service is supported by
a blockchain server where IoT devices are connected to it as a client. The blockchain server
performs two key operations to support the blockchain service. First, the server collects all
the transactions among the IoT devices and runs the smart contracts. It generates new blocks
to support the execution of embedded code in the smart contracts. Second, the blockchain

Sustainability 2019, 11, 3974 6 of 15

server records all the activities in the system such as information about requesting and logging
devices and mining blocks. Note that the blockchain server in the BlockDeepNet system uses
a lightweight consensus mechanism such as PBFT [13], which does not require proof-of-work
task and supports less resource-intensive mining tasks [14].

5) Iteration and epoch: In the BlockDeepNet system, iterations refer to the multiple steps of DL tasks
performed by an IoT device to obtain an effective local model. On the other hand, an epoch refers
to a single operation of generating a new candidate block in the blockchain by the edge server.

Figure 2. Design overview of proposed BlockDeepNet system.

4. Working Mechanism of BlockDeepNet

In order to resolve the issues in the existing works, we introduce a BlockDeepNet system wherein
the blockchain network is leveraged to support a collaborative and secure DL task in IoT. The conceptual
structure of the BlockDeepNet system consists of edge server and IoT devices. An edge server can be
associated with a set of IoT devices, working as a miner in the private blockchain network. The working
mechanism of the BlockDeepNet system is summarized as follows. Each IoT device in the BlockDeepNet
system trains a local model using DL and uploads the local update (gradient parameters, learning
model’s weight) to its associated edge server in the blockchain network. In return, the edge server
pays data reward to the IoT device based on the amount of sample data it has. The edge server verifies
and processes the local updates of its associated devices to generate a collaborative DL model by
aggregating local updates. Once the edge server accomplishes the collaborative DL task, it creates
a block wherein the aggregated local updates are stored and receives the processing reward from
the blockchain network. Finally, the created block is added to the blockchain network, which is also
called a distribute ledger. Each IoT device downloads the distributed ledger and updates its local
update to compute a global update, which is an input of the next local update. Since an IoT device
locally computes its global update, malfunctioning of the edge server or another IoT device during
the learning process does not affect the device global update, thus overcoming single point of failure
and ensuring the security and robustness of the overall DL task in IoT. Based on these benefits, in
order to design the BlockDeepNet system, we present in this section a more detailed explanation
about the collaborative DL process and its deployment in a blockchain environment. We also discuss
the latency delay invoked by the collaborative DL and blockchain operation.

4.1. Collaborative DL Process

The DL task in IoT relies on a collection of parameters (learning model’s weight w) obtained
by learning on given training data. A sample of training data i is described as a two-dimensional
coordinate

(
xi, yi

)
, wherein the DL model takes vector xi as an input (such as pixels of an image)

Sustainability 2019, 11, 3974 7 of 15

and gives scalar output yi (such as the label of the image). For each training data sample, a DL model
computes a loss function defined on its parameter vector w to support the learning process. The loss
function provides the DL model’s error on the training data, which is minimized in the learning process
by minimizing the loss function on a set of training data sample [15]. The loss function for data sample
i can be defined as f

(
w; xi; yi

)
and written as fi(w).

Assume that a set of IoT device d = {d1, d2, . . . , dk, . . . , dn}, where device dk has a collection of
data samples sk and it is associated with edge server e. A loss function for device dk over data samples
sk can be defined as Fk(w) , 1

|sk |

∑
i∈sk

fi(w).

We consider sk , |sk|, where |.| stands for the size of data sample sk and s ,
∑n

k = 1 sk denotes
the size of total data samples for all devices. Assuming sk ∩ sk′ = O for k , k′, we define a global
function on all devices associated with edge server e as:

F (w) ,

∑n
k = 1 Fk(w)

s
(1)

The DL task is to find a minimized F (w), which can be defined as follows:

w∗ , arg minF (w) (2)

Note, however, that finding a closed-form solution for Equation (2) is usually impossible because
of the inherent complexity of the DL model.

To solve Equation (2) in the BlockDeepNet system, we present a canonical collaborative DL
paradigm inspired by a federated learning system (e.g., [16]). Local model parameters wk(t) are defined
by each device dk by training its local DL model over data sample sk. Here, t = 0, 1, 2, . . . , T represents
the iteration index. Initially, all devices dk in d set the value of their local model parameters wk(t)
to the same value at t = 0. At t > 0, each device computes a new value of wk(t) based on the parameter
value in the previous iteration (t− 1) by minimizing the local loss function using a gradient-descent
update rule [16,17]. This minimization step of local loss function using the gradient-descent update
rule at each device dk is termed local update. Subsequently, global aggregation is carried out after one
or multiple iterations of local update, wherein the weighted average is calculated for the local update
of all device n termed global update, which is further used to update local update at each device dk.
We define each iteration to be inclusive of a local update step that is possibly followed by a global
aggregation step.

The local update rule for device dk is defined as follows: w(t)
k = w(t−1)

k − λ∇Fk

(
w(t−1)

k

)
,

where λ > 0 is a step size. We define the weighted average of w(t)
k for a set of all device d at any local

iteration t (that might or might not involve a global aggregation stage) as below: w(t) =
∑n

k = 1 skw(t)
k

s .
To elaborate the global update, we define global update to be updated up to P epochs. For each

epoch, a total of T iterations of the local update are performed at each device dk. The local update for

device dk at the tth iteration of the pth epoch is denoted by w(t,p)
k and defined as follows:

w(t,p)
k = w(t−1, p)

k −
λ

sk

([
∇Fk

[
w[t−1, p]

k

]
−∇Fk

[
w[p−1]

k

]]
+∇F

(
w(p−1)

))
(3)

where, at the pth epoch, the global update is defined by w(p), and ∇F
(
w(p)

)
= 1/s·

n∑
k = 1

sk∇Fk

(
w(p)

)
is found using Equation (1). Let w(p)

k indicate the local update at device dk after the last local iteration

of the pth epoch such that w(p)
k = w(T , p)

k . Then, we update the global weights at the pth epoch (w(p))
as follows:

w(p) = w(p−1) +
1
s

n∑
k = 1

sk

(
w(p)

k −w(p−1)
)

(4)

Sustainability 2019, 11, 3974 8 of 15

The process of local updates and global aggregations is continued until the following condition is
satisfied:

∣∣∣wp
−wp−1

∣∣∣ ≤ ε for constant ε > 0. The logic of a collaborative DL paradigm is shown in
Algorithm 1, where the T iterations of the local update are performed in epoch p at each device dk.
For ease of presentation, each iteration t is checked as an integer multiple of T to define the global
aggregation in a theoretical analysis. It should be noted that the communication aspect between IoT
devices and edge server is not considered in Algorithm 1. We will discuss such aspect in the subsequent
subsection. Algorithm 1 gives wf as the final model update or parameter that produces a minimum
value of global loss over an entire execution of local and global updates.

4.2. Blockchain in Collaborative DL

In order to provide a secure and reliable exchange of local and global updates among edge
server and IoT devices via the distributed ledger, the BlockDeepNet system deploys collaborative
DL in the blockchain network, wherein blocks and their verification are carried by the edge
server (miner). Like the traditional blockchain, in the distributed ledger of BlockDeepNet,
each block contains its header and body [18]. The body consists of a set of verified transactions

Tx =
{
Tx{p}d1

, Tx{p}d2
, . . . , Tx{p}dk

, . . . , Tx{p}dn

}
, wherein each transaction Tx(p)dk

envelops with a local update

from device dk at epoch p and corresponding computation time of local update T(p)
local, dk

. Note that

the local update is E
(
w(p)

k

)
for device dk at epoch p, where local weight w(p)

k is encrypted with

encryption E. The header encompasses information about block generation rate β and pointer to
previous block ℵ. Thus, the size of a block can be defined as h + S × n with given header size h
and average size of local update S for each device in n.

Algorithm 1: Collaborative DL Paradigm.

1:
Input: d = {d1, d2, . . . , dk, . . . , dn} : a set of IoT devices associated with edge server e, sk: a set of
data samples having a device dk, T : total number of iterations in an epoch, P: total number of
epochs, ε: threshold error.

2: Output: Final model update or parameter w(f)

3: Process:

4: Initialize: local iteration t = 0, epoch p = 1, model parameter w(f), w(0,1)
k , w(0), w(0)

k to
the same value for all device dk.

5: while
(∣∣∣w| f | −w|p−1|

∣∣∣ � ε
)

do
6: {
7: Set t← t + 1
8: For each device dk in the d do
9: Compute local update w(t,p)

k using Equation (3)
10 If t is an integer multiple of T
11: Compute global update w(p) using Equation (4)
12: Set w(p)

k ← w(p)

13: Update w f
← argminw∈{w f , w{p}}F (w)

14: Set p← p + 1
16: Else
17: Set w(t,p)

k ← w(t, p)
k

18: }
19: End

The BlockDeepNet system initializes with a genesis block generation phase, assuming that each IoT
device has been registered in the blockchain network where address pk corresponding to the blockchain
server is assigned to each device to launch a transaction. The edge server generates a genesis block

Sustainability 2019, 11, 3974 9 of 15

through genesis block generation, which contains initial transactions recording ownership statements
for each device. After the genesis block is created, the edge server generates a candidate block
at each epoch p that is filled with a set of verified transactions (local updates) from its associated
devices. Algorithm 2 describes the operational steps to generate a candidate block at the pth epoch
in the BlockDeepNet system, where a collaborative DL as described in Algorithm 1 is deployed in
a blockchain environment. In Algorithm 2, each device dk initializes model parameters and computes
their local update by invoking Algorithm 1.

Algorithm 2: A Candidate Block Generation Process in BlockDeepNet

1: Input: As described in Algorithm 1
2: Output: global update w(p) for a device dk
3: Initialize (for epoch p = 1): i.e., Line 4 in the Algorithm 1.
4: Compute local update {w(p)

1 , w(p)
2 , . . . , w(p)

k , . . . , w(p)
n }, i.e., Line 7 to 9 in the Algorithm 1.

5: Learning Contract: IoT Devices

6:

Key generation:

Public key (PK):
(
pkpsu

d1
, pkpsu

d2
, . . . , skpsu

dk
, . . . , pkpsu

dn

)
,

Secret key (SK):
(
skpsu

d1
, skpsu

d2
, . . . , skpsu

dk
, . . . , skpsu

dn

)
.

7: For each device dk in the d do

8: Compute E(w(p)
k) = Encryption

(
w(p)

k , pkpsu
dk

)
9: Envelope Tx(p)dk

← [E(w(p)
k), T(p)

local, dk
]

10: Upload Tx(p)dk
to the edge server

11: End
12: Mining Contract: Edge server

13: Receive Tx =
{
Tx{p}d1

, Tx{p}d2
, . . . , Tx{p}dk

, . . . , Tx{p}dn

}
14: For each Tx(p)dk

in Tx do

15: Extract E(w(p)
k), and T(p)

local, dk
from Tx(p)dk

16: Verify E(w(p)
k)

17: End
18: Compute weighted average w(p) using Equation (4)
19: Envelope Tx(p)co ← E[w(p)]

20: Candidate Block B ← [Tx(p)co , β, ℵ]
21: Learning Contract: IoT Devices /* Block propagation*/
22: For each device dk in the d do
23: Download Tx(p)co from the edge server
24: Extract E[w(p)] from Tx(p)co
25: Compute w(p) = Decryption

(
E
(
w(p)

)
, SK

)
26: Update w(p)

k ← w(p) /* Compute global update */
27: End

A learning contract is then executed by the associated edge server through which each device
iteratively uploads its local update to the edge server. In the learning contract, each device dk trades its

local update to the edge server. In the learning contract, each device dk trades its local update w(p)
k in

encrypted form and computation time of local update T(p)
local, dk

at each epoch p, which are enveloped

with transaction Tx(p)dk
and sent to the edge server. An additively homomorphic encryption [19] is

used to encrypt the local update, where all devices associated with the edge server generate pseudo

public keys
(
pkpsu

d1
, pkpsu

d2
, . . . , pkpsu

dk
, . . . , pkpsu

dn

)
and cooperatively create the corresponding pseudo

Sustainability 2019, 11, 3974 10 of 15

secret keys SK =
(
skpsu

d1
, skpsu

d2
, . . . , skpsu

dk
, . . . , skpsu

dn

)
, such that SK = f

(
skpsu

d1
+ skpsu

d2
+, . . . , +skpsu

dn

)
,

where f is a function of secret sharing protocol. Each device dk has a fraction of secret key skpsu
dk

.

After receiving transactions
{
Txp

d1
, Txp

d2
, . . . , Txp

dk
, . . . , Txp

dn

}
from all associated devices, the edge

server verifies and processes these transactions through mining contract and creates transaction
Txp

co, which is known as global update at epoch p. Specially, edge server computes the weighted

average of
(
E(w(p)

1

)
, E(w(p)

2), . . . , E(w(p)
n)) with the help of Equation (4) and properties of additively

homomorphic encryption [16] as follows:

E[w(p)]= E[w]p−1]
]
×

1
s

n∏
k = 1

E
[
w[p]

k

]sk
× E

[
−w[p−1]

]sk (5)

Here, the mining contract is responsible for verifying and processing the local updates from all
devices associated with the edge server for computing the global update and creating candidate block
[Txp

co, β, ℵ], where β and ℵ are the block generation rate and pointer to the previous block, respectively.

Through the learning contract, each device dk downloads the candidate block and computes a global

update by decrypting the E
(
w(p)

)
stored in the candidate block. Thus, learning and mining contracts

are iteratively executed to carry out the collaborative DL process at each epoch p.
The learning and mining contracts provide two security requisites: confidentiality and secret

sharing. In terms of confidentiality, a local update by each device is encrypted with additively
homomorphic encryption; therefore, if a device does not reveal its local update, then no one can obtain
information about the local update. Moreover, since the edge server only performs computation
over encrypted data, it does not reveal what it knows. On the other hand, in secret sharing,
each device participating in the collaborative DL process is required to decrypt the global update using
the cooperatively created secret key SK.

5. Experimental Analysis

In this section, we present an experimental evaluation of the BlockDeepNet system to show
its practicability and feasibility in IoT. First, an experimental testbed is described to implement
a BlockDeepNet prototype. An application of object detection is then deployed on the BlockDeepNet
system to analyze the compatibility of collaborative DL and IoT. In the third part, we show a security
analysis of BlockDeepNet, including how it overcomes the security issues in the existing centralized
and distributed system. Finally, a feasibility analysis is presented to validate the capabilities of DL
and blockchain operations in the BlockDeepNet system with an acceptable performance overhead.

BlockDeepNet Testbed Setup

The BlockDeepNet testbed setup involves three major components of IoT devices: edge cloud,
cluster, and access point. The IoT devices are operated as a front end consisting of several Raspberry Pi
3 Model B single-board computers with Raspbian Operating System (OS), 32GB storage, 1 GB RAM,
1.2GHz CPU, and several accessories such as Google bonnet, microphone, sense hat, and cameras
and so on. The front end also includes a laptop with MacOS, 256 GB storage, 4 GB RAM, 2.2 GHz
CPU. An OpenStack deployment is configured as a back-end edge cloud cluster consisting of 1
high-performance Cisco 3850 switch, 1 high-performance Dell PowerEdge C730x rack server, and 4
high-performance Dell PowerEdge R630 rack servers. Each OpenStack rack server is configured with
256 GB RAM, 18 independent CPU cores. A CentOS 7 is installed in the edge server as an operating
system. A high-performance Cisco WiFi is used as an access point.

Go-ethereum was used to set up the blockchain platform and solidity language was employed to
write smart contracts that include two main modules of learning and mining contracts and deployed

Sustainability 2019, 11, 3974 11 of 15

using a Truffle development suite. The learning contracts contain the information about the uploading
operations (i.e., sending local updates from IoT devices to the rack server) and downloading operations
(i.e., getting global updates by IoT devices from the rack server). On the other hand, mining contracts
hold the information about candidate block generation and mining task, i.e., computing a Proof-of-Work
(PoW). The rack server processes the mining contracts to candidate block generation and mining.
Additionally, the interaction between IoT applications and blockchain was supported by employing
Node.js as an interface. Subsequently, python version 3.6.4 and Tensorflow version 1.7.0 were configured
for a DL operation. The edge server was configured for Go-ethereum. In addition, each Raspberry Pi
was also installed with Go-ethereum and DL. The Go-ethereum in a Raspberry Pi was configured such
that it operates in light mode without the block mining function. We set up a DL in a raspberry Pi using
five steps: 1) Update the Raspberry Pi; 2) Install TensorFlow; 3) Install OpenCV; 4) Compile and Install
a Protobuf (Protocol buffers); 5) Set up a TensorFlow directory structure. Here, OpenCV was installed to
improve the computational efficiency and support real-time application in IoT. Protobuf was compiled
to provide efficient and fast structuring of data for DL.

In the experiment setup, the Raspberry Pis and the laptop were operated as a blockchain
and DL clients responsible for generating and sending the local updates to the rack server in
the form of blockchain transactions and receiving global updates from the rack server via learning
contracts. On the other hand, a rack server acted as a candidate block generator and the block miner
solving Proof-of-Work (PoW) for collaborative DL task. Since the edge server records transactions,
and processing and mining the blocks via mining contracts, it acts as a full blockchain node. While IoT
devices only record their individual transactions and no block mining, they act as a light blockchain node.

In order to validate the compatibility of the BlockDeepNet system in IoT, we evaluated
the performance of an object detection task in the IoT platform using the BlockDeepNet system.
Object detection is widely used in IoT such as door guarding, crowd control, and city surveillance,
requiring low latency and higher accuracy. For object detection, the well-known PASCAL VOC
2012 dataset [20] consisting of 27,450 trainval instances and 13,841 validation instances of 20 object
classes was selected. The whole dataset was partitioned into 10 subsets, where the size of a subset
was 2,745 (i.e., 27,450/10). The number of subsets depends on the number of Raspberry Pis. In our
experiment, we considered a maximum of 10 Raspberry Pis (R-1, R-2, R-3, R-4, R-5, R-6, R-7,
R-8, R-9, R-10), and each one of them was assigned to a distinct subset from among 10 subsets.
Each raspberry Pi prepared a trained model using a Convolution Neural Network (CNN) with
the structure Input→ Conv→Maxpool→ Fully Connected→ Output , where the weights and bias
parameters are w1 = (10, 1, 3, 3) and b1 = (10, 1) for Conv layer, w2 = (1960, 128) and b2 = (1, 128)
for fully connected layer, and w2 = (128, 10) and b2 = (1, 10) for output layer. The value of other
training parameters (Learning rate, No. of epochs, No. of iterations) was set to (0.5, 1, 1500).

We implemented the Threshold Paillier algorithm [21] on each Raspberry Pi with 160-line codes
in JAVA to carry out the task of additively homomorphic encryption. To support the object detection,
a camera module inbuilt with each Raspberry Pi captured video frames (objects) in 1080 p resolution
and transferred them to BlockDeepNet system for further processing, wherein detection results were
depicted as the boxes over the identified objects. In order to evaluate the performance of object detection,
four standard measures: accuracy, security analysis, time delay, and computational complexity were
used, which is described as follows:

Mean Precision Accuracy (mPA): Figure 3a,b show the mPA of the object detection task using
the BlockDeepNet system in the case of 5 and 10 Raspberry Pis, respectively. We observed that
mPA increases in proportion to the number of Raspberry Pis (IoT devices). Generally, all Raspberry
Pis prepare their individual local model by training their own private data (subset of 2745 instances)
and share their local updates for collaborative DL in the BlockDeepNet system that generates a global
update by the weighted average of all local updates. It is obvious that, when a large number of
Raspberry Pis participate in BlockDeepNet, the size of the training dataset will increase (5 × 2745
for 5 Raspberry Pis and 10 × 2745 for 10 Raspberry Pis), and global update will be obtained from

Sustainability 2019, 11, 3974 12 of 15

the larger number of local updates that will further increase the overall mPA. Each Raspberry Pi will get
a global update with an overall higher mPA and overcome the issue of lack of training dataset. We also
compared the mPA of each Raspberry Pi in case of individual local update (i.e., without BlockDeepNet)
and aggregated global update (i.e., with BlockDeepNet). As shown in Figure 3a,b, for all Raspberry
Pis, individual local updates (red bars) provide less accurate results compared to that of global update
(light green bars) in the BlockDeepNet system. It demonstrates that BlockDeepNet supports higher
mPA compared to individual local update.

Latency: We determined the latency delay for object detection using the BlockDeepNet system.
Latency was measured as the total time cost for one epoch operation in BlockDeepNet. We evaluated
latency with an increasing number of Raspberry Pis (from R-5 to R-10) as shown in Figure 4a. Notable
is the fact that latency increases inconspicuously with an increasing number of Raspberry Pis.

Table 1. Qualitative analysis of the proposed BlockDeepNet.

Research Challenges Without BlockDeepNet With BlockDeepNet

Single point of failure

Leverages on centralized architecture,
wherein a centralized server has full
control over DL operations (i.e., raw

data collection, pre-processing, features
extraction, and analysis) that produces
overwhelming, sometimes unbearable,
load to the single centralized servers

and results in single-point failure.

Employs blockchain technology to
provide a secure sharing of resources

and data among all the member nodes
in the IoT network that distributes load
of the DL operation in a decentralized

manner and overcomes a central
control dependency.

Privacy leak

Unable to preserve the full privacy of
the data contributors (IoT devices),

since the IoT devices are excluded from
DL process as the data for learning

process are collected without
the permission of device owners,
which may cause a privacy leak.

Each IoT device participates in the DL
operation and delivers a local model
update by employing the DL over its

own private data that protect IoT
device from a significant privacy leak.

Training data
insufficiency

Due to the privacy issue, some data
contributors do not share their data to

the server resulting in difficulty in
accumulating enough training data for
the distributed DL model that lead to
a weak DL model with low accuracy.

Instead of sharing the data to the server,
each IoT device shares the local update

(gradient parameters, learning
model’s weight) of its local model that

overcomes the issue of training data
insufficiency and provides an accurate

global model to each IoT device.

Data poisoning attack

Any of the entities in the IoT network
may pose adversarial behavior in

the distributed DL process,
e.g., a malicious server can implant

misleading training data deliberately
that may disrupt the distributed DL

process and wrongly update the model
parameters into distributed DL models.

Each entity in the IoT network
communicates securely via blockchain

transaction, where the learning
and mining contracts provide two

security requisites, i.e., confidentiality
and secret sharing with the help of

additively homomorphic encryption
and decryption.

Privacy and security analysis: The BlockDeepNet system supports privacy protection as an important
factor. To measure privacy leak, we define a data similarity index wherein the degree of similarity
between the reconstruction of an update from encrypted update and actual update is determined.
The data similarity can be calculated using many ways—for example, Euclidean distance, etc. As shown
in Figure 4, we measured the data similarity index in our experiment in terms of calculation level,
which estimates that similarity decreases and privacy increases with increasing level of calculation.

Computational Complexity: The computational feasibility of the BlockDeepNet system was evaluated
based on two primary operations of DL and blockchain and found additional computation overhead due
to collaborative DL and block generation. The overall overhead of BlockDeepNet can be categorized

Sustainability 2019, 11, 3974 13 of 15

into two aspects: CPU and memory. Figure 5a,b show the overall overhead with and without
the BlockDeepNet system for the edge server and IoT devices, respectively. From box plots in
Figure 5a, we can see that, with BlockDeepNet, additional CPU (lies between 3.1 and 4.3) and memory
(lies between 11 to 14.7) resources are utilized to carry out blockchain and DL operations.

Figure 3. Mean precision accuracy of BlockDeepNet.

Figure 4. Performance analysis of BlockDeepNet.

Figure 5. CPU and memory utilization in BlockDeepNet.

Sustainability 2019, 11, 3974 14 of 15

On the other hand, in the case without the BlockDeepNet system, each device sends its private
data to the edge server for DL operation that eliminates blockchain and DL overhead from IoT devices
and lowers the CPU (lies between 1.1 and 2.1) and memory (lies between 5.8 and 8.1). It further leads
to higher CPU and memory without BlockDeepNet compared to the case with BlockDeepNet.

Table 1 summarizes the advantages of BlockDeepNet system over the existing researches based on
the four research challenges: Single point of failure, privacy leak, training data insufficiency, and data
poisoning attack.

6. Conclusions

In this paper, we proposed BlockDeepNet, a Blockchain-based secure DL system by combining DL
and blockchain. BlockDeepNet provides three contributions in the area of DL for big data analysis in
IoT. First, a collaborative DL paradigm that supports DL at the IoT device level to mitigate privacy leak
and obtains enough data for DL was presented. Second, collaborative DL was deployed in a blockchain
environment to provide secure and reliable exchange of local and global updates. Finally, a protype
model of BlockDeepNet was developed to validate its effectiveness in real-time scenarios. We conducted
an experimental evaluation of BlockDeepNet with a case study of object detection to demonstrate
its feasibility and compatibility in IoT. The evaluation results demonstrated that BlockDeepNet is
feasible for big data analysis task in IoT such as object detection and provides an efficiency in terms
of accuracy, security analysis, time delay, and computational complexity. Our findings suggest that
BlockDeepNet mitigates the existing challenges and obtains higher accuracy with acceptable latency
and computational overhead of blockchain operation for DL in IoT. However, DL at the device level can
further result in the requirement of higher computation power and devices with lower computation
power cannot be benefited with BlockDeepNet. To address this issue, BlockDeepNet can be enhanced
with an offloading mechanism wherein devices with low computation power can offload their DL task
to the edge server via blockchain transactions.

Author Contributions: Conceptualization, S.R.; methodology, S.R.; software, S.R.; validation, S.R.; formal analysis,
S.R.; investigation, S.R.; writing—original draft preparation, S.R..; writing—review and editing, S.R., J.H.P;
supervision, J.H.P; project administration, J.H.P.; funding acquisition, Y.P., J.H.P.

Funding: This study was supported by the Advanced Research Project funded by the SeoulTech (Seoul National
University of Science and Technology).

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Rathore, S.; Park, J.H. Semi-supervised learning based distributed attack detection framework for IoT.
Appl. Soft Comput. 2018, 72, 79–89. [CrossRef]

2. Rathore, S.; Sharma, P.K.; Sangaiah, A.K.; Park, J.J. A hesitant fuzzy based security approach for fog
and mobile-edge computing. IEEE Access 2017, 6, 688–701. [CrossRef]

3. The Future of Data with the Rise of the IoT. Available online: https://www.rfidjournal.com/articles/view?17954
(accessed on 11 April 2019).

4. Mohammadi, M.; Al-Fuqaha, A.; Sorour, S.; Guizani, M. Deep learning for IoT big data and streaming
analytics: A survey. IEEE Commun. Surv. Tutor. 2018, 20, 2923–2960. [CrossRef]

5. Park, J.H. Practical approaches based on deep learning and social computing. J. Inf. Process. Syst. 2018,
14, 1–5.

6. Zhang, Q.; Yang, L.T.; Chen, Z.; Li, P.; Deen, M.J. Privacy-preserving double-projection deep computation
model with crowdsourcing on cloud for big data feature learning. IEEE Internet Things J. 2018, 5, 2896–2903.
[CrossRef]

7. Abeshu, A.; Chilamkurti, N. Deep learning: The frontier for distributed attack detection in fog-to-things
computing. IEEE Commun. Mag. 2018, 56, 169–175. [CrossRef]

8. Li, H.; Ota, K.; Dong, M. Learning IoT in edge: Deep learning for the internet of things with edge computing.
IEEE Netw. 2018, 32, 96–101. [CrossRef]

http://dx.doi.org/10.1016/j.asoc.2018.05.049
http://dx.doi.org/10.1109/ACCESS.2017.2774837
https://www.rfidjournal.com/articles/view?17954
http://dx.doi.org/10.1109/COMST.2018.2844341
http://dx.doi.org/10.1109/JIOT.2017.2732735
http://dx.doi.org/10.1109/MCOM.2018.1700332
http://dx.doi.org/10.1109/MNET.2018.1700202

Sustainability 2019, 11, 3974 15 of 15

9. Wang, Z. Deep learning-based intrusion detection with adversaries. IEEE Access 2018, 6, 38367–38384.
[CrossRef]

10. Edge, M.L. Deep Learning on IoT Devices. Available online: https://conferences.oreilly.com/oscon/oscon-or-
2018/public/schedule/detail/67199 (accessed on 11 April 2019).

11. Tang, J.; Sun, D.; Liu, S.; Gaudiot, J.L. Enabling deep learning on IoT devices. Computer 2017, 50, 92–96.
[CrossRef]

12. Rathore, S.; Kwon, B.W.; Park, J.H. BlockSecIoTNet: Blockchain-based decentralized security architecture for
IoT network. J. Netw. Comput. Appl. 2019, 143, 167–177. [CrossRef]

13. Castro, M.; Barbara, L. Practical Byzantine fault tolerance. OSDI 1999, 99, 173–186.
14. Kim, H.W.; Jeong, Y.S. Secure authentication-management human-centric scheme for trusting personal

resource information on mobile cloud computing with blockchain. Hum. Cent. Comput. Inf. Sci. 2018, 8, 1–11.
[CrossRef]

15. Johnsonm, R.; Zhang, T. Accelerating Stochastic Gradient Descent Using Predictive Variance Reduction.
In Proceedings of the NIPS, Lake Tahoe, NV, USA, 5–10 December 2013; pp. 1–10.

16. LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [CrossRef] [PubMed]
17. Rathore, S.; Ryu, J.H.; Sharma, P.K.; Park, J.H. DeepCachNet: A Proactive Caching Framework Based on

Deep Learning in Cellular Networks. IEEE Netw. 2019, 33, 130–138. [CrossRef]
18. Sharma, P.K.; Rathore, S.; Park, J.H. DistArch-SCNet: Blockchain-based distributed architecture with li-fi

communication for a scalable smart city network. IEEE Consum. Electron. Mag. 2018, 7, 55–64. [CrossRef]
19. Fouque, P.A.; Poupard, G.; Stern, J. Sharing Decryption in the Context of Voting or Lotteries. In Proceedings of

the International Conference on Financial Cryptography; Springer: Berlin/Heidelberg, Germany, 2000; pp. 90–104.
20. Everingham, M.; Eslami, S.A.; Van Gool, L.; Williams, C.K.; Winn, J.; Zisserman, A. The pascal visual object

classes challenge: A retrospective. Int. J. Comput. Vis. 2015, 111, 98–136. [CrossRef]
21. Hazay, C.; Mikkelsen, G.L.; Rabin, T.; Toft, T. Efficient RSA Key Generation and Threshold Paillier

in the Two-Party Setting. In Proceedings of the Cryptographers’ Track at the RSA Conference; Springer:
Berlin/Heidelberg, Germany, 2012; pp. 313–331.

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/ACCESS.2018.2854599
https://conferences.oreilly.com/oscon/oscon-or-2018/public/schedule/detail/67199
https://conferences.oreilly.com/oscon/oscon-or-2018/public/schedule/detail/67199
http://dx.doi.org/10.1109/MC.2017.3641648
http://dx.doi.org/10.1016/j.jnca.2019.06.019
http://dx.doi.org/10.1186/s13673-018-0136-7
http://dx.doi.org/10.1038/nature14539
http://www.ncbi.nlm.nih.gov/pubmed/26017442
http://dx.doi.org/10.1109/MNET.2019.1800058
http://dx.doi.org/10.1109/MCE.2018.2816745
http://dx.doi.org/10.1007/s11263-014-0733-5
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Work
	System Infrastructure of BlockDeepNet
	Reconfigured IoT Network
	Functional Module of BlockDeepNet

	Working Mechanism of BlockDeepNet
	Collaborative DL Process
	Blockchain in Collaborative DL

	Experimental Analysis
	Conclusions
	References

