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Abstract: This paper presents a proposal to estimate prices in the Mexican Wholesale Electric Market,
which began operations in February 2016, which is why it moves from a scheme with a single bidder
to a competitive market. There are particularities in the case of the Mexican market, the main one
being the gradual increase in the number of competitors observed until now and, on the other hand,
the geographic and technical characteristics of the electric power generation. The observed prices to
date show great fluctuations in the observed data due to diverse aspects; among the stems we can
mention the own seasonality of the demand of electrical energy, the availability of fuel, the problems of
congestion in the electrical network, as well as other risks such as natural hazards. For the above, it is
relevant in a market context to have a price estimation as accurate as possible for the decision-making
of supply and demand. This paper proposes a methodology for the generation of electricity price
estimation through the application of stable alpha regressions, since the behavior of the electric
market has shown the presence of heavy tails in its price distribution.
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1. Introduction

As part of the recent reform in the Mexican electricity sector, the electricity market has been
liberalized, culminating with the creation of the Wholesale Electricity Market. Before the reform,
the activities of generation, transmission, distribution, and commercialization of electric power
were exclusive of the State. A set of problems that affected the electricity sector were identified:
(a) high generation costs; (b) low participation of clean energies in the energy matrix; (c) inadequate
infrastructure; (d) transmission losses; and, (e) structural problems in the Federal Electricity Commission
(State Company). The objective of the reform was to address these problems [1–3].

In a competitive market, it is necessary to have reliable information to be able to make market
decisions. The recent reform in the electric sector in Mexico requires the generation of robust models to
forecast the prices of electricity. Having reliable information on the electricity market will allow better
decisions to be made by both the market operator and the generators and consumer participants [4].

This work presents an application of alpha-stable regression for estimation of forecasting of
electricity prices in the Mexican market. There is a set of relevant proposals in the state of the art on
electricity price estimation. However, the vast majority presents applications to consolidate electricity
markets. The particularity of the Mexican market is that it is of recent creation and with low private
participation, maintaining a practically monopolistic market structure [4]. This, together with other
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factors such as fuel prices, network congestion, as well as disruptive events, have generated high
volatility in prices. One of the advantages of addressing the problem of estimating electricity prices
through stable regressions lies in the ability to capture the cyclical behavior of demand determined by
consumption peaks and, therefore, spikes in electricity prices. The modeling considering heavy tails in
the data will allow capturing the behavior of the data with greater precision and taking into account
the presence of peaks of demand and prices when making the expected estimates in a future horizon.
The stable regression has been applied efficiently in other disciplines such as finance, machine learning,
and soft computing [5–7]. Derived from the literature review, no alpha-stable regression applications
were identified for the estimation of electricity prices.

The study presents the general framework of the wholesale electricity market in Mexico, as well
as information regarding competitors and electricity prices. The usefulness of the use of heavy tailings
distributions that allow capturing in a better way the presence of extreme values according to the
behavior of the energy demand is addressed. By estimating prices using alpha-stable regressions,
we seek to capture this information and generate efficient forecasts for the decision-making of market
participants. Data for the Electricity Sector for Mexico of the period 2016–2017 were used. Historical
information was considered from the first year of operation of the wholesale electric market for
the realization of the model. The results show an efficient adjustment of the observed price trend,
despite the fact that there are outliers in the distribution of prices, especially because of the recent
implementation of the competitive market. This situation will be dynamic since competitors are
entering the market in a constant manner, so there is an immediate impact of entry into the behavior of
electricity prices.

The work is structured as follows: section one describes the Mexican Electricity Sector until
2013, before the reform. Subsequently, the main characteristics of the Wholesale Electricity Market
are described, the structure of the wholesale electricity market, and the behavior of electricity prices
in the first year of operation. In the second section, is analyzed the alpha-stable distributions and
alpha-stable regressions framework. The third section presents the main results of the study. The final
section addresses conclusions and recommendations.

2. The Mexican Electric Sector

The Mexican Electricity Sector operated with a parastatal company as a single supplier (Federal
Electricity Commission (FEC)). Other generators could participate through self-generation schemes,
independent producers, cogeneration, small producers, export centers, and continuous own uses with
a total gross generation of 42,676 GWh (excluding independent producers) that represents 13% of the
total gross generation in 2014 (302,806 GWh). The generation of independent producers was usually
sold directly to FEC. By 2014, the total net electricity generation in Mexico was 302,806 GWh; the
generation was concentrated in the use of fossil fuels. Of the total FEC and independent producers
generation, 79% use fossil fuels and coal, 15% hydro, and the rest is clean energy. In 2011, the generators
that only used fossil fuels were 73% of the total electricity generation [8]. The use of fossil fuels
for power generation has been discussed due to the fact that production of CO2 contributes to the
accumulation of greenhouse gases. Therefore, there are two scenarios of capacity expansion for the
period 2013–2027. The first scenario contemplates the expansion of the public power generation with a
share of 32% with the use of clean technologies in 2027. The second scenario considers the expansion
seeking to increase its generation with non-fossil sources to 35% in 2027 [9].

In reference to generation costs, the level cost of the different technologies for Mexico shows that
turbo-gas technology with diesel and gas, and those of internal combustion, are the most expensive
plants with a maximum of up to $316 per MW (diesel) (Figure 1). The levelized cost of generation is an
essential factor in the determination of energy prices since it is necessary to build an energy matrix
focused on reducing emissions and an electricity market that seeks to reduce energy prices.
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Figure 1. Level cost (dollars per net MWh), 2014.

2.1. Mexican Wholesale Electricity Market

The Wholesale Electric Market (WEM) was implemented in Mexico as a market based on variable
costs, whose operation began in February 2016. Currently, there are 62 participants in the market—nine
of them are from the Federal Electricity Commission and 53 are from private generators. Of the
62 market participants, 38 are generators, 15 are suppliers of qualified services, seven non-supplier
marketers, an intermediation generator, and a basic services provider (Figure 2).
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Figure 2. Market participants, 2015–2018.

For more details of the market participants, consult the Wholesale Electricity Market Bases
published by the Ministry of Energy [10]. The WEM is integrated by a set of market instruments to
operate efficiently.

• Short-term Energy Market
• Power Balance
• Clean Energy Certificates Market
• Financial Transmission Rights Market
• Medium and long-term auctions

2.2. The Locational Marginal Prices

Locational marginal pricing (LMP) reflects the value of the energy at the specific location and time
it is delivered. Congestion raises the LMP in the receiving area of the congestion. Operating conditions
that limit the delivery capacity of specific transmission lines also can contribute to congestion and
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result in LMP changes. Locational marginal prices are calculated by the market operator and published
on the web. This enables market participants to factor the information into their decision-making.
The calculations used to determine LMPs take into account electricity demand, generation costs,
and the use of, and limits on, the transmission system. The price tells market participants the cost to
serve the next megawatt of load at a specific location. LMPs give price signals that encourage new
generation sources to locate in areas where they will receive higher prices [11].

LMP includes: (a) cost of the energy in the delivery node; (b) variable cost of energy generation;
(c) cost per congestion; and, (d) cost of the losses. The LMP is the result of an optimization model
performed by the market operator, of allocation of units in a day in advance. The model seeks to
minimize generation costs subject to the generation capacity of all units and their costs, as well as
to satisfy the required demand, taking into account the corresponding required reserves and the
restrictions of the transmission network. The algorithm for the dispatch economic system will calculate
the marginal price of energy in each node, on a time basis, and it will have three components: marginal
energy component, marginal congestion component, and marginal losses component [12].

LMPi = ECi + LCi + CCi (1)

where:

ECi corresponds to the energy component of node i
LCi corresponds to the loss component of node i
CCi corresponds to the congestion component of node i

The WEM started operations in February 2016; in the first year of operation, prices show volatility.
The main reasons for the volatility of LMP may be due to climatic aspects, fuel availability, congestion,
as well as network failures. In Mexico, there are three systems, the National Interconnected System,
Baja California Sur, and Baja California Norte. In the present study, only the National Interconnected
System will be addressed. The evolution of the LMP in what is carried out by the WEM in its first year
of operation shows an average value of $2,144 with a standard deviation of $700 (MXN) (Figure 3).
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Figure 3. Locational marginal pricing (LMP) in the National Interconnected System (NIS).

The prices in the National Interconnected System (NIS) shows high volatility, as can be seen in
the dotted line. In general, the high volatility can be attributed to the fact that it is a newly created
market with low private participation in the generation and with variations attributable to losses in
transmission, congestion in the network, and the cost of fuels (Figure 3).

There is a correlation between energy consumption and the price of energy, so there are peaks of
demand according to the time of day and the day of the week. As expected, the weeks with the highest
energy demand coincide with higher prices. The highest prices observed were in weeks 25 and 42
(Figure 4).
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Figure 4. LMP vs. consumption by a week in the NIS, January 2016–January 2017.

The relationship between the peaks of demand and the determination of the LMP is a fundamental
factor to consider for estimating electricity prices, since many methods may not correctly adjust these
peaks of demand that, in turn, reflected in peaks in prices (Figure 4). The objective of the price
forecasting model is that, based on the consumption and the expected demand, the price of energy can
be estimated taking into account the prevalence of peaks in the prices, for which the use of alpha-stable
regression is proposed.

3. Alpha-Stable Distributions and Stable Regressions

3.1. α-Stable Distributions

The Gaussian distribution has wide applications in different areas but there are variables that
cannot be modeled efficiently with this distribution because of a greater degree of impulsivity, that is,
events or events are possible that, described by a Gaussian distribution, would be considered as very
unlikely. The α-stable distribution has been used in the literature to describe this type of phenomena.
The stable distribution has been applied in many areas with efficient results.

In this section, the α-stable distribution and its main properties are described, noting that the
α-stable distribution complies with the Central Limit Theorem and the stability property. On the
other hand, it will also denote the complexity of working with this type of distribution, since it lacks
general analytical expression. As a consequence, this distribution is not very widespread among the
academic community. In spite of this, this difficulty can be overcome by making use of the property of
the symmetric α-stable distribution that allows expressing a distribution of this type as a Gaussian
conditional to a random variable with the α-stable distribution.

Definition. X has an α-stable distribution if it has the characteristic function [13]:

ϕ(w) =

 exp
{∣∣∣γw

∣∣∣[1 + isign(w)β 2
π log(|w|)

]
+ iµw

}
, (α = 1)

exp
{
−

∣∣∣γw
∣∣∣α[1− isign(w)βtan

(
πα
2

)]
+ iµw

}
, ( α , 1)

(2)

α ∈ (0, 2] is the characteristic parameter; this parameter controls impulsivity of the variable X,
β ∈ [−1, +1] is a parameter of symmetry, γ > 0 is a scaling parameter, and µ is the position parameter.
Derived from the above and by convention, the α-stable distributions will be denoted as a function of
its four parameters using the following notation.

f (α, βx)(.
∣∣∣γ,µ) (3)
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3.2. Alpha-Stable Regression

Consider the standard regression model

yi =
k∑

j=1

xi jθ j + εi, i = 1, . . . , N (4)

where yi is an observed dependent variable, the xi j are observed independent variables, are unknown
coefficients to be estimated, and are identically and independently distributed. The standard Ordinary
Least Squares (OLS) estimator in matrix form:

β̂OLS = (X′X)−1X′y (5)

It can be expressed as
β̂OLS − β = (X′X)−1X′ε (6)

Thus, in the simplest case where X is predetermined, β̂OLS − β is a linear sum of the elements of ε.
With ε elements, i.i.d. (independent identically distributed) non-normal stable variables, and then β̂OLS
has a stable distribution. The variance of εi cannot be estimated. Then, standard Ordinary Least Squares
(OLS) inferences are invalid [14,15], proving the following properties of the asymptotic t-statistic.

a. The tails of the distribution function are normal-like at ±∞.
b. The density has infinite singularities |1∓ x|−α at ±1 for 0 < α < 1 and β , ±1, when 1 < α < 2

the distribution has peaks at ±1.
c. As α→ 2 , the density tends to normal and the peaks vanish

Further, the estimation of the parameters at stable distribution have the usual asymptotic properties
of a Maximum Likelihood estimator [16], are asymptotically normal, asymptotically unbiased, and have
an asymptotic covariance matrix n−1I(α, β,γ, δ)−1, where I(α, β, γ, δ) is Fisher’s Information. Assume
that εi = yi −

∑k
j=1 xi jθ j is alpha-stable with parameters

{
α, β, γ, 0

}
. Let it be alpha-stable density

function s(x,α, β,γ, δ), then the density function of εi is [17]:

s(εi, α, β, γ, δ) =
1
γ

s

 yi −
∑k

j=1 xi jθ j

γ
, β, 1, 0

 (7)

the likelihood function,

L(ε, α, β, γ, θ1,θ2, . . .) =
(

1
γ

)n n∏
i=1

s

 yi −
∑k

j=1 xi jθ j

γ
, β, 1, 0

 (8)

and the loglikelihood,

l(ε, α, β, γ, θ1,θ2, . . .) =
n∑

i=1
−nlog(γ) + log

(
s
(

yi−
∑k

j=1 xi jθ j

γ , β, 1, 0
))

=
n∑

i=1
ψ( ˆεi)

(9)

The maximum likelihood estimators are the solutions of the equations:

∂l
∂θ j

=
n∑

i=1

−ψ′(ε̂i)xi j = 0, j = 1, 2, . . . , k (10)
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Thus,
n∑

i=1

−
ψ′(ε̂i)

ε̂i
yixi j =

n∑
i=1

−
ψ′(ε̂i)

ε̂i

k∑
j=1

xi jθ j (11)

If W is the diagonal matrix, we can write the model in the matrix format:

W =


−
ψ′(ε̂1)
ε̂1

0 · · · 0

0 −
ψ′(ε̂2)
ε̂2

. . . 0
... · · · −

ψ′(ε̂n)
ε̂n


Then,

X′Wy = (X′WX)θ̂ (12)

If X′WX is not singular,
θ̂ = (X′WX)−1X′Wy (13)

This estimator has the format of a Generalized Least Squares estimator with heteroscedasticity,

where the variance of the error term εi is proportional to ψ′(εi)
εi

. The effect of the Generalized Least
Squares adjustment is to give less weight to larger observations. The estimator for stable processes
gives higher weights to the center of the distribution and smaller weights to extreme values. This effect
increases as α are reduced [17]. This is consistent with what was obtained by [18].

4. Estimation of Locational Marginal Prices in National Interconnected System Using
Alpha-Stable Regressions

The estimation of electricity prices has been a challenge for all markets. There is a set of
methodologies used that consist of models tailored to the market that is studied. That is why, in
the Mexican case, the use of alpha-stable regressions is proposed. According to the state of the art,
there is a set of methodologies generally used for the estimation of energy price forecasts: multi-agent
models, diffusion and Markov models, statistical models, and recently badass models in computational
intelligence, as well as the development of hybrid models or ensemble modeling. Temporality is another
characteristic aspect in the case of electricity prices since there are different horizons in the market.
In addition, according to temporality, it is possible to apply different forecasting methodologies [19].
Figure 5 shows a classification of general methodologies applied in energy price models.

Sustainability 2019, 11, x FOR PEER REVIEW 7 of 14 

𝑊 =

(

 
 
 
 
−
𝜓′(휀1̂)

휀1̂
0⋯ 0

0 −
𝜓′(휀2̂)

휀2̂
… 0

⋮ ⋯ −
𝜓′(휀�̂�)

휀�̂� )

 
 
 
 

 

Then, 

𝑋′𝑊𝑦 = (𝑋′𝑊𝑋)𝜃 (12) 

If 𝑋’𝑊𝑋 is not singular, 

𝜃 = (𝑋′𝑊𝑋)−1𝑋′𝑊𝑦 (13) 

This estimator has the format of a Generalized Least Squares estimator with heteroscedasticity, 

where the variance of the error term 휀𝑖 is proportional to 
𝜓′(𝜀𝑖)

𝜀𝑖
. The effect of the Generalized Least 

Squares adjustment is to give less weight to larger observations. The estimator for stable processes 

gives higher weights to the center of the distribution and smaller weights to extreme values. This 

effect increases as 𝛼 are reduced [17]. This is consistent with what was obtained by [18]. 

4. Estimation of Locational Marginal Prices in National Interconnected System Using Alpha-

Stable Regressions 

The estimation of electricity prices has been a challenge for all markets. There is a set of 

methodologies used that consist of models tailored to the market that is studied. That is why, in the 

Mexican case, the use of alpha-stable regressions is proposed. According to the state of the art, there 

is a set of methodologies generally used for the estimation of energy price forecasts: multi-agent 

models, diffusion and Markov models, statistical models, and recently badass models in 

computational intelligence, as well as the development of hybrid models or ensemble modeling. 

Temporality is another characteristic aspect in the case of electricity prices since there are different 

horizons in the market. In addition, according to temporality, it is possible to apply different 

forecasting methodologies [19]. Figure 5 shows a classification of general methodologies applied in 

energy price models. 

 

Figure 5. Electricity price modeling. 

Highlights include works such as [20], where neural networks are applied for the realization of 

forecasts. Ref. [21] shows a general framework of statistical models for the forecast of prices of a day 

in advance using models ARIMA, ARMAX, GARCH and discusses the application of stochastic 

models for the derivation of prices as models of diffusion and Markov jumps. Ref. [22] shows the use 

of linear time series models and nonlinear ones. Another set of authors focuses on the use of price 

forecasts modeling the stochastic dynamics of prices, seeking to manage volatility risk and the 

valuation of derivatives, refs. [23–26]. Another approach is based on the modeling of market behavior 

through multiagent models such as [27–30] and [31]. However, the limitation of these methods is that 

Figure 5. Electricity price modeling.

Highlights include works such as [20], where neural networks are applied for the realization
of forecasts. Ref. [21] shows a general framework of statistical models for the forecast of prices of a
day in advance using models ARIMA, ARMAX, GARCH and discusses the application of stochastic
models for the derivation of prices as models of diffusion and Markov jumps. Ref. [22] shows the
use of linear time series models and nonlinear ones. Another set of authors focuses on the use of
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price forecasts modeling the stochastic dynamics of prices, seeking to manage volatility risk and the
valuation of derivatives, refs. [23–26]. Another approach is based on the modeling of market behavior
through multiagent models such as [27–30] and [31]. However, the limitation of these methods is that
they do not allow efficient forecasts to be generated for short periods of time (market in advance time
and real-time market). Recently, the application of artificial intelligence models has increased, as in
the case of [32–34] and [35], the application of neural network models, fuzzy neural networks are
highlighted and committee machines. Refs. [36,37] perform a revision of machine-learning methods
such as functional principal component analysis, support vector machine, and time series. On the
other hand, ref. [38] highlights the use of time series for short-term forecasts such as ARIMA, seasonal
ARIMA, and VAR models for price forecasts in one hour in advance and one day in advance.

A fundamental element in the elaboration of forecasts of electricity prices is the evaluation of
its effectiveness; for this, a group of authors has dedicated to studying the efficiency of the forecasts
proposing a set of generally accepted methods. It is the case of Mean Absolute Error and Mean
Absolute Percentage Error, which are generally accepted methods. [39] performed a comparison of
forecast performance measures highlighting the use of mean absolute scaled error. Other authors such
as [40,41] use the absolute error or square scaled error. Another alternative is to use standardized error
measurements as shown by [42–44], highlighting measures for short-term forecast such as daily or
weekly weighted mean absolute errors and root square errors.

The present work proposes the use of alpha-stable regressions, given the presence of heavy tails
in the errors, due to the impulsivity of the series. An advantage of using alpha-stable regressions in the
presence of errors with heavy tails is that the inference made by OLS estimates before the presence
of stable errors has no validity because of the case of infinity variance. In the case of alpha-stable
regressions, both the parameters of the model and the parameters of the stable distribution of errors
are estimated simultaneously, which makes it possible to generate adequate inference in such cases.

Estimation of Electricity Price in Mexico

In the case of the Mexican market that started operations in 2016, information was collected
on average locational marginal prices for the National Interconnected System. The information
corresponds to weekly data from January 2016 to January 2017, in addition to the real consumption
per week and the weekly demand forecast estimated by the National Center for Energy Control
(NCEC). The model considers the locational marginal price as a dependent variable and consumption
as an independent variable. For the Mexican market, due to its recent start of operations, there is
little information available as well as additional variables that could be considered in the model.
However, consumption as such is a variable of great importance when determining the expected price
of electricity. Based on the summary of the statistics shown in Table 1, the normality tests show that the
data do not conform to a normal distribution. Similarly, the parameters of the estimated alpha-stable
distribution are shown.

Table 1. Summary Statistics.

LMP Consumption

(Mexican Pesos/MWh) (GW/h)

Mean 2132.784 5340.727
St. dev 680.7264 486.5223

Skewness 0.8344004 −0.1500883
Kurtosis 2.218459 1.861669

Goodness-of-Fit Test for Normal Distribution (p < 0.05)
KS test 0.0176 0.0071
SW test 0.00000 0.00416
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The series used show high variability depending on the peaks of electricity demand according to the
time and day of the week. The normality tests show that the data do not adjust to a normal distribution
as expected due to the presence of impulsivity in the series. The parameters of the alpha-stable
distribution are estimated using the maximum likelihood method and the S0 parameterization
(Table 2) [13]. The adjustment of the parameters evidences impulsivity in the series, as well as
positive asymmetry.

Table 2. Maximum Likelihood Parameters of Stable Distribution.

LMP Consumption

(Mexican pesos/MWh) (GW/h)

α 1.5340 1.7851
β 0.4121 0.2579
γ 477.179 341.044
δ 2132.70 5340.73

Goodness-of-Fit Test for alpha-stable distribution (p < 0.05)
K-S test 0.82939 0.65749

Data generated by the electric power demand peaks adjust largely to the behavior of a
stable distribution.

The model estimated is:

PML = θ0 + θ1C + εi, i = 1, . . . , N (14)

The results of the alpha-stable regression are shown in Table 3. The parameters are estimated
by two methods, the Maximum Likelihood method (stable model) and the Ordinary Least Squares.
As expected, the parameters estimated by the alpha-stable regression have values lower than OLS,
due to the penalty to larger observations, whose effect increases as a function of the value of the alpha
parameter [45,46].

Table 3. Parameters of Stable Regression.

θ0 θ1

Ordinary Least Squares −3098.9843 0.9795
Maximum Likelihood Stable −2604.1885 0.9510

Stable parameters of α stable residuals
(Asymptotic 95% confidence intervals)

α 1.34575 (1.19434, 2.49726)
β 0.09980 (−0.14193, 0.34152)
γ 9.56450 (8.68237, 10.44663)

Although the series used in the regression are close to the normal case, when calculating the
errors, it is observed that they adjust to a stable distribution. Given the properties of the estimation of
the stable regression by maximum likelihood, it is a robust method for errors with heavy tails and an
efficient method with data that are not strictly stable distributions. Table 4 shows the Fisher information
matrix that allows the estimation of the confidence intervals of the parameters of the model, as well as
the parameters of the distribution of the errors. The dimension of the matrix is represented by (k + 3),
the sum of the parameters in the regression and the coefficients of stable distribution (α, β, and γ).
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Table 4. Fisher Information Matrix (k + 3) * (k + 3).

182.4849 −4.2016 −8.7818 −1.0338 −2201.844
−4.20169 79.6711 −0.5106 6.2927 13401.96
−8.7818 −0.5106 5.3781 −0.1778 −378.819
−1.0338 6.2927 −0.1778 2.8481 6065.802
−2201.844 13401.96 −378.819 6065.802 1.46E + 07

Figure 6 shows the relationship between an estimated dependent variable and an independent
variable by a scatter plot, comparing the adjustment of prices with respect to consumption, showing
how, in the case of the adjustment by OLS, it shows greater dispersion with respect to the observed
value of the PML, this largely due to the errors that contain heavy tails. In the case of the stable
model estimated by maximum likelihood, a better fit to the observed data of the LMP was observed.
The alpha-stable adjustment (Maximum Likelihood Stable) is below the OLS values on average, since
it weighs the values of the center of the distribution, largely and, to a lesser extent, the extreme values
of the tails. This depends on the value of the alpha impulsivity parameter (Figure 6).
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Figure 6. OLS and Stable regression.

The adjustment in two steps of the parameters of the model and the parameters of the stable
distribution of the errors allows to control the impulsivity of the series and that the inference made
with the estimators is robust and consistent. However, it should be noted that, in the case of the LMP
for Mexico, the presence of a nonlinear behavior is observed; it is clear that the linear adjustment
has limitations (Figure 7). So in another stage of the research, it is recommended to estimate other
methodology as Generalized Additive Models (GAM) in combination with the stable adjustment to
improve the performance in the presence of heavy tails in errors.

The estimations made by OLS and the alpha-stable regression show that the behavior of electricity
prices is nonlinear, so the adjustment with both methodologies can be improved. However, in the case
of OLS, it shows poor performance in the adjustment of the data when there are price peaks (peaks in
demand) underestimating the values of LMP. In the case of alpha-stable regression, the adjustment to
price peaks is better but has limitations in the nonlinear behavior of prices (Figure 7).
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Figure 7. Estimations of Electricity Prices.

The residuals of the estimations made by the alpha-stable regression show that, on average,
the stable model overestimates the LMP values, even though the adjustment to demand peaks is better.
The adjustment of the stable regression (Maximum Likelihood Stable) shows a better performance in
the extreme values; this is very low or very high prices of electricity (Figure 8). As inputs for making
decisions about offers in the electricity market, it is necessary to have accurate estimates in this case;
the Mean Absolute Percentage Error (MAPE) was estimated according to Equation (15).

MAPE =

∑N
t=1

∣∣∣ Et
Yt

∣∣∣
N

(15)
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Figure 8. Stable regression residuals.

The performance of the estimations comparing both methods shows a MAPE highly influenced by
the presence of extreme data that is high prices of the energy, not being the case of the stable regression.
In the same way, this behavior is attributed to the nonlinear relationship observed in the variables
considered in the model (Figure 9).

The MAPE for the stable estimate (Maximum Likelihood Stable) was 14% and for the OLS case of
25% (Figure 9). It is recommended to explore other adjustment methods to improve the performance
of the estimates, such as the combination of the Stable Model and some nonlinear adjustment method
such as Generalized Additive Models.
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Figure 9. MAPE Stable Model and OLS.

5. Conclusions and Future Work

The start of operations of the WEM includes the generation of a set of market instruments
that foster competition, thus creating the short-term market, the clean energy certificates market,
the power market, and the financial transmission rights market. A fundamental element for its optimal
development is access to reliable information in a timely manner. In this context, information on energy
prices is an essential input for market operations; market participants must have robust estimates that
allow them to make decisions for the supply and purchase of energy. The market structure has changed
rapidly due to the incorporation of new suppliers in contrast to the previous scheme. The opening of
the electricity sector seeks to encourage the entry of more competitors to allow competitive prices to be
offered and to encourage the clean energies (through the clean energy certificate market). The behavior
of prices observed in the first year of operations shows high volatility in prices, partly attributable to
the behavior of fuel costs and the costs of losses.

Taking into consideration the above, this paper proposes a method of estimating energy prices
based on alpha-stable regressions, considering the presence of impulsivity in the series of prices and
electricity consumption, which result in errors with heavy tails. The main effect of estimating a linear
model in these conditions lies in the limitation of the inference power of the model, since there is the
possibility that the variance of the errors is infinite. The results of the estimations show the presence of
impulsivity in the behavior of the price and consumption of electricity (αLMP = 1.53 and αC = 1.78),
as expected given the nature of the consumption of electricity with peaks of demand according to
the hour, day of the week, and month of consumption. The stable model fits better in the presence
of extreme values; however, it does not capture the nonlinear behavior of the relationship between
price and electricity consumption identified. MAPE shows a better performance of the stable model
compared to OLS, 14%, and 25%, respectively.

Given the short time of operation of the Mexican wholesale electricity market, there is no open
availability of more variables that could help improve the specification of the model. It is proposed as
future work to integrate additional information to the model as well as to increase the frequency of
the data at daily and hourly prices. Similarly, it is recommended to explore the integration of stable
models with other nonlinear treatment methodologies. The present work is a first step towards the
generation of technical evidence that allows the correct development of the Mexican electric market.
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