Supplementary Materials

Role of nutrient enriched biochar in soil amendment and fertilizing maize growth: Exploring practical alternatives to recycle agricultural residuals and reduce chemical fertilizer demand

Simon Kizito^{ab}, Hongzhen Luo^a, Jiaxin Lu^a, Hamidou Bah^c, Renjie Dong^a, Jianbin Guo^{a*}, Shubiao Wu^{d*}

^aKey Laboratory of Clean Utilization Technology for Renewable Energy in Ministry of Agriculture, College of Engineering, China Agricultural University, 100083 Haidian District, Beijing, P.R China

^bSchool of Forestry, Environment and Geographical Sciences, College of Agricultural and Environmental Sciences, Makerere University, Uganda P.O. Box 7062 Kampala.

^cInstitute of Mountain Hazards and Environment, Chinese Academy of Sciences, 610041 Chengdu, P.R. China.

1

^d Aarhus Institute of Advanced Studies, Aarhus University, Aarhus 8000C, Denmark

*Corresponding author; Shubiao Wu (wushubiao@gmail.com)

Supplementary Text S1: Procedure for characterizsing the biochar

The biochar surface area was determined based on N_2 adsorption technique using the Brunauer, Emmett and Teller (BET) method. The biochar functional groups and structural chemical composition were be determined by FT-IR, SEM-EDS, and XRD techniques, respectively.

Supplementary Text S2: Procedure for determining P in the soil using the Olsen method

This method estimates the relative bioavailability of ortho-phosphate (PO₄-P) in soils by extraction with alkaline sodium bicarbonate (pH_=_8.5) solution and determining the P concentration in the extract colorimetrically. A 2.5 g scoop of soil and 50 mL⁴ of 0.5 M sodium bicarbonate (pH_=_8.5) solution weare shaken together for 30 min. <u>T</u>the mixture wais then filtered through Whitman filter paper and the ortho-phosphate in the extract wais determined colorimetrically at 630 nm on a Technicon Auto Analyser II) by reacting it with ammonium molybdate using ascorbic acid as the reducing agent. The results are reported as parts per million (ppm) phosphorus in the soil.

Supplementary Text S3: Calculation of carbon, nutrients (NH₄+–N, PO₄–P and & K) and amount of biochar addition to the soil

The<u>re were two</u> applied biochar rates were two-i.e., at 10t/ha and 20 t/ha. Since the trial pots had soil (6 kg), so-the applicable biochar was administered on a wt/wt basis i.e., soil:-biochar. To work out the weight of each biochar for each replicated pot at the two application rates, the following parameters were considered;

- Carbon content of the biochars. The carbon content of the biochars were; 80%, 90%, and 56% for corn cobs, wood, and sewage sludge biochars, respectively.
- 2. Soil depth of biochar application. This was taken as 10 cm.
- 3. Soil density + Tthis was determined as 1.4 g/cm³
- 4. Land area unit____this was per hectare and equivalent to 10,000 m²
- Volume of the soil per ha. This was equated to 10,000 m²*0.1_m (10 cm depth of char application) = 1000 m³ soil/ha.
- 6. Mass of soil/ha = 1000 m³*1.4 g/cm³ = 1.4*10⁶ kg soil/ha

Commented [MM1]: Is the bold necessary? Please confirm for all uses in titles

Commented [MM2]: Please complete or remove punctuation

Commented [MM3]: Should this be x? Please confirm and revise for all highlighted uses

Formatted: Highlight Formatted: Highlight

2

Mass of soil per pot was 6	kg
--	----

Calculation of the final rates

Rate 1: 10 t biochar/ha for any char

10,000 kg of char/soil density kg/m³ = 10,000/1400 kg soil/ha = 7.14 g biochar/kg soil

Final weight of corn cobs char added to the soil = 7.14 $\frac{1}{6}$ = 42 g biochar/per pot (at 10 t biochar/ha)

At-Rrate 2: 20 t biochar/ha

=-20,000 kg char/soil density $(kg/m^3) = \frac{20,000/1400}{20,000/1400} = 14.3 g biochar per kg soil$

Final weight added per pot at 20 ton/ha = $14.3 \frac{*}{6} = 85.71$ g per pot.

Therefore, %wt/wt of char/soil is 0.7% and 1.4 % for 10 and 20 ton biochar-/ha rates, respectively.

To calculate the total carbon added at both biochar rates for corn cobs

If we let X_{10} and X_{20} , be the amount carbon be at 10 t biochar-/ha,

Therefore; for corncobs whose fixed carbon was 80%, X_{C10} = 10 ton biochar-/ha $\frac{*}{10}$ (fixed carbon in the char i.e., 80% for corn cobs)

 $Xc_{10} = 8$ tons of carbon (amount of carbon added for corn cobs at a rate of 10_t /ha)

 $Xc_{20} = 20^{*}0.8 = 16$ ton of carbon added at 20 t biochar/ha rate.

Conversely for wWood biochar and Sewage biochar, the added carbon will bewas calculated the same way and it would was be 9.1 and 18.2 ton carbon/ha for wood, and 5.6 and 11.2 ton carbon for sewage sludge biochar, respectively.

Supplementary text S4: Calculation of adsorbed nutrients onto the biochar

The amount of nutrients (NH₄⁺–N, K⁺ and PO₄³⁻) adsorbed onto the biochar were based on the differences between the initial and final concentrations in solutions and the weight of biochar and volume of digestate initially mixed with the biochar using Equationss. (1) and (2).

% sorption =
$$\frac{C_o - C_e}{C_e} * 100_{\perp}$$
 (1)
 $Q_e = \frac{(C_o - C_e) * V}{V_e}$ (2)

$$Q_e = \frac{(C_0 - C_e) * V}{W_B}$$

Commented [MM4]: Should this be followed by a unit? E.g., kg soil/ha? Please confirm and revise if appropriate

Commented [MM5]: Please confirm meaning is retained Formatted: Not Superscript/ Subscript

Commented [MM6]: Please confirm meaning is retained

<u>w</u>₩here_;

 C_0 and C_e (mg/L) are the initial and equilibrium K⁺, NH₄⁺–N and PO₄³⁻ concentrations in solution \leftarrow respectively, Q_e (mg/g) was the adsorbed amount of K⁺, NH₄⁺-N and PO₄³⁻–P at equilibrium, V (L) was the volume of solution used, and W_b (g) the mass of biochar.

Supplementary Table S1: Summary of anaerobic digestate slurry characteristics used in the study

Biological Parameter ^b	Symbol	Unit	Value
рН			8.08.3
Electro conductivity	(EC)	(µs/cm³)	104-134
Soluble chemical oxygen demand	SCOD	(mg/L)	4500-5000
Biological oxygen demand	BOD ₅	(mg/L)	430510
Total solid	TS	(mg/L)	1518
Ammoniac nitrogen	NH4 ⁺ -N	(mg/L)	13901450
Nitrate nitrogen	NO₃⁻-N	(mg/L)	47 <u>–</u> 54
Nitrite nitrogen	NO2 ⁻ -N	(mg/L)	34– <u>–</u> 56
Ortho-phosphate	PO4 ³⁻ -P	(mg/L)	1520
Total organic carbon	TOC	(mg/L)	226.1_±_10.9
Metal ions ^b			
Potassium	К	(mg/L)	1205.75 ± 9.81
Sodium	Na	(mg/L)	301.5 ± 1.00
Calcium	Ca	(mg/L)	48.7 ± 5.459
Magnesium	Mg	(mg/L)	39.45 ± 4.729
Ferrous Iron	Fe	(mg/L)	3.74 ± 0.694
Zinc	Zn	(mg/L)	0.583 ± 0.250
Copper	Cu	(mg/L)	0.296 ± 0.139
Strontium	Sr	(mg/L)	0.184 ± 0.005
^a slurry was collected and analyzsed	for a total perio	od of 6 weeks and t	he analyzsed values were

Commented [MM7]: Please confirm meaning is retained

expressed as a range depicting the lower and upper limit concentrations.

^bSr, Ni, Al, Co, As, Mn, Ba, Cr, Se, Pb, Cd are not reported because their concentrations were < $0.1 (mg-L^{-1})$

Commented [MM8]: Please confirm meaning is retained

4

Formatted: Left, Line spacing: Multiple 1.08 li

Treatm	то	τNc	TP ^d	Са	К	Na	Mg	Fe	Cu	Zn	Cr	As
ent	C ^b			cu	ĸ	Nu	1418	i c	cu	211	Ci	//3
10 ton/h	-	har an	plicat	ion rate	•							
^a CB-N					-							
	59	14	50	37	58	25	18	72	69	61	65	72
WB-N		-							_	_	_	
	111	50	37	41	37	16	67	22	89	88	93	87
CB-T	86	50	170	78	87	283	156	97	11	15	9	4
WB-T	137	450	259	52	62	258	133	12	-50	23	<u>-</u> 30	3
CB+												
NPK	57	709	240	52	119	26	71	76	<u>-</u> 65	18	<u>-</u> 60	<u>-</u> 87
WB+												
NPK	109	550	169	13	31	8	26	25	<mark></mark> 68	<mark></mark> 81	<u>–</u> 94	<u> </u> 19
20 ton/h	a bioc	har ap	plicati	ion rate	e							
CB-N	634	50	68	18	51	67	39	112	<u>-</u> 59	<u>-</u> 56	 53	81
WB-N		-										
	862	36	40	<mark></mark> 58	<mark></mark> 88	17	<mark></mark> 51	3	<mark></mark> 83	<mark></mark> 77	<mark></mark> 72	<mark></mark> 82
CBT	744	141	358	131	342	325	133	132	55	5	6	<u> </u>
WB-T	916	441	414	98	373	192	58	46	<mark></mark> 34	6	3	<u>-</u> 77
CB+												
NPK	679	227	218	43	665	75	129	97	17	11	<u>-</u> 49	71
WB+												
NPK	857	132	115	8	465	10	79	34	42	15	82	<u>-</u> 78
Soil +												
NPK	13	418	738	32	833	12	289	65	27	87	5	3

Supplementary Table S2: Percentage increase in soil nutrients and heavy metals over the control as influenced by different biochar treatments at 10 ton and 20 t/on per ha application rates

^aCB-N, WB-N; CB + NPK, WB + NPK; CB-T, WB-T and soil + NPK refer to unenriched corncobs, and wood biochar treatments; corncobs, and wood biochar added together with NPK; corn cobs, and wood biochar enriched with nutrients from anaerobic digestate and soil mixed with NPK fertilizer, respectively (see details Table 1).

^bTOC represents total organic carbon

^cTN represents Total Nitrogen was measured as ((TIN = NH₄⁺–N, NO₃⁻) + Total Organic Nitrogen) ^dTP represents Total Phosphorus measured as (PO₄³⁻ + Organic P)

Commented [MM10]: This is a hyphen in the table. Please confirm which is correct and unify all highlighted mentions

Commented [MM9]: Please confirm meaning is retained

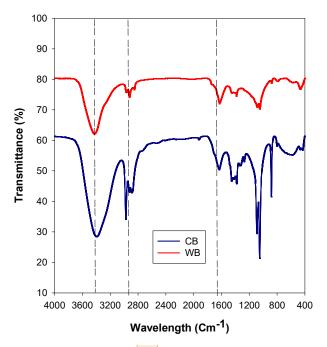
Formatted: Highlight

Formatted: Highlight

Formatted: Highlight

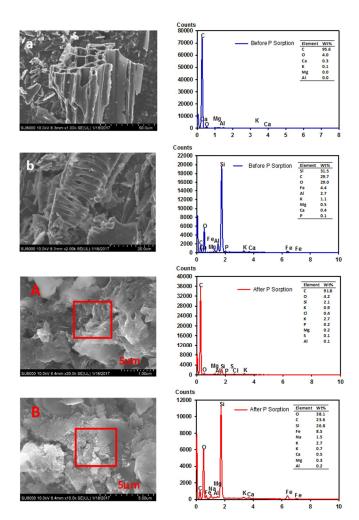
	Treatment ^a	ТN ^ь	TP ^c	Са	К	Mg	Cu	Zn	Cr	As	Fe
10_t/ha	CB-N	17.8	63.4	83.6	30.2	27.9	<u>-</u> 68.8	<u></u> 60.8	<u>-</u> 64.9	- <u>-</u> 71.7	157.6
biochar	WB-N	<u></u> 9.4	24.4	<u>-</u> 27.0	<mark></mark> 39.5	<u>-</u> 65.6	<u>-</u> -89.2	<u>-</u> 88.4	<u></u> 93.0	<u></u> 87.0	16.8
application	CB-T	61.5	114.6	148.4	9.3	49.2	11.5	15.0	8.8	4.3	194.8
rate	WB-T	30.0	97.6	43.8	48.8	6.6	<u>-</u> 49.6	<mark></mark> 22.5	<u></u> 29.8	4.3	68.0
	CB_+_NPK	74.6	248.8	130.5	127.9	63.9	<u></u> 65.0	<u></u> 18.1	<u> </u> 59.6	<u></u> 87.0	164.2
	WB_+_NPK	51.2	146.3	77.7	46.5	<mark></mark> 6.6	<u>-</u> 67.7	<u>-</u> 81.2	<u>-</u> 94.7	<mark></mark> 93.5	87.7
20 t/ha	CB-N	35.2	119.5	107.8	76.7	63.9	<u>-</u> 58.8	<u>-</u> 55.6	52.6	<u>-</u> 80.4	112.0
biochar	WB-N	<u>-</u> 16.4	36.6	<u></u> 10.2	<u></u> 14.0	<mark></mark> 29.5	<u> </u>	77.1	<u>-</u> 71.9	<u>-</u> 82.6	2.7
application	CBT	131.0	195.1	208.2	197.7	123.0	55.0	5.1	7.0	<u>-</u> 13.0	132.3
rate	WB-T	72.3	97.6	191.0	155.8	24.6	<u></u> 33.8	5.8	3.5	<u>-</u> 76.1	46.2
	CB_+_NPK	147.9	258.5	236.3	234.9	127.9	17.7	11.3	<u> 49.1 </u>	<u>-</u> 71.7	97.3
	WB_+_NPK	124.4	178.0	275.0	83.7	37.7	<u>-</u> 86.5	15.0	<u>-</u> 82.5	<u>-</u> 78.3	33.5
	Soil + NPK	35.2	119.5	107.8	76.7	63.9	58.8	55.6	52.6	80.4	112.0

Supplementary Table S3: Percentage increase over the control treatment (only soil) of nutrients uptake (mg.kg⁻¹ dry matter) and heavy metal uptake (mg.g⁻¹ dry matter) in plant tissues as influenced by different treatments.


^aCB-N, WB-N; CB + NPK, WB + NPK; CB-T, WB-T and soil + NPK refer to unenriched corncobs, and wood biochar treatments;

corncobs, and wood biochar added together with NPK; corn cobs, and wood biochar enriched with nutrients from anaerobic digestate and soil mixed with NPK fertilizer respectively (see details in Table 1).

^bTN represents Total Nitrogen was measured as ((TIN = NH₄⁺–N, NO₃⁻) + Total Organic Nitrogen)


^cTP represents Total Phosphorus measured as (PO₄^{3–} + Organic P)

Formatted: Highlight	
Formatted: Highlight	
Formatted: Highlight	
Formatted: Highlight	

Supplementary Figure S1: FTIR diagram showing the peaks for corncobs biochar (CB) and Wood Commented [MM11]: Please define if appropriate biochar (WB).

7

Supplementary Figure S2: Scanning Electronic Microscopy (SEM) and Energy-Dispersion X-ray Spectroscopy (EDS) images of biochar before and after Sorption (a) Wood biochar (WB) before sorption (b) Corn Cobs biochar (CB) before sorption, (A) Wood biochar (WB) after digestate nutrients enrichment (B) Corncobs (CB) after digestate nutrients enrichment.

Formatted: Font: Bold
Formatted: Font: Bold
Formatted: Font: Bold
Commented [MM12]: Please confirm meaning is retained
Formatted: Font: Bold