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Abstract: Nowadays, given the great deal of fossil fuel consumption and associated environmental
pollution, solid oxide fuel cells (SOFCs) have shown their great merits in terms of high energy
conversion efficiency and low emissions as a stationary power source. To ensure power quality
and efficiency, both the output voltage and fuel utilization of an SOFC should be tightly controlled.
However, these two control objectives usually conflict with each other, making the controller design of
an SOFC quite challenging and sophisticated. To this end, a multi-objective genetic algorithm (MOGA)
was employed to tune the proportional–integral–derivative (PID) controller parameters through the
following steps: (1) Identifying the SOFC system through a least squares method; (2) designing the
control based on a relative gain array (RGA) analysis; and (3) applying the MOGA to a simulation to
search for a set of optimal solutions. By comparing the control performance of the Pareto solutions,
satisfactory control parameters were determined. The simulation results demonstrated that the
proposed method could reduce the impact of disturbances and regulate output voltage and fuel
utilization simultaneously (with strong robustness).

Keywords: Solid oxide fuel cells (SOFCs); PID control; genetic algorithm (GA)

1. Introduction

Nowadays, with a great deal of fossil fuel consumption, many environmental issues have been
raised. With the merits of low pollution and high efficiency [1], hydrogen energy-based fuel cells
are considered to be ideal alternative energy sources, and they are widely used to supply power to
stand-alone power systems and vehicles [2–4]. Among all fuel cells, solid oxide fuel cells (SOFCs)
attract much attention for their multifuel capabilities and potential for cogeneration [5], as well as their
ease of coordination with refinery hydrogen networks [6]. Numerous studies about SOFCs have been
done. Rao et al. [7] analyzed the thermodynamic characteristics and techno-economic performance of
a system consisting of an SOFC–gas turbine system, Xia et al. [8] studied low-temperature operations
of SOFCs, and Wang et al. [9] modified the anode material to solve the problem of coke formation.
Besides these, studies on efficient control strategies to ensure the safety, stability, and efficiency of
SOFCs are also very important. In order to maintain the efficiency of an SOFC, fuel utilization in an
SOFC must be kept between 70% and 90% [10]. In addition, to ensure the power quality of an SOFC,
the output voltage must be controlled tightly. However, due to the nonlinearity and couplings of
multiple variables and frequent load disturbances, the control of an SOFC is extremely hard, and the
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controller must be appropriately designed. As a result, designing an efficient control scheme is of great
significance in the research on SOFCs.

To solve the problem of maintaining the output voltage and fuel utilization of SOFCs,
many advanced control strategies have been proposed, such as model predictive control (MPC) [11–13],
fuzzy proportional–integral–derivative (PID) control [14], fuzzy logic control [15], and neural network
control [16]. All of these control strategies have been shown to obtain excellent control performance in
numerous simulation studies: However, due to their computational complexity, these control strategies
are difficult to implement in practical applications.

With the merits of a simple structure and high reliability, PID controllers are widely used in the
process industry: However, to ensure control performance, the control parameters of PID controllers
must be tuned well. To this end, numerous artificial intelligence (AI)-based optimization methods have
been applied to tune PID controllers. For example, Qin, Sun, and Hua [17] used a fruit fly optimization
algorithm (FOA) to optimize the PID controllers of a refrigeration system, Zamani et al. [18] applied a
particle swarm optimization (PSO) algorithm to optimize the PID controller of an automatic voltage
regulator (AVR), and Elbayomy et al. [19] optimized the PID controller of an electrohydraulic servo
actuator system (EHSAS) to control the movable surface of a space vehicle. However, these references
all used a single-objective optimization method, where the authors judged a controller’s performance
through one objective function that weighted the sum of different performance indices, such as the
integral absolute error (IAE), overshoot, and settling time. Although in the end this method achieved
good results, it ignored the problem that the control objectives were usually conflicting and that the
weight factors were decided subjectively by the author. Instead of using only one objective function,
a Pareto-based multiobjective optimization algorithm involves two or more objective functions and is
thus able to deal with the conflicting objectives of a control system without designating weight factors:
Many researchers choose this method to solve optimization problems [20–23].

This paper aims to (1) identify a dynamic SOFC model as a linearized model, (2) apply two PID
controllers to maintain the output voltage and fuel utilization of an SOFC under load disturbance,
and (3) enhance the control system performance by optimizing the controller with multiobjective
optimization. The remaining part of this paper is organized as follows: In Section 2, a dynamic
SOFC model is introduced, while in Section 3, a linearized model is identified and a controller for the
model is designed. Section 4 optimizes the controller parameters with genetic algorithm (GA)-based
multiobjective optimization, and Section 5 applies the optimal controllers to the nonlinear system and
analyzes the optimization results. Conclusions are drawn in Section 6.

2. Problem Description

2.1. Dynamic Model for an SOFC

The model presented in this paper was based on three submodels: An electrochemical model,
a mass balance model, and an energy balance model. To simplify the model, six assumptions were
made as follows:

1. Both hydrogen and air are preheated to a specific temperature before entering the anode
and cathode;

2. Both hydrogen and air are in full contact with the anode and cathode, and the stoichiometric
quantity of oxygen at the cathode is sufficiently large;

3. A large stoichiometric quantity of oxygen exists at the cathode;
4. The oxygen concentration in the air is 21%;
5. The whole stack can be presented as a combination of individual stacks;
6. Ideal gas laws are employed for both the fuel flow and air flow.

A structural diagram of this model is shown in Figure 1, where the fuel flow, air flow, oxygen ion
flow, and electron flow are represented by red, blue, yellow, and green arrows, respectively.
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Figure 1. A structural diagram of a solid oxide fuel cell (SOFC). 
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Figure 1. A structural diagram of a solid oxide fuel cell (SOFC).

2.1.1. Electrochemical Model

As we can tell from Figure 1, the SOFC consists of an anode and a cathode, and they are connected
by a solid ceramic electrolyte. Through the electrolyte, oxygen ions are transported from the cathode
to the anode, and electrons are transported from the anode to the cathode through the external electric
circuit. The reaction on the anode and the cathode and the total reaction are shown as follows:

2H2 + 2O2−
→ 2H2O + 4e−, (1)

O2 + 4e− → 2O2−, (2)

2H2 + O2 → H2O. (3)

Based on Nernst’s equation [14], the open circuit voltage of the fuel cell stack Ecell can be
formulized as

Ecell = E0,cell +
RTcell

2F
ln

pH2p0.5
O2

pH2O

. (4)

Here, E0,cell can be calculated as

E0,cell = E0
0,cell − kE(T − 298), (5)

where E0
0,cell is the reference voltage at 298 K and 1 atm of pressure.

The partial pressures in Equation (4), pH2, pO2, and pH2O, are the average of the inlet and outlet
partial pressures of the respective components, calculated as follows:

pH2 =
pin

H2
+ pout

H2

2
, (6)

pO2 =
pin

O2
+ pout

O2

2
, (7)

pH2O =
pin

H2O + pout
H2O

2
. (8)

Due to ohmic loss, activation loss, and concentration loss, the output voltage of the fuel cell stack
Vcell is lower than Ecell, which is calculated as

Vcell = Ecell −Vohm −Vact −Vcon. (9)

The expression of the three voltage drops are given below:

Vohm = IAcellRohm, (10)
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where Rohm is the internal resistance of the fuel cell, and it is calculated as follows [24]:

Rohm =

aele exp
( bele

T

)
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According to assumption 5, the output voltage of the fuel cell can be calculated with Vcell by

Vout = NVcell, (14)

where N is the number of fuel cells in a series.

2.1.2. Mass Balance Model

According to assumption 5, the dynamic effective partial pressure of H2, O2, and H2O can be
presented as follows [25]:
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while based on assumption 2, the inlet and outlet mass flow rate of H2, O2, and H2O can be described as
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2.1.3. Energy Balance Model

As Figure 1 shows, hydrogen flows through the anode surface and changes into water, while air
is provided by a central air supply tube (AST) and is forced to flow through the cathode. Due to
the simplification of the model, the means of heat transfer inside the cell are radiation, convection,
and mass flow [26].

Therefore, the energy balance equations for different parts of the cell are shown as follows:
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1. Cell tube:
qcell,in = qgen = qchem − qele, (21)

qcell,out = qrad + qconv,ann + q f low,air,ann + qconv, f uel + q f low, f uel, (22)

qcell,net = qcell,in − qcell,out = mcellCcell
dTcell

dt
, (23)

qrad = εASTσAAST,outer
(
T4

cell − T4
AST

)
, (24)

qconv,ann = hcellAcell,inner(Tcell − Tair,ann), (25)

q f low,air,ann = MairxairCair(Tair,ann,in − Tair,ann,out), (26)

qconv, f uel = hcellAcell,outer
(
Tcell − T f uel

)
, (27)

q f low, f uel =
(
MH2,in + MH2,out

)
xH2CH2

(
T f uel,out − T f uel,in

)
+

(
MH2O,in + MH2O,out

)
xH2OCH2O

(
T f uel,out − T f uel,in

) ; (28)

2. Fuel:

q f uel,net = m f uelC f uel
dT f uel

dt
; (29)

3. Air between the cell tube and the AST:

qair,ann,net = mair,annCair
dTair,ann

dt
; (30)

4. AST:

qAST,net = mASTCAST
dTAST

dt
, (31)

qAST,conv,outer = hAST,outerAAST,outer
(
Tair,cell − TAST

)
, (32)

qAST,conv,inner = hAST,innerAAST,inner(TAST − Tair,AST), (33)

q f low,air,AST = mairCair(Tair,AST,in − Tair,AST,out); (34)

5. Air in the AST:

qair,AST,net = mair,ASTCair
dTair,AST

dt
. (35)

Based on the formulation of (21)–(35), the energy balance model for the SOFC was developed.

2.2. Control Problems

The main propose of the controller design was to ensure that the output voltage Vout and the
fuel utilization FU follow their reference values and maintain their stability as strongly as possible.
The main problems in the controller design are listed as follows:

1. High coupling: The SOFC is a coupled system, which makes its controller design challenging
and complicated;

2. Frequent disturbance: Due to the frequent change of the load, a continual disturbance exists in the
system, which requires the controller to have strong robustness and accurate control performance;

3. Conflicting objectives: The accuracy of the control performance of Vout and FU are the two
conflicting objectives. However, to improve the power quality of the SOFC, both objectives need
to be optimized at the same time.
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3. Controller Design

3.1. Model Identification

Since the SOFC model is a multi-input–multi-output (MIMO) system, the load resistance R was
chosen as the disturbance of the system, the fuel flow mH2 and the cathode pressure Pc were chosen as
the control variables, and the output voltage Vout and fuel utilization FU were chosen as the controlled
variables. Thus, the linearized model can be identified as a 3 × 2 MIMO system:[

y1

y2

]
=

[
G11 G12

G21 G22

][
u1

u2

]
+

[
Gd1

Gd2

]
d, (36)

where y1 is the output voltage Vout, y2 is the fuel utilization FU, u1 is the fuel flow mH2, u2 is the
cathode pressure Pc, d is the load resistance R, G11 represents the transfer function from mH2 to Vout,
G12 represents the transfer function from mH2 to FU, G21 represents the transfer function from Pc to
Vout, G22 represents the transfer function from Pc to FU, Gd1 represents the transfer function from R to
Vout, and Gd2 represents the transfer function from R to FU.

To identify these transfer functions, a step response of this system was analyzed. First, a step
signal was set on mH2, while Pc and R were kept as constants, and the step responses of Vout and FU
were recorded. Second, a step signal was set on Pc, while mH2 and R were kept as constants, and then
the step responses of Vout and FU were recorded. Third, a step signal was set on R, while Pc and mH2

were kept as constants, and the step responses of Vout and FU were recorded. Finally, based on the
step response results, the transfer functions can be readily identified as follows:

G11 = 528.942s+2594.573
s2+0.627s+0.064

G21 = 0.108s+1.024×10−4

s2+0.118s+1.119×10−4

G12 = −271.283s−0.286
s2+0.107s+1.116×10−4

G22 = −8.998×10−6s−5.227×10−5

s2+0.209s+0.012

Gd1 = 0.591s+5.122×10−4

s2+0.113s+9.991×10−5

Gd2 = −0.015s−1.306×10−5

s2+0.121s+1.050×10−4

(37)

The step response curves are drawn in Figure 2. As we can tell from the results, the step response
curves of the identified model are the same as those of the original model, and thus the identified
model is able to be used for control design.

Sustainability 2019, 10, x FOR PEER REVIEW  6 of 20 

3. Controller Design 

3.1. Model Identification 

Since the SOFC model is a multi-input–multi-output (MIMO) system, the load resistance R was 

chosen as the disturbance of the system, the fuel flow mH2 and the cathode pressure Pc were chosen 

as the control variables, and the output voltage Vout and fuel utilization FU were chosen as the 

controlled variables. Thus, the linearized model can be identified as a 3 × 2 MIMO system: 

d11 11 12 1

d22 21 22 2

Gy G G u
d

Gy G G u

      
= +       

       
, (36) 

where y1 is the output voltage Vout, y2 is the fuel utilization FU, u1 is the fuel flow mH2, u2 is the cathode 

pressure Pc, d is the load resistance R, G11 represents the transfer function from mH2 to Vout, G12 

represents the transfer function from mH2 to FU, G21 represents the transfer function from Pc to Vout, 

G22 represents the transfer function from Pc to FU, Gd1 represents the transfer function from R to Vout, 

and Gd2 represents the transfer function from R to FU. 

To identify these transfer functions, a step response of this system was analyzed. First, a step 

signal was set on mH2, while Pc and R were kept as constants, and the step responses of Vout and FU 

were recorded. Second, a step signal was set on Pc, while mH2 and R were kept as constants, and then 

the step responses of Vout and FU were recorded. Third, a step signal was set on R, while Pc and mH2 

were kept as constants, and the step responses of Vout and FU were recorded. Finally, based on the 

step response results, the transfer functions can be readily identified as follows: 

11 2

4

21 2 4

12 2 4

6 5

22 2

4

1 2 5

528.942 2594.573

0.627 0.064

0.108 1.024 10

0.118 1.119 10

271.283 0.286

0.107 1.116 10

8.998 10 5.227 10

0.209 0.012

0.591 5.122 10

0.113 9.991 10
d

s
G

s s

s
G

s s

s
G

s s

s
G

s s

s
G

s s

G

−

−

−

− −

−

−

+
=

+ +

+ 
=

+ + 

− −
=

+ + 

−  − 
=

+ +

+ 
=

+ + 
5

2 2 4

0.015 1.306 10

0.121 1.050 10
d

s

s s

−

−

− − 
=

+ + 

. (37) 

The step response curves are drawn in Figure 2. As we can tell from the results, the step response 

curves of the identified model are the same as those of the original model, and thus the identified 

model is able to be used for control design.  

 

(a) (b) 

Figure 2. Cont.



Sustainability 2019, 11, 3290 7 of 20
Sustainability 2019, 10, x FOR PEER REVIEW  7 of 20 

 
(c) (d) 

 
(e) (f) 

Figure 2. Step response curves of the identified model and the original model. (a) Comparison of step 

response curves of G11; (b) Comparison of step response curves of G21; (c) Comparison of step response 

curves of G12; (e) Comparison of step response curves of G22; (e) Comparison of step response curves 

of d1; (f) Comparison of step response curves of d2. 

3.2. Relative Gain Array (RGA) Paring 

To analyze the relationship between the input and output variables of a system, we applied the 

relative gain array (RGA) defined by Skogestad and Postlethwaite in [27]. First, by setting the time s 

to 0, we got the steady-state matrix of G11, G12, G21, and G22: 
4

11 0 12 0

3
21 0 22 0

4.0763 10 0.9148

2.5607 10 0.0045

s s

s s

G G
A

G G

→ →

→ →

   
= =   

−   

. (38) 

Then, the RGA matrix was calculated: 

( ) 11 121

21 22

0.0729 0.9271

0.9271 0.0729

T

RGA A A
 

 

−    
= = =   

  
. (39) 

The results show that the output voltage Vout is affected more by the cathode pressure Pc, while 

the fuel utilization FU is affected more by the fuel flow mH2. Thus, Vout can be controlled by Pc easily, 

and FU can be controlled by mH2 easily. 

3.3. Controller Design 

In this paper, two PID controllers were applied to control mH2 and Pc independently. The formula 

for a PID controller is shown as 

( )
1

1
1

d
p i d

d

T
G s k k k

s
T

s

= + +

+

, 
(40) 

where kp, ki, and kd are the proportional gain, integral gain, and derivative gain, respectively. In 

previous research, the main work has been to search for the optimal values of kp, ki, and kd [17,19,28]. 

However, the filter coefficient N is also of great importance, and an appropriate filter coefficient can 

reduce the output oscillation and improve the control performance. As a result, the filter coefficient 

was also studied for this paper, and there were eight parameters that needed to be decided on, which 

were the parameters of PID1 (kp1, ki1, kd1, N1) and the parameters of PID2 (kp2, ki2, kd2, N2).  

  

Figure 2. Step response curves of the identified model and the original model. (a) Comparison of step
response curves of G11; (b) Comparison of step response curves of G21; (c) Comparison of step response
curves of G12; (e) Comparison of step response curves of G22; (e) Comparison of step response curves
of d1; (f) Comparison of step response curves of d2.

3.2. Relative Gain Array (RGA) Paring

To analyze the relationship between the input and output variables of a system, we applied the
relative gain array (RGA) defined by Skogestad and Postlethwaite in [27]. First, by setting the time s to
0, we got the steady-state matrix of G11, G12, G21, and G22:

A =

[
G11|s→0 G12|s→0
G21|s→0 G22|s→0

]
=

[
4.0763× 104 0.9148
−2.5607× 103 0.0045

]
. (38)

Then, the RGA matrix was calculated:

RGA = A
(
A−1

)T
=

[
λ11 λ12

λ21 λ22

]
=

[
0.0729 0.9271
0.9271 0.0729

]
. (39)

The results show that the output voltage Vout is affected more by the cathode pressure Pc, while the
fuel utilization FU is affected more by the fuel flow mH2. Thus, Vout can be controlled by Pc easily,
and FU can be controlled by mH2 easily.

3.3. Controller Design

In this paper, two PID controllers were applied to control mH2 and Pc independently. The formula
for a PID controller is shown as

G(s) = kp + ki
1
s
+ kd

Td

1 + Td
1
s

, (40)

where kp, ki, and kd are the proportional gain, integral gain, and derivative gain, respectively. In previous
research, the main work has been to search for the optimal values of kp, ki, and kd [17,19,28]. However,
the filter coefficient N is also of great importance, and an appropriate filter coefficient can reduce the
output oscillation and improve the control performance. As a result, the filter coefficient was also
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studied for this paper, and there were eight parameters that needed to be decided on, which were the
parameters of PID1 (kp1, ki1, kd1, N1) and the parameters of PID2 (kp2, ki2, kd2, N2).

The structure of the control system is shown in Figure 3, and the parameters of the controllers
were initialized by the pidTuner Toolbox in Matlab as

kp1 = −1.646× 10−4

ki1 = −1.360× 10−4

kd1 = −5.848× 10−6

Td1 = 16.970

,


kp2 = 1.572
ki2 = 0.326
kd2 = −0.067
Td2 = 1.012

. (41)
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4. Solution Method

4.1. Introduction of Multiobjective Optimization based on a Genetic Algorithm

Multiobjective optimization usually involves two or more objective functions, and it is widely
used in the field, where objectives are conflicting and need to be optimized at the same time. As is
shown in Figure 4, the optimization result is a set of Pareto optimal solutions, where none of the
objectives can be promoted without deteriorating other objectives. A multiobjective optimization
problem (MOP) can be described as

minJ(x) = [ j1(x), j1(x), · · · , jn(x)]
x ∈ X

, (42)

where J is the vector of objective functions, n is the number of objective functions, x represents the
decision vector, and X is the constraint of the decision vector x. The objective functions are designed
by the decision-maker to judge the quality of the solution, and in the field of industrial control,
objective functions usually consist of an IAE, overshoot, and settling time.

To solve optimization problems, many methods have been developed, and the GA proposed
by Holland in 1975 [29] is one of the most popular ones. Meanwhile, in 1994, Srinivas and Deb [30]
developed a new algorithm based on a GA called a nondominated sorting genetic algorithm (NSGA),
and then in 2000, an improved version of the NSGA (called the NSGA-II) was developed by Deb
et al. [31]. With the merits of low computational complexities and the ability of parallel computation,
it is widely used for MOPs [21,32]. Afterwards, in order to improve the distribution density of the
Pareto front and avoid the problem of premature ripening, an improved NSGA-II was developed by
introducing the parameter Pareto faction x, which represents the ratio of the optimal solutions to the
total population (Equation (43)):

x =
NPareto

N
, (43)
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where N represents the population size, and NPareto represents the number of Pareto optimal solutions.
A flow chart of this algorithm is shown in Figure 5.
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In this section, the proposed improved NSGA-II is applied to find the optimal sets of control
parameters for the SOFC.

4.2. Optimization of the Control Parameters of the SOFC

As was mentioned in Section 3, there were eight parameters in the two PID controllers that needed
to be optimized: kp1, ki1, kd1, N1, kp2, ki2, kd2, and N2. Thus, the decision vector could be described as
x = (kp1, ki1, kd1, N1, kp2, ki2, kd2, N2). The integral absolute error (IAE) of the output voltage and fuel
utilization were employed as two objective functions, and the MOP could be formulated as

minF =
[

IAE1(x) IAE2(x)
]
, (44)

where

IAE1 =

T∫
0

(∣∣∣Vout,ref −Vout
∣∣∣)dt, (45)

IAE2 =

T∫
0

(|FUref − FU|)dt, (46)

and the constraint for each parameter is shown as
kp1 ∈

(
−10−2,−10−7

)
ki1 ∈

(
−10−2,−10−7

)
kd1 ∈

(
10−8, 10−4

)
Td1 ∈

(
10−3, 100

) ,


kp2 ∈

(
10−3, 10

)
ki2 ∈

(
10−3, 10

)
kd2 ∈

(
−1,−10−4

)
Td2 ∈

(
10−3, 100

) . (47)

The population size N was set as 50, the maximum generation Max was set as 50, the Pareto
fraction x was set as 0.35, the mutation function was a constraint-dependent type, and the crossover
probability was 0.8. The stopping criteria were designed as follows:

1. The number of generations is higher than the maximum number of iterations;
2. The average relative change in the spread of the Pareto solutions over 100 generations is less than

10−4, and the spread is smaller than the average spread over the last 100 generations.

For each generation, four load disturbances occurred in each simulation process, and two objective
functions, IAE1 and IAE2, of 50 individuals were calculated based on the simulation results.

The distribution of the final population in the objective function space is shown in Figure 6,
which clearly illustrates the conflicting relationship between IAE1 and IAE2. Any decrease in IAE2 led
to an increase in IAE1. In other words, any improvement in the control performance of fuel utilization
led to a deterioration in the control performance of the output voltage. Five typical points were
chosen from the Pareto front to get the optimal parameters of the controllers, and the value of each
parameter and the objective function are displayed in Table 1. In Table 1, point A possessed the lowest
IAE1 and the highest IAE2, while point E possessed the highest IAE1 and the lowest IAE2. As we
can tell, there were trade-offs between the two objectives, and to decide the final optimal solution,
a decision-making process should be executed based on the decision-maker’s insight.

Figure 7 denotes the variation of the objective functions with the generation. As we can tell
from the result, IAE1 decreased from 22.75 to 1.20 and converged at about 1.197 after 30 generations,
while IAE2 decreased from 0.8 to 0.011 and converged at about 0.0108 after 25 generations. Both IAE1

and IAE2 were greatly minimized after about 30 generations, and thus the optimization was successful.
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Table 1. The value of the control parameters and objective functions at the five optimal points.

Control Parameters A B C D E

kp1 −0.00753 −0.00666 −0.00708 −0.00677 −0.00733
ki1 −0.00981 −0.00983 −0.00985 −0.00999 −0.00998
kd1 8.18 × 10−5 7.68 × 10−5 5.40 × 10−5 6.58 × 10−5 5.88 × 10−5

Td1 56.01119 55.96752 68.6119 53.9818 48.92057
kp2 9.950384 9.953341 7.995275 9.506123 8.360098
ki2 9.977686 9.975138 9.200353 2.342223 1.672613
kd2 −0.92397 −0.90781 −0.51078 −0.63197 −0.50791
Td2 69.30712 69.32299 51.57974 69.18918 63.97332

IAE1 1.203 1.205 1.481 3.081 4.313
IAE2 0.0134 0.0113 0.0111 0.011 0.0108
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5. Results and Discussion

In this section, to analyze the control performance of the five sets of optimal control parameters and
the initial control parameters, a simulation was performed based on the linearized model implemented,
and the results were compared and discussed.
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5.1. Comparison of the Optimal Points

In this part, a step signal was added to the load resistance, and the disturbance responses of the
controllers on the five optimal points and the original controller were compared. The best optimal
points were chosen based on the comparison results.

5.1.1. Simulation Results

During the simulation process, a step signal was added to the load resistance to make it change
from 5 Ω to 6 Ω at 20 s, while the reference values of Vout and FU were 168 V and 80%, respectively.
The disturbance responses of the output power Pout, the output voltage, the fuel utilization, the fuel
flow, and the cathode pressure are shown in Figure 8, and detailed data from the simulation are shown
in Table 2.
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Table 2. Detailed data from the simulation results.

Output
Variables Index Before

Optimization
Optimal
Point A

Optimal
Point B

Optimal
Point C

Optimal
Point D

Optimal
Point E

Output
Voltage

Overshoot (%) 0.0227 0.0113 0.0111 0.0211 0 0
Settling time (s) 38.231 4.293 4.356 4.903 10.865 17.108

IAE1 11.7506 0.2897 0.2924 0.3495 0.8972 2.0206

Fuel
Utilization

Overshoot (%) 0 0 0 0 0 0
Settling time (s) 4.832 1.225 0.927 0.0937 0.0652 0.0623

IAE2 0.2611 0.0037 0.0028 0.0025 0.0018 0.0017

5.1.2. Discussion

From the simulation results, we can observe that compared to the initial controller before
optimization, the controllers tuned to the five optimal points all had better control performance.

In Figure 8b, the controllers on the five optimal points all had faster dynamic responses on Pout

compared to the initial controller. At optimal point A, the speed of the dynamic response was the
fastest, while optimal point E possessed the slowest dynamic response. In Figure 8c,d, the controllers
on the five optimal points all had faster control effects on Pc and mH2.

In Figure 8e, it is clear that the control performance of Vout could be dramatically improved
by applying the controllers on the five optimal points, and the settling time and IAE of the output
voltage gradually increased from optimal point A to E, while the optimal point C possessed the biggest
overshoot among all the optimal points (0.0211%). In Figure 8f, both the settling time and IAE of the
response of FU on the five optimal points were better than those before optimization. Among all of
the optimal points, the controller on point A possessed the longest settling time (1.225 s), while the
settling time for the controller before optimization was 4.832 s. In addition, the controller on optimal
point E possessed the best control performance with the shortest settling time, 0.062 3 s, and the lowest
IAE, 0.0017.

In conclusion, the controllers on the five optimal points all had a smaller overshoot, lower settling
times, and a lower IAE than the initial controller. Based on the simulation results, the control parameters
on optimal point D were chosen as the best solution in order to reduce the control action and improve
the control performance of both the output voltage and fuel utilization.
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Additionally, there were some defects in the optimization process. Compared to the improved
NSGA-II we applied in this paper, the NSGA-III proposed by Deb and Jain [33] in 2014 is more
proper for an MOP with a Pareto front, whose objective values may have a different scale. Moreover,
the population size and execution times applied were the default values in the Matlab Optimization
Toolbox, which could be optimized to save on optimization time.

5.2. Continuous Disturbance Response Simulation

In this part, continuous step signals were added to the load resistance and the current to simulate
the realistic working conditions of an SOFC. The disturbance responses of the optimal controller based
on optimal point D and the original controller were compared, and conclusions were drawn based on
the simulation results.

5.2.1. Resistance Disturbance Response Simulation

During the simulation process, a continuous step signal was added to the load resistance to make it
change from 5 Ω to 5.5 Ω, 6 Ω, 6.5 Ω, and 5 Ω at 200 s, 400 s, 600 s, and 800 s, respectively. The reference
values of Vout and FU were kept at 168 V and 80%, respectively. The disturbance responses of the
output power Pout, the output voltage, the fuel utilization, the fuel flow, and the cathode pressure are
shown in Figure 9, and detailed data from the simulation are shown in Table 3.
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Table 3. Detailed data from the simulation results.

Output Variables Number
Optimal Controller Original Controller

Overshoot (%) Settling Time (s) Overshoot (%) Settling Time (s)

Output Voltage

1 0 9.6 0.012 30.3
2 0 9.3 0.007 24.5
3 0 8.5 0 18.1
4 0 16.4 0.060 46.2

Fuel Utilization

1 0 1.4 0 5.4
2 0 1.5 0 5.2
3 0 1.1 0 4.8
4 0 2.4 0 6.8

5.2.2. Current Disturbance Response Simulation

During the simulation process, a continuous step signal was added to the current to make it change
from 33 A to 27 A, 29 A, 31 A, and 33 A at 200 s, 400 s, 600 s, and 800 s, respectively. The reference
values of Vout and FU were kept at 168 V and 80%, respectively. The disturbance responses of the
output power Pout, the output voltage, the fuel utilization, the fuel flow, and the cathode pressure are
shown in Figure 10, and detailed data from the simulation are shown in Table 4.

Sustainability 2019, 10, x FOR PEER REVIEW  15 of 20 

 
(e) 

 
(f) 

Figure 9. Simulation results of a continuous step response: (a) Step input of R; (b) disturbance 

response of Pout; (c) disturbance response of Pc; (d) disturbance response of mH2; (e) disturbance 

response of Vout; (f) disturbance response of FU. 

Table 3. Detailed data from the simulation results. 

Output Variables Number 
Optimal Controller Original Controller 

Overshoot (%) Settling Time (s) Overshoot (%) Settling Time (s) 

Output Voltage 

1 0 9.6 0.012 30.3 

2 0 9.3 0.007 24.5 

3 0 8.5 0 18.1 

4 0 16.4 0.060 46.2 

Fuel Utilization 

1 0 1.4 0 5.4 

2 0 1.5 0 5.2 

3 0 1.1 0 4.8 

4 0 2.4 0 6.8 

5.2.2. Current Disturbance Response Simulation 

During the simulation process, a continuous step signal was added to the current to make it 

change from 33 A to 27 A, 29 A, 31 A, and 33 A at 200 s, 400 s, 600 s, and 800 s, respectively. The 

reference values of Vout and FU were kept at 168 V and 80%, respectively. The disturbance responses 

of the output power Pout, the output voltage, the fuel utilization, the fuel flow, and the cathode 

pressure are shown in Figure 10, and detailed data from the simulation are shown in Table 4. 

 

(a) 

Figure 10. Cont.



Sustainability 2019, 11, 3290 16 of 20
Sustainability 2019, 10, x FOR PEER REVIEW  16 of 20 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

Figure 10. Simulation results of a continuous step response: (a) Step input of the current; (b) 

disturbance response of Pout; (c) disturbance response of Pc; (d) disturbance response of mH2; (e) 

disturbance response of Vout; (f) disturbance response of FU. 

Table 4. Detailed data from the simulation results. 

Output Variables Number 
Optimal Controller Original Controller 

Overshoot (%) Settling Time (s) Overshoot (%) Settling Time (s) 

Output Voltage 

1 0 17.3 0.018 37.6 

2 0 11.9 0.009 38.8 

3 0 12.7 0.012 40.5 

4 0 12.1 0.015 50.3 

Fuel utilization 

1 0 2.2 0 6.5 

2 0 1.5 0 5.6 

3 0 1.4 0 5.2 

4 0 1.8 0 6.7 

Figure 10. Simulation results of a continuous step response: (a) Step input of the current; (b) disturbance
response of Pout; (c) disturbance response of Pc; (d) disturbance response of mH2; (e) disturbance
response of Vout; (f) disturbance response of FU.

Table 4. Detailed data from the simulation results.

Output Variables Number
Optimal Controller Original Controller

Overshoot (%) Settling Time (s) Overshoot (%) Settling Time (s)

Output Voltage

1 0 17.3 0.018 37.6
2 0 11.9 0.009 38.8
3 0 12.7 0.012 40.5
4 0 12.1 0.015 50.3

Fuel utilization

1 0 2.2 0 6.5
2 0 1.5 0 5.6
3 0 1.4 0 5.2
4 0 1.8 0 6.7
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5.2.3. Discussion

From the simulation results, it is evident that compared to the original controller, the optimal
controller based on the controller parameters on optimal point D had better control performance.

In Figures 9b and 10b, the step responses of the optimal controller possessed faster dynamic
responses than the original one, which led to fewer fluctuations in the output power. Figure 9c,d and
Figure 10c,d, also illustrate that the optimal controller had more rapid dynamic responses to cathode
pressure and fuel flow, which permitted faster control action in the controller.

From Figures 9e and 10e, it is clear that the control performance of the optimal controller was
much better than the original controller from the perspective of the overshoot and settling time.
The overshoot of all of the disturbance responses of the optimal controller was 0, whereas the original
controller had a slight overshoot. As for the settling time, the settling time of the optimal controller
under resistance disturbance varied from 8.5 s to 16.4 s, while that of the original controller under
resistance disturbance varied from 18.1 s to 46.2 s. In addition, the settling time of the optimal controller
under current disturbance varied from 12.1 s to 17.3 s, while that of the original controller under
resistance disturbance varied from 37.6 s to 50.3 s.

In Figures 9f and 10f, although the overshoot of both the original controller and optimal
controller was 0, the settling time of the optimal controller was much shorter due to the rapid control
action. The settling time of the optimal controller under resistance disturbance varied from 1.1 s to
2.4 s, and as for the original controller, it varied from 4.8 s to 6.8 s. The settling time of the optimal
controller under current disturbance varied from 1.8 s to 2.2 s, and the original controller varied
from 5.2 s to 6.7 s.

In conclusion, from the simulation results of the continuous disturbance response, it is clear
that the optimal controller on optimal point D had the merits of stability, a smaller overshoot,
and reduced settling time, and consequently, it is the ideal controller for the SOFC model
under consideration.

6. Conclusions

An SOFC is an efficient energy conversion device that has been widely used. To deal with the
characteristics of couplings of multivariables, nonlinearity of the model, and frequent load disturbances,
this paper employed a GA-based optimization algorithm to find the optimal parameters for the PID
controllers of an SOFC. In this paper, a 3 × 2 MIMO system was identified based on the SOFC model,
and two PID controllers were designed to separately control Vout and FU. Then, the optimization
objectives were designed, and a GA was applied for multiobjective optimizations of the controller
parameters for the two controllers. Finally, a set of optimal points on the Pareto front were found,
and the corresponding control parameters of the five points were applied to control the linearized
SOFC model. The results showed that the controller parameters at the five optimal points resulted
in better control performance compared to before optimization in terms of the IAE, the overshoot,
and the settling time. The parameters on optimal point D were considered to be the best for their
smooth control action. Therefore, PID controllers with the controller parameters on optimal point D
are an ideal choice for SOFC control.
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Nomenclature

Nomenclature
A area (m2)
a Constant material resistance (Ω·m)
b Constant material resistance (K)
C Heat capacity [J/(mol·K)]
E Reversible potential (V)
F Faraday constant, 96487 (C/mol)
h Heat transfer coefficient [W/(m2

·K)]
I, i Current (A)
i0 Exchange current (A)
M Mole flow rate (mol/s)
m Mass (kg)
N Number of cells in the stack
P, p Pressure (atm)
q Energy (J)
R Gas constant, 8.3143 J/(mol·K), or resistance (Ω)
T Temperature (K)
V Voltage (V)
x Mole fraction
δ Length/thickness (m)
ε Emissivity
σ Stefan–Boltzmann constant, 5.67 × 10−8 (W·m−2

·K−4.)
Superscripts and subscripts
act Activation
air Conditions for air
an Anode
ann Annulus of the cell
AST Air supply tube
ca Cathode
cell Conditions for individual cell
chem Chemical
con Concentration
conv Convective
ele Electticity
flow Flow heat exchange
fuel Conditions for fuel
gen Generated
H2 Hydrogen
H2O Water
in Conditions of input/inlet
inner Inner conditions
itc Interconnection between cells
net Net values
O2 Oxygen
ohm Ohmic
out Conditions of output/outlet
outer Outer conditions
rad Radiation
ref Reference value
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