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Abstract: The increase of agricultural greenhouse gas (GHG) emissions has become a significant
issue for China, affecting the achievement of its Nationally Determined Contributions under the
Paris Agreement. Expansion of the large-scale multiple cropping system as a consequence of climate
warming could be a major driving force of this increase. In this study, life cycle assessment was
employed to identify agricultural GHG emissions due to the expansion of the multiple cropping
system in the North China Plain and neighboring regions. We found that agricultural greenhouse gas
emissions have increased from 41.34 to 120.87 Tg CO2-eq/yr over the past 30 years, and the expansion of
the multiple cropping system has contributed to 13.89% of this increment. Furthermore, the increases
in straw handling and agricultural inputs which are related to multiple cropping systems have also
played an important role. Results of our study demonstrate that the expansion of the multiple
cropping system contributes considerably to increases in agricultural GHG emissions in the North
China Plain and neighboring regions. Therefore, it can be concluded that the sustained northward
expansion of the multiple cropping system will further elevate agricultural GHG emissions in China,
and this should be considered while formulating policies to reduce GHG emissions from agriculture.
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1. Introduction

China is the largest emitter of greenhouse gases (GHGs) and has promised to achieve the peak
of carbon dioxide emissions around 2030 in its Nationally Determined Contributions (NDCs) under
the Paris Agreement. As such, the Chinese government has employed a series of actions in line
with global plans to reduce GHG emissions from energy supply, transport, and traditional secondary
industries [1,2]. However, GHG emissions from agriculture increased substantially from 0.61 to 0.92 Pg
CO2-equivalence (CO2-eq) from 1994 to 2012 [3,4]. Tian et al. also reported that agricultural GHG
emissions show a clear upward trend with an average annual growth rate of 3.10% in China from 1995
to 2010 [5]. This increase in agricultural GHG emissions has become an important sustainability issue
to ensure that China meets its Nationally Determined Contributions under the Paris Agreement [6,7].
The agricultural GHG emissions, which include fertilizer, pesticide, plastic sheeting, diesel, electricity,
and soil carbon emissions, increased by 4.08% in China from 1993 to2008 [8]. Agriculture is a non-point
source of GHG emissions, which is closely related to the sown area and multiple cropping systems
(MCSs) [9].

Multiple cropping systems play a vital role for securing the food supply of Asia, particularly in
densely populated China where farmland areas have been reduced [10]. The changing climate has
prolonged the growing season by about ten days in most of northern China, and the boundary of MCSs
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has shifted northward by 26 to127 km [4,11,12], enabling annual agricultural practices to shift from
single to double cropping [13–15]. Crops in the temperate climate zones of northern China benefit from
increasing temperatures [16]. The climatically-mediated potential agricultural productivity is predicted
to increase by 9.36% if single cropping (e.g., spring maize) is replaced with double cropping (e.g., winter
wheat and summer maize) in northeastern China over the decades spanning 2011–2040 [17]. Yang et al.
argued that if the climate resources were fully utilized in China by developing MCSs, the total yields of
maize, wheat, and rice could increase by 2.2% from 2011 to 2100 [12]. There are now high expectations
to increase cropping intensity to boost crop yields in northeastern and northern China. However,
these large-scale changes in MCS patterns could alter agricultural GHG emissions, which may threaten
corresponding mitigation efforts in the agricultural sector. Unfortunately, the information on GHG
emissions obtained from MCSs is lacking.

The assessment methods used to account for agriculture GHG emissions are quite different.
The latest national GHG inventory of China in 2012 followed the methodologies provided in the
Intergovernmental Panel on Climate Change (IPCC) Guidelines for National Greenhouse Gas Inventories
and Uncertainty Management [4,18]. The IPCC method assigns the responsibility for the emissions from
agricultural inputs, such as fertilizer and diesel, to the industrial and energy sectors, which cannot
reflect the emissions of the entire agricultural production process. However, the life cycle assessment
(LCA) method describes the global warming potential of the entire process of agricultural production,
which has been widely adopted in studies on the agricultural sector. Biswas et al. used LCA to calculate
GHG emissions from wheat production in Western Australia [19]. Athena and Regina certified the first
carbon neutrality coffee in Costa Rica based on comprehensive data collection and the LCA method [20].
Li et al. reported, based on the LCA, that for every 1% increase in agricultural output, agricultural
carbon emissions have increased by 0.69% [21]. Therefore, the LCA is a good method to assess GHG
emissions from the expansion of MCSs due to climate change [9,22].

Known as China’s granary, the North China Plain (NCP) is one of the largest planting areas,
providing more than half of the cereal consumed in China [23]. Wheat-maize double cropping
has expanded in this region, supported by climate change [15,16]. However, little is known of the
contribution of MCSs to GHG emissions in the NCP. Therefore, the objectives of this study were to
(i) estimate GHG emissions related to the expansion of MCSs and (ii) determine the GHG emissions
increase attributed to MCSs.

2. Data and Methodology

2.1. Study Region and Data

The NCP and neighboring regions are the most obvious areas for the development of MCS in China.
These areas are dominated by double cropping of winter wheat and summer maize, and include Beijing,
Tianjin, Hebei, Shanxi, Inner Mongolia, Henan, and Shandong Provinces (Figure 1). The climate regime
is temperate with continental monsoons. The frost-free period is about four to eight months, and heat
conditions vary substantially meridionally. Annual precipitation is approximately 400–800 mm,
which occurs mainly in the humid summer months of June, July, and August. Soil types are mainly
cinnamon and black, similar to ustalf and mollisol, respectively, in U.S. soil classification, and dryland
farming methods predominate. The major crops include wheat, maize, soybean, and cotton. Data from
508 rural counties from the China Rural Statistical Yearbooks 1982–2012 included wheat, maize,
soybean, and cotton plantations, sown areas, the multiple cropping index (MCI), yield, fertilizers,
electric power, pesticides, plastic mulch, and diesel. The changes in the MCI indicate the dynamics
of MCSs that have arose from enhanced climate resources. For example, the climatically mediated
potential agricultural productivity is predicted to increase by 9.36% upon replacing single cropping
(e.g., spring maize) with double cropping (e.g., winter wheat and summer maize) in northeastern
China from 2011 to 2040 [17]. If the climatic resources were fully utilized in China by developing
MCSs, the yields of maize, wheat, and rice could increase by 2.20% from 2011 to 2100 [12]. However,
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comparison of the spatiotemporal differences between the beginning and end of a single year using the
MCI is difficult and unreliable [24]. Therefore, we compared the average MCI of the first (1982–1986)
and last (2008–2012) five-year periods of the study period to quantify the changes in the MCS expansion
patterns (Figure 1).
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Figure 1. Study region and distributions of the MCI: (a) Overview of the study region, the MCI between
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Table 1 presents the sown areas and yields of wheat, maize, soybean, and cotton in two phases.
In comparison to 1982–1986, the yields of wheat, maize, soybean, and cotton increased over the 30 year
study period by 116.27%, 228.91%, 51.95%, and 14.24%, respectively. The total sown area of the
four crops was 20.18 × 106 ha/yr between 1982–1986, which increased to 27.58 × 106 ha/yr between
2008–2012, representing an increase of 36.67%. Although the sown areas of wheat and maize increased,
the sown areas of soybean and cotton decreased slightly over time. The MCI at a county level increased
markedly between 1982–1986 and 2008–2012, with mean values of 1.00 and 1.13, respectively.

2.2. LCA System Boundary of MCS GHG Emissions

The LCA system boundary of MCS GHG emissions included GHGs for specific farming stages
and agricultural management measures [33]. According to the IPCC methodology [34], farming stage
emissions involve two parts, emissions from seed and those from straw handling. In the past 20 years,
returning straw to the field has become an important measure to improve soil fertility in China [35];
however, returning straw increased N2O emissions by 27.73% in northern China [33]. The use and
production of fertilizers, pesticides, plastic mulch (maintaining heat and moisture during spring
sowing), diesel, and electric power for agricultural machinery is embedded in crop management
practices. However, the CO2 emissions from the combustion of agricultural waste were carbon
neutral [9,36,37]. The LCA system boundary did not include the emissions of CO2 and trace gases
(i.e., CH4 and N2O) from the burning of straw (Figure 2).
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Table 1. Activity levels and emission factors by farming stage.

Parameter
1982–1986 2008–2012

Reference
Wheat Maize Soybean Cotton Wheat Maize Soybean Cotton

Seeds per ha (kg/ha) 268.800a 52.5000b 45.000c 18.000d 268.800a 52.500b 45.000c 18.000d a: Li et al., 2009 [25]; b: Li, 2004 [26]; c: Li, 2004 [27]; d: Shang, 2011 [28]
EFseed (kgCO2-eq/kg) 1.160 1.220 1.160 1.160 1.160 1.220 1.160 1.160 Liu et al. 2010 [14]
Straw feed ratio 0.126 0.340 0.207 0.002 0.126 0.199e 0.207 0.002 Liu, 2005 [29]; e: Wang, 2011 [30]
CH4 conversion factor 0.070 0.070 0.070 0.070 0.070 0.070 0.070 0.070 NDRC, 2011 [31]
Straw returning ratio 0.000 0.000 0.000 0.000 0.237 0.436e 0.189 0.026 Liu, 2005 [29]; e: Wang, 2011 [30]
Straw ratio 1.170 1.040 1.600 3.000 1.170 1.040 1.600 3.000 Guo and Huang, 2016 [32]
Dry weight ratio 0.870 0.860 0.860 0.830 0.870 0.860 0.860 0.830 NDRC, 2011 [31]
Root crown ratio 0.166 0.170 0.130 0.200 0.166 0.170 0.130 0.200 NDRC, 2011 [31]
Carbon contentstraw 0.485 0.471 0.485 0.485 0.485 0.471 0.485 0.485 IPCC, 2014 [18]
Nitrogen contentstraw 0.005 0.006 0.018 0.005 0.005 0.006 0.018 0.005 NDRC, 2011 [31]
Sown area (106 ha) 9.990 5.475 2.002 2.709 12.335 11.200 1.707 2.333 China Rural Statistical Yearbook, 1982–2009
Yield (Tg) 31.709 20.393 2.154 2.283 68.577 67.075 3.273 2.608 China Rural Statistical Yearbook, 1982–2009
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2.3. Calculation of GHG Emissions

2.3.1. CO2 Emissions from Seeds

Carbon emissions from seeds was calculated according to Equation (1).

ESeed,CO2 =
∑

(Sown areacrop ∗ Seed per hacrop ∗ EFseed) (1)

where ESeed, CO2 is the CO2 emissions from seeds, Sown areacrop is the sown area of the crop, Seed per hacrop

is the quantity of seeds per hectare of the crop, and EFseed is the related emission factor. The seed
activity data and emission factors of wheat, maize, soybean, and cotton were adopted according to
local research results (see Table 1).

2.3.2. N2O Emissions from Soil

The N2O emissions from soil include direct and indirect emissions from fertilizer and straw.
Direct N2O emissions result from nitrogen fertilizer and straw returning. Meanwhile, indirect N2O
emissions come from atmospheric deposition, leaching, and runoff of nitrogen from soil [24].
These values are based on the IPCC Guideline [34]. The soil N2O emissions were determined as:

Esoil, N2O = Edirect,N2O + Eindirect, N2O (2)

where Esoil,N2O is the total N2O emissions from the cropland, including direct emissions (Edirect,N2O)
and indirect emissions (Eindirect, N2O).

The cropland nitrogen inputs mainly contained nitrogen fertilizer E f ertilizer application,N2O and
straw returning (including nitrogen returned to the upper ground and underground root nitrogen)
Estraw returing, N2O can be represented as follows:

Edirect,N2O =
(
E f ertilizer application,N2O + Estraw returning, N2O

)
(3)

E f ertilizer application,N2O = A f ertilizer application,N2O ∗ EF f ertilizer application (4)
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where A f ertilizer application,N2O is the activity level of fertilizer application and EF f ertilizer application is the
emission factor corresponding to fertilizer application.

Estraw returning,N2O = Eupper ground straw returning,N2O + Eunderground root,N2O

= Yield ∗Root crown ratio ∗Dry weight ratio ∗ Straw ratio
∗Nitrogen contentstraw + (Yield + Yield ∗Dry weight ratio
∗straw ratio) ∗Root crown ratio ∗ Nitrogen contentstraw

(5)

where Eupper ground straw returning,N2O represents emissions from nitrogen content in the upper ground
due to straw returning and Eunderground root,N2O represents emissions from nitrogen content in the
underground root.

Indirect N2O emissions are calculated as:

Eindirect, N2O =
(
Edeposition,N2O + Eleaching,N2O

)
=

(
Edirect,N2O ∗ 10%

)
∗ 0.01 + (Edirect,N2O ∗ 20%) ∗ 0.0075

(6)

where Edeposition,N2O represents N2O emissions from atmospheric deposition and Eleaching,N2O represents
N2O emissions from atmospheric leaching. Atmospheric nitrogen mostly comes from the volatilization
of NH3 and NOx. We adopted the recommended value of 10%. According to provincial inventories [4],
nitrogen leaching and runoff from soil accounts for 20% of the total nitrogen inputs into cropland.
We used the emission factors of 0.01 and 0.0075 recommended by IPCC [34], respectively. The activity
data of cropland N2O emissions mainly include the sown area, yield, fertilizer application, root crown
ratio, dry weight ratio, straw ratio, straw nitrogen content, straw feed ratio, and straw returning ratio
(Tables 1 and 2).

2.3.3. CH4 Emissions from Straw Feed

The CH4 emissions from straw feed were related to animal enteric fermentation [34].

Estraw f eed,CH4 =
∑

(Yield ∗Dry weight ratio ∗ Straw ratio ∗ Straw f eed ratio ∗Ym) (7)

where Estraw f eed,CH4 represents the emissions of CH4 from straw feed; Ym is the CH4 conversion factor,
available from the guideline of provincial inventory [4], and the value of 7 ± 0.5% corresponds to the
conversion factor for emissions from other cattle and buffaloes which are primarily fed low-quality
straw and by-products (Table 1).

2.3.4. CO2 Emissions from Agricultural Inputs

The GHG emissions from agricultural inputs, including fertilizer production, electric power,
pesticides, plastic mulch, and diesel, are calculated as follows:

Einput,CO2 =
∑

(Ainput ∗ EFinput) (8)

where Ainput is the activity level of the agricultural inputs, and EFinput is the emission factor of
the agricultural input. Table 2 lists the activity level data from the statistical yearbook and EF for
agricultural inputs.

CH4 and N2O emissions can be converted into CO2 equivalents (CO2_eq) using the global
warming potential (GWP). Over a 100 year timescale, the GWPs of CH4 and N2O have been estimated
to be 34 and 298, respectively [39].
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Table 2. Activity levels and emission factors of agricultural inputs.

Parameter
Activity (1982–1986) Activity (2008–2012)

Unit EF Unit Reference
Wheat Maize Soybean Cotton Wheat Maize Soybean Cotton

Fertilizer
application 2.10 1.15 0.42 0.57 5.95 5.41 0.82 1.13 Tg 0.0056a/0.0057 kgN2O-N/kg NDRC,

2011 [31]

Fertilizer
production 2.10 1.15 0.42 0.57 5.95 5.41 0.82 1.13 Tg 0.8956 kgCO2-eq/kg West et al.,

2002 [38]

Electric
power 31.60 17.32 6.33 8.57 0.01 0.01 0.00 0.00 109 KW 1.03025/0.89355 b Kg/KW.h

NDRC,
2004 [3],
2012 [4]

Pesticides 0.16 0.14 0.02 0.03 Tg 6.5800 kgCO2-eq/kg Li et al.
2013 [21]

Plastic
mulch 0.12 0.11 0.02 0.02 Tg 5.1800 kgCO2-eq/kg Li et al.,

2011 [8]

Diesel 3.30 3.00 0.46 0.62 Tg 3.3200 kgCO2-eq/kg Li et al.,
2013 [21]

Note: a EF in Shanxi and Inner Mongolia is 0.0056; b EF is 1.03025 between 1982–1986 and 0.89355 between 2008–2012, respectively.
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2.4. Contribution of MCS to the GHG Emission Ratio

To determine the contribution of MCSs to GHG emissions, we assumed that the MCI retained
the state between 1982–1986 (mean value of MCI of 508 counties is 1.00), instead of the state between
2008–2012 (mean value of MCI of 508 counties is 1.13). Furthermore, to eliminate the change in
cultivated land area between 1982–1986 and 2008–2012, the change in GHGs was calculated in terms of
the sown area and the carbon emissions per unit area. Therefore, the change in GHGs caused by the
MCI replacement could be treated as the contribution of MCSs. The contribution ratio of MCI to GHG
emissions is calculated as:

CMCS = ∆GHGMCS/GHGMCS2 (9)

∆GHGMCS = (MCI2 −MCI1) ×Areacultivated2 ×GHGunit area2 (10)

GHGunit area2 = GHGMCS2/Areasown2 (11)

where CMCS is the contribution ratio of MCSs to GHG emissions, ∆GHGMCS is the change in GHGs
caused by the MCI replacement, GHGunit area2 is the GHG emissions per unit area between 2008–2012,
GHGMCS2 is the GHG emissions between 2008–2012, MCI2 and MCI1 are the MCI values between
2008–2012 and 1982–1986, respectively, and Areacultivated2 and Areasown2 are the cultivated area and
sown area between 2008–2012, respectively.

3. Results

3.1. Agricultural GHG Emissions in the NCP and Neighboring Regions

The average GHG emissions from wheat, maize, soybean, and cotton were 120.87 Tg CO2-eq/yr
between 2008–2012, representing an increase of 192.38% as compared with the 41.34 Tg CO2-eq/yr
produced between 1982–1986 (Table 3, Figure 3). Straw feed was the largest GHG emissions source,
producing 25.93 and 51.59 Tg CO2-eq/yr for the two respective periods. Indirect N2O emissions from
soil was the smallest GHG emissions source, producing 0.02 and 0.07 Tg CO2-eq/yr, respectively.
Furthermore, the GHG emissions from diesel, pesticides, plastic mulch, and straw returning were
24.51, 2.35, 1.43, and 0.29 Tg CO2-eq/yr, respectively, and these were newly added emission sources
between 2008–2012.
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Table 3. Total carbon emissions in 508 counties in the NCP and neighboring regions between 1982–1986 and between 2008–2012 (Tg CO2-eq/yr).

Emissions
1982–1986 2008–2012 Total Emissions

1982–1986
Total Emissions

2008–2012Wheat Maize Soybean Cotton Wheat Maize Soybean Cotton

Straw underground
N2O 0.09 0.06 0.55 0.01 0.20 0.21 0.83 0.02 0.71 1.26

Straw feed 9.68 14.76 1.46 0.03 20.93 28.41 2.22 0.03 25.93 51.59
Straw returning - - - - 0.00 0.26 0.03 0.00 - 0.29
Fertilizer application 3.56 1.95 0.71 0.97 10.07 9.14 1.39 1.90 7.19 22.50
Fertilizer production 1.88 1.03 0.38 0.51 5.33 4.84 0.74 1.01 3.80 11.92
Electric power 0.03 0.02 0.01 0.01 0.11 0.10 0.01 0.02 0.07 0.24
Seeds 3.11 0.35 0.10 0.06 3.85 0.72 0.09 0.05 3.62 4.71
Pesticides - - - - 1.05 0.95 0.15 0.20 - 2.35
Plastic mulch - - - - 0.64 0.58 0.09 0.12 - 1.43
Diesel - - - - 10.96 9.96 1.52 2.07 - 24.51
Soil indirect N2O 0.01 0.01 0.00 0.00 0.03 0.03 0.00 0.01 0.02 0.07
Total emissions 18.36 18.18 3.21 1.59 53.17 55.2 7.07 5.43 41.34 120.87
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3.2. Spatial and Temporal Evolution of GHG Emissions

Figure 4 presents the evolution of the temporal dynamics and spatial patterns of GHG emissions
in the 508 studied counties over the past 30 years. The proportion of counties producing more than
0.20 Tg CO2-eq/yr increased from 3.79% to 56.30% and those with GHG emissions of more than 5 ton
per hectare increased from 7.48% to 33.46% between 1982–1986 and between 2008–2012. From 1982
to 1986, the GHG emissions in the northern region of the NCP, including Inner Mongolia, northern
Hebei, and north of Shanxi, were relatively low whereas higher emissions were mainly observed in the
southern areas, such as Beijing, Tianjin, south of Hebei, and Shandong. The higher emissions region
expanded northward significantly from 2008 to2012. From 1982–1986 to 2008–2012, counties with
increased GHG emissions accounted for 93.11% of the region. The 35 counties with reduced GHG
emissions were counties with reduced sown areas and they accounted for 97.14% of the total reduced
GHG emissions.
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3.3. Analysis of the Driving Factors of Agricultural GHG Emissions

Dividing MCS GHG emissions by farming stage and agricultural inputs helped clarify the
large range of GHG emissions (Figure 5). Straw accounted for 64.44% of the total GHG emissions
between 1982–1986 and 43.96% between 2008–2012. In particular, the GHG emissions from straw feed
increased from 25.93 to 51.59 Tg CO2-eq/yr, but which accounted for 62.72% of total GHG emissions
between 1982–1986, which decreased to 42.68% between 2008–2012. The reason was that new GHG
emission sources appeared between 2008–2012, such as diesel, pesticides, plastic mulch, and straw
returning. Agricultural inputs were another important driving factor of agricultural GHG emissions,
which accounted for 26.75% (including fertilizer and electric power) between 1982–1986 and up to
52.08% (including fertilizer, electric power, pesticides, plastic mulch, and diesel) between 2008–2012.
China’s agricultural material GHG emissions have shown a clear upward trend since 1995 [5]. From
1982 to1986, fertilizer application and production were the main sources of GHG emissions among the
agricultural inputs, accounting for 26.58% of the total GHG emissions. From 2008 to 2012, they remained
the largest source of emissions among agricultural inputs, followed by diesel, accounting for 28.48% of
total GHG emissions.
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3.4. Contribution of MCSs to GHG Emissions

GHG emissions were positively correlated with MCIs between 1982–1986 (Person correlation
coefficient = 0.606, P < 0.05, N = 508) and between2008–2012 (Person correlation coefficient = 0.306,
P < 0.05, N = 508). A significant positive linear trend (R2 = 0.859, P < 0.05, Figure 6a) was found
between the GHG emissions and MCI from 1982 to 1986. Likewise, we also found that GHG emissions
increased linearly with increasing MCI (R2 = 0.546, P < 0.05, Figure 6b) from 2008 to 2012. This relation
suggests a strong influence of MCI on GHG emissions.
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The contribution of MCSs was measured according to Equations (9–11) based on the change in
the MCI for GHG emissions between 1982–1986 and 2008–2012. The calculated contribution ratio was
13.89%, indicating that the change in the MCI may have driven about one seventh of the total GHG
emissions increase.

4. Discussion

This study focused on the relationship between MCS expansion and agricultural GHG emissions
in NCP and the neighboring regions in China. During the past 30 years, agricultural GHG emissions
increased from 41.34 to 120.87 Tg CO2-eq/yr (Figure 3), along with the significant northward expansion
of the MCSs and higher emissions area (Figures 1 and 4). Among the driving factors, the contribution
of the expansion MCSs accounted for about 13.89% of the total emissions increase (Table 3). These
results are in agreement with the findings of Ha et al. [36] and Riano and Garcia-Gonzalez [39],
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who reported that the carbon footprint of winter wheat and summer maize in the NCP was 2.32
(0.42–4.23) kg CO2-eq/kg, which is comparable with the value of 2.15 kg CO2-eq/kg determined in this
study. Furthermore, The National Development and Reform Commission (NDRC) reported that the
agricultural sector had GHG emissions of 0.61 Pg CO2-eq in 1994, 0.82 Pg CO2-eq in 2005, and 0.92 Pg
CO2-eq in 2012 [3,4]. Correspondingly, the average agricultural GHG emissions was about 0.19 Pg
CO2-eq in the NCP and neighboring regions between 2008–2012, accounting for about one-fifth of the
national agricultural GHG emissions. In view of the crucial role of MCSs in China‘s food security
system, it is safe to deduce that sustained northward expansion of MCSs will further elevate the
emissions of agricultural GHG.

There are different accounting calibers to account for agricultural GHG emissions [22]. Dace et al.
proposed that the system boundary of agricultural GHG emissions included land management,
livestock farming, soil fertilization, and crop production [40]. Meanwhile, the IPCC agricultural sector
inventory methodology does not include the CO2 emissions of straw and agricultural inputs, because
CO2 released into the atmosphere is reabsorbed during the next crop growth period. Furthermore,
the emissions from the production of agricultural inputs are calculated for the industrial and energy
sector [18]. Therefore, we adopted the LCA method to identify the impacts of the expansion of MCSs
at all stages in the production cycle and enable the evaluation of GHG emissions for comparative
purposes. The LCA system boundary for agricultural GHG emissions included farming stage emissions
and agricultural input emissions, which include the use of fertilizers, pesticides, plastic mulch, diesel,
and electric power (Figure 2). According to the evolution of agricultural practices in the NCP and
neighboring regions, the system boundary of the LCA was a more comprehensive assessment method.

5. Conclusion

Expansion of the multiple cropping system due to climate change increased the GHG emissions
in the North China Plain and neighboring regions over the past 30 years and the contribution from
the northward expansion of MCSs was about 13.98%. In view of the crucial role played by MCSs
in China’s food security system, it is expected that the sustained expansion of MCSs will further
elevate the emissions of agricultural GHGs upon climate change. This study also revealed that
straw handling and agricultural inputs are important sources of agricultural GHG emissions. During
the past 20 years, returning straw to the field has become an important measure used to improve
soil fertility in China, however, this practice is the main source of N2O emissions. Furthermore,
fertilizers, electric power, pesticides, plastic mulch, and diesel are used widely, and the agricultural
GHG emissions from agricultural inputs increased from 14.84% to 33.37% over the past 30 years.
Overall, it is safe to conclude that while industrial/agricultural product replacement and modern
agricultural technology have greatly improved agricultural productivity, they have also elevated
the agricultural GHG emissions in China. Therefore, the increase in GHG emissions related to the
expansion of MCSs could affect the ability of China to meet its Nationally Determined Contributions
under the Paris Agreement, and should be considered while formulating policies related to reductions
of agricultural emissions in China.
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