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Abstract: Rapid urbanization leads to changes in surface coverage and landscape patterns. This results
in urban heat island (UHI) effects and a series of negative ecological consequences. Considering
this concern and taking Shanghai as an example, this paper concentrates on the effects of surface
coverage and landscape patterns on urban land surface temperature (LST). The research is based on
quantitative retrieval of remote sensing data with consideration of methods in multiple disciplines,
including landscape ecology, geographic information systems, and statistical analysis. It concludes
that, over time, the thermal environment of Shanghai is becoming critical. The average LST ranking
of different surface coverage is as follows: Construction land (CL) > bare land (BL) > green land
(GL) > agricultural land (AL) > water body (WB). LST varies significantly with the type of surface
coverage. CL contributes the most to the UHI, while WB and GL have obvious mitigation effects
on the UHI. The large area, low degree of landscape fragmentation, and complex outlines lead to
low LST rankings for GL, WB, and AL and a high LST ranking for CL. The conclusions indicate that
CL should be broken down by GL and WB into discrete pieces to effectively mitigate UHI effects.
The research reveals UHI features and changes in Shanghai over the years and provides practical
advice that can be used by urban planning authorities to mitigate UHI.

Keywords: land surface temperature; land cover types; landscape pattern; urban heat island; remote
sensing; Shanghai

1. Introduction

During the process of urbanization, the natural land cover changes to artificial surfaces on a large
scale. The increased artificial surfaces have different thermal capacities, reflection rates, aerodynamics,
and levels of evaporation [1,2]. This leads to urban heat island (UHI) effects, which cause a series of
ecological consequences, such as the formation of hazy weather, the deterioration of air quality, and
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extra urban energy consumption [3,4]. Therefore, mitigating UHI has become one of the most important
topics in the fields of urban ecology, urban landscaping, urban geography, and urban meteorology.

Changes to the underlying surface are the main cause of UHI effects. Therefore, it is significant
to explore the relationship between the underlying surface and the urban thermal environment.
At present, there is a lot of research focusing on this field [5–7]. The research of [8] shows that land
surface temperature (LST) is significantly positively correlated with the normalized difference buildup
index (NDBI) and negatively correlated with the normalized difference vegetation index (NDVI).
Previous studies also showed that underlying landscape patterns have an important influence on
LST [9,10]. The authors of [11] took the Aksu oasis in northwest China as an example to study the
influence of green space on surface temperature. The research results show that the area ratio of green
space patches in the landscape is the most important factor. Asgarian showed that increasing the
connectivity and complexity of urban landscapes can increase LST, which is caused by the high energy
exchange between different landscape units [12]. The conclusion of [13] shows that the loss of green
space leads to a major LST increase, while green space expansion generates an LST decrease. However,
most research in this field concentrates on the relationship between LST and land cover types or area.
In-depth research of the relationship between LST and the landscape patterns of land coverage types
still needs to be improved.

At present, the research methods of UHI effects include traditional ground observations [14],
numerical simulations [15,16], and remote sensing [17]. Traditional ground observations involve the
collection of data from meteorological observation stations or artificial ground observation points.
Then, UHI effects are explored by climatology and statistics. This method has the advantage of
continuity and controllability, but only rough spatial distribution of UHI can be obtained due to the
limited number of observation points [18]. Numerical simulation can be used to simulate the urban
thermal environment. This method has the advantage of continuity, and the mechanism of thermal
environmental change can be quantitatively analyzed. However, the disadvantage is uncertainty
of model parameters [19]. Remote sensing (RS) monitoring obtains surface temperatures through
remote sensors on satellites. This method has continuity, integrity, and real-time data acquisition,
overcoming the disadvantages of traditional ground observation and providing more scientific data
support for study [20]. At present, common RS image data sources include NOAA/AVHRR, Terra and
Aqua/MODIS, Terra and Aqua/ASTER, Landsat/TM and ETM+ and OLI/TIRS. The thermal infrared
band of Landsat TM/TM+/OLI/TIRS data has high spatial resolution and geometric accuracy, so it
is widely applied in urban thermal environment analysis and served as a database for this research.
UHI research based on RS images and LST retrieval uses surface UHI, which is different from air UHI.
Unless otherwise mentioned, the UHI in this research indicates only surface UHI.

Shanghai is one of the most urbanized and developed cities in China. In recent years, along with
fast urbanization, the thermal environment problem has become serious. The average temperature in
summer rises continuously [21–23]. The research of [24] shows that, since the 1980s, the UHI area has
increased by more than 700 square kilometers, and the average temperature has increased by 0.9 ◦C.
The research of [25] shows that the average maximum temperature in the Shanghai area fluctuates
steadily in summer, but the UHI strength shows a rising trend. Combined with hazy, high-temperature
weather, UHI threatens residential life. The study of [26] indicates that UHI enhances the negative
impact of a high-temperature climate on residential health and is one of the key factors of the death
rate in Shanghai in summer. Improving the urban thermal environment is a common topic of concern
for the government and citizens. It is important to accomplish this by optimizing urban planning
according to the relationship between LST and underlying coverage.

Taking Shanghai as an example, this study first explores the patterns of spatial and temporal
changes in LST rankings in the past 15 years. Then, a model of the areas and patterns of different
land cover types and corresponding LST rankings is built. This study can provide a reference for
Shanghai and other megacities to improve the living environment, mitigate the UHI effect, and optimize
landscape planning.
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2. Data and Methods

2.1. Study Area

Shanghai is located in the Yangtze River Delta. It sits on the south edge of the Yangtze River
estuary and in the middle portion of the east coast of China (Figure 1). It has 16 districts, with a total
area of 6340.5 km2, a length of 120 km from north to south, and a width of 100 km from east to west.
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Figure 1. Location map of Shanghai, China.

The population expands continuously. By the end of 2015, the permanent resident population
was 24.152 million, including a census-registered population of 14.4297 million.

2.2. Data

In this study, two major datasets were applied: LST and land cover type (LCT).
The LST data, at thermal infrared spatial resolutions of 100 m and 120 m, were obtained from

Landsat-8 TIRS and TM/ETM+. In order to unify spatial resolution, the 120 m resolution was resampled
to 100 m. Retrieval of LST was based on the atmospheric radiation transfer equation [27]. Initially,
a four-year interval between 2000 to 2016 was selected. However, in order to unify the weather
background to study UHI, the RS image for each year was sampled in July and August, when Shanghai
is the hottest, with sunny weather and no clouds or wind. Finally, RS images from 2000, 2004, 2007,
and 2015 were selected. Information on the selected images and the average temperature in July and
August of each year from the meteorological station are listed in Table 1.

Table 1. Data source information on remote sensing images.

Satellite Sensor Orbiter Date Quality Av. Temp. July Av. Temp. August

Landsat-7 ETM+ 118/38, 118/39 2000.08.01 No cloud 29.5 ◦C 28.6 ◦C
Landsat-5 TM 118/38, 118/39 2004.07.19 No cloud 30.2 ◦C 29.4 ◦C
Landsat-5 TM 118/38, 118/39 2007.07.28 No cloud 30.4 ◦C 29.7 ◦C

Landsat-8 OLI/TIRS 118/38, 118/39 2015.08.03 No cloud 30.5 ◦C 31.2 ◦C

Source: http://glovis.usgs.gov/.

After retrieval, the LST was classified into seven types by standard deviation classification
according to Equation (1), where D is the boundary of each type, a is an integer from one to three, X is
the average LST of the image, and S is the standard deviation:

D = X ± aS (1)

The LCT data, with a spatial resolution of 30 m, were obtained from remote sensing images by
supervised classification [28]. In order to improve the accuracy of the classification results, the LCT
data of Shanghai (Figure 2) from 2000, 2004, 2007, and 2015 were obtained through manual visual

http://glovis.usgs.gov/
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interpretation and corrected based on high-resolution Google Earth images. Field trips were also
conducted when images could not clearly indicate land cover. LCT was classified into five types:
Construction land (CL), green land (GL), wetland (WL), agricultural land (AL), and bare land (BL)
(see Table 2).

Table 2. Classification of urban land use types.

Abbreviation Land Cover Type Description

CL Construction land Urban built-up areas, including residential land, commercial land,
road land, storage land, industrial land, and public service land

GL Green land Any type of vegetation that provides shade, including all trees
and shrubs

WL Wetland All water body types, including lakes, rivers, wetlands, ponds, etc.

AL Agricultural land All agricultural land

BL Bare land Unused land, including sand and bare land
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Figure 2. Map of land use in different years.

2.3. Landscape Pattern Index

Indices were selected from patch type and landscape level to quantitatively describe the landscape
pattern characteristics of LCT. Landscape level indices are used to describe the overall characteristics
of LCT status, while patch type indices focus on the number, morphology, and structure of LCT types.
The selected landscape indices include percent landscape (PL), landscape shape index (LSI), number of
patches (NP), largest patch index (LPI), and mean Euclidean nearest-neighbor distance (ENN_MN)
(Table 3). These are common and frequently used indices in landscape research.
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Table 3. Landscape pattern indices used in this study.

Landscape
Pattern Metric (Abbreviation) Description

Composition Percent landscape (PLAND) Proportion of landscape type to total landscape (%)

Configuration Landscape shape index (LSI) Perimeter of patch divided by perimeter of circle with
the same area as the patch

Number of patches (NP) Count of total number of patches

Largest patch index (LPI) Area ratio of largest patch in landscape to study area (%)

Mean Euclidean nearest-neighbor
distance (ENN_MN)

Mean distance to nearest neighboring patch of
landscape type based on edge-to-edge distance (m)

2.4. Statistical Analysis

In order to study the quantitative relationship between the underlying surface coverage area,
landscape pattern index, and LST, the fishing net function of ArcGIS was utilized to extract
6 × 20 samples in the north–south direction and 5 × 20 samples in the east–west direction of the
study area with a grid unit of 3000 m × 3000 m. Excluding the crossing points, 190 grid samples
of 3000 m × 3000 m were obtained. Then, the sampled fields were superimposed with the LST and
LCT vector map, respectively, and converted into a grid file (Figure 3). The grid data were input into
Fragstats 4.2 to calculate the landscape pattern indices. Finally, the relationship between the average
temperature in 190 grids and the landscape pattern indices was calculated in SPSS 19.0.
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3. Results

3.1. Characteristics of LST

Based on the method in Section 2.2, the LSTs and temperature classifications of Shanghai in 2000,
2004, 2007, and 2015 were obtained (Figure 4). The LSTs of different LCTs were also calculated, as
shown in Table 4.

According to Table 1, the average temperature of Shanghai in July and August increased
significantly, from 29.5 ◦C and 28.6 ◦C in 2000 to 30.5 ◦C and 31.0 ◦C in 2015, respectively.



Sustainability 2019, 11, 2890 6 of 13

Sustainability 2019, 11, x FOR PEER REVIEW 6 of 13 

  

  

Figure 4. Results of land surface temperature measurement in Shanghai, 2007 and 2015. 

The LSTs of different LCTs are quite different. The average LST ranking of all LCTs for all years 

is: CL > BL > GL > AL > WB. CL has the highest LST, while WB has the lowest. GL, AL, and WB are 

significantly lower, and CL and BL are significantly higher than the average LST of Shanghai. 

Table 4. Land surface temperature (LST) of different land use types through the years (°C). 

Year 

(LST °C) 
 AL GL CL BL WL 

2000 

(31.71) 

Minimum 20.67 20.17 22.35 26.41 11.78 

Maximum 36.39 39.26 53.93 50.35 33.69 

Average 30.06 30.14 35.43 33.99 28.93 

2004 

(34.05) 

Minimum 22.42 24.62 25.52 27.61 20.14 

Maximum 38.23 36.76 51.37 43.94 39.48 

Average 32.87 33.18 36.54 35.63 32.03 

2007 

(35.34) 

Minimum 28.58 28.75 27.41 31.03 26.78 

Maximum 48.6 47.12 51.73 48.75 46.23 

Average 34.19 34.38 37.69 36.89 33.55 

2015 

(35.98) 

Minimum 18.05 31.79 29.97 32.02 22.52 

Maximum 51.59 43.68 54.22 43.68 42.02 

Average 35.16 35.21 39.05 37.19 33.29 

3.2. Characteristics of LCT 

Table 5 shows the area proportions of different LCTs. It indicates that percent of agricultural 

land (PerAL), percent of wetland (PerWL), and percent of bare land (PerBL) decreased over the years 

from 37.95%, 25.19%, and 3.74% in 2000 to 21.71%, 12.36%, and 0.36% in 2015, respectively. Percent 

of green land (PerGL) and percent of construction land (PerCL) increased from 7.81% and 25.31% in 

2000 to 24.87% and 40.70% in 2015, respectively. 
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The LSTs of different LCTs are quite different. The average LST ranking of all LCTs for all years is:
CL > BL > GL > AL > WB. CL has the highest LST, while WB has the lowest. GL, AL, and WB are
significantly lower, and CL and BL are significantly higher than the average LST of Shanghai.

Table 4. Land surface temperature (LST) of different land use types through the years (◦C).

Year (LST ◦C) AL GL CL BL WL

2000 (31.71)
Minimum 20.67 20.17 22.35 26.41 11.78
Maximum 36.39 39.26 53.93 50.35 33.69
Average 30.06 30.14 35.43 33.99 28.93

2004 (34.05)
Minimum 22.42 24.62 25.52 27.61 20.14
Maximum 38.23 36.76 51.37 43.94 39.48
Average 32.87 33.18 36.54 35.63 32.03

2007 (35.34)
Minimum 28.58 28.75 27.41 31.03 26.78
Maximum 48.6 47.12 51.73 48.75 46.23
Average 34.19 34.38 37.69 36.89 33.55

2015 (35.98)
Minimum 18.05 31.79 29.97 32.02 22.52
Maximum 51.59 43.68 54.22 43.68 42.02
Average 35.16 35.21 39.05 37.19 33.29

3.2. Characteristics of LCT

Table 5 shows the area proportions of different LCTs. It indicates that percent of agricultural land
(PerAL), percent of wetland (PerWL), and percent of bare land (PerBL) decreased over the years from
37.95%, 25.19%, and 3.74% in 2000 to 21.71%, 12.36%, and 0.36% in 2015, respectively. Percent of green
land (PerGL) and percent of construction land (PerCL) increased from 7.81% and 25.31% in 2000 to
24.87% and 40.70% in 2015, respectively.
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Table 5. Percentage of land use over the years. PerAL, percent of agricultural land; PerGL, percent of
green land; PerCL, percent of construction land; PerBL, percent of bare land; PerWL, percent of wetland.

Year PerAL PerGL PerCL PerBL PerWL

2000 37.95 7.81 25.31 3.74 25.19
2004 35.15 12.00 29.14 1.68 24.03
2007 32.97 14.11 36.81 1.27 14.84
2015 21.71 24.87 40.70 0.36 12.36

3.3. Quantitative Relationship Between LST and LCT

The quantitative relationship between LST and LCT was studied based on data of 3 August 2015.
According to Figure 5, there is a good linear relationship between LST and the area ratios of CL,

GL, AL, and WB. The fitting equation passes the significance test of 0.05, which indicates that these
four LCTs can well explain the change of average LST.
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Figure 5. Fitting for land surface temperature and land use type area ratio.

The linear fitting equation of average LST and PerCL is the best (y = 15.68x − 529.92, R2 = 0.81),
indicating a significant positive correlation between them. CL has the greatest influence on LST.
A large PerCL leads to high LST. Mean LST is significantly negatively correlated with PerAL
(y = −12.44x + 491.11), PerBL (y = −0.93x + 37.71), and PerWL (y = −3.07x + 123.31). In other words,
high PerAL, PerBL, or PerWL indicates low LST.

In order to obtain a complete overview of the relationship between LST and LCT, a multiple
regression analysis of the relationship between the area ratios of different LCTs and LSTs was conducted
(Table 6). The results indicate the contribution of different LCTs to LST. The prediction model is
Equation (2):

T = k0 + k1CL + k2FL + k3AL + k4WL + k5BL (2)

where T stands for LST, k0 is a constant, and k1–k5 represent the coefficients of variables.
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Table 6. Multivariate linear regression for land surface temperature and land use type area ratio.

Model
No Standardized Coefficient

Standard Coefficient t Sig. R2
B Std. Error

k0 36.578 0.328 111.63 0.000

0.928

k1 0.031 0.004 0.534 8.69 0.000
k2 −0.018 0.011 −0.048 −1.632 0.104
k3 −0.019 0.004 −0.282 −4.781 0.000
k4 −0.048 0.007 −0.230 −6.864 0.000
k5 0.001 0.018 0.001 0.039 0.969

According to Table 6, the model is significant (R2 = 92.8%). The model expression is shown in
Equation (3):

T = 36.578 + 0.031CL− 0.018FL− 0.019AL− 0.048WL + 0.001BL (3)

The model can be applied to predict LST or adjust the area of various LCTs accordingly to achieve
optimal land use planning.

3.4. Quantitative Study of LST and Landscape Patterns of LCTs

The quantitative relationship between LST and the landscape pattern of each LCT was studied
based on data of 3 August 2015.

The proportion of BL is relatively small compared to the other types, so it is not sufficient to
analyze the relationship between its landscape pattern index and LST at the type level. Therefore, only
the relationships between LST and the landscape pattern indices of WL, GL, CL, and AL were analyzed.

The Pearson correlation analysis between the landscape pattern of each LCT and LST is shown in
Table 7. The regressive fitting curve of each LCT landscape pattern is shown in Figures 6–9.

Table 7. Pearson correlation between LST and land use at landscape level.

LST of LCTs PLAND NP LPI LSI ENN_MN

TGL −0.149 0.368 * −0.034 −0.340 * 0.578 **
TCL 0.904 ** −0.730 ** 0.890 ** 0.513 ** −0.255 *
TAL −0.789 ** 0.274 * −0.768 ** −0.450 ** 0.409 **
TWL −0.603 ** 0.523 ** −0.317 * −0.671 ** 0.588 **

Note: ** Significant at 0.01 level (bidirectional); * significant at 0.05 level (bidirectional).

According to Figure 6, the curve fitting between ENN_MN, LSI, NP, and LST of GL is significant.
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landscape pattern index.

According to Figure 7, PLAND (y = 14.59x − 491.09) and LPI (y = 131x2
− 79.68x + 1189.93) of CL

are well fitted to the LST curve (R2 > 0.80). NP (y = −2.65x + 104.95) and LSI (y = 0.34x − 8.57) have
significant fitting with average LST.
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According to Figure 8, PLAND (y = −11.34x + 453.85), LPI (y = −0.17x2 + 1.68x + 202.91), and LSI
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Figure 9 indicates that PLAND (y = −3.50x + 140.64), NP (y = 1.84x − 57.65), LSI (y = −0.43x + 19.22),
and ENN_MN (y = 33.25x2

− 2331.89x + 41363.84) of WL have significant fitting with their average LST.
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4. Discussion

4.1. Thermal Environment of Shanghai

Figure 4 indicates that the UHI effects in Shanghai have become stronger over the years. In 2000,
the UHI was only concentrated in the central districts. In 2004, the cool area was further broken down,
the UHI extended outside the central district, and UHIs of suburban areas started to form. In 2007,
the UHI continued expanding, and most major towns in the western and eastern suburban areas
showed significant UHI effects. The cool area was further fragmented. In 2015, the entire main district
and suburban area showed strong UHI effects, and the thermal environment became serious.

4.2. LST Differences with LCT

Different LCTs have different absorption and reflection of solar radiation, so their contribution
to the LST is significantly different [29]. The surface material of CL is mainly made of asphalt and
bricks, which have the lowest thermal capacity and the highest LST [30]. The surface material of
BL is mainly natural soil, with strong water permeability. Compared to the artificial impermeable
surfaces of CL, BL has a higher thermal inertia and thermal capacity, so its surface temperature is lower
than that of CL. GL has a high thermal capacity and strong transpiration and shading effect, so its
LST is relatively low [31]. AL is mainly covered by crops and soil. The shading, transpiration, and
evaporation effects of moist soil can reduce the LST. However, AL is mainly distributed in the suburbs,
where the surrounding LST is already low, so the LST of AL is only slightly lower than that of GL. WL
has the strongest evapotranspiration and maximum heat capacity and reflection rate of the above five
LCTs. Thus, it has the lowest LST [32].

4.3. Relationship Between LST and Underlying Landscape Pattern

High fragmentation means dispersed GL distribution and long distances between patches.
These will result in a high LST [9]. The complex shape of the GL landscape brings a low LST.
Centralized distribution of GL patches is more effective at UHI mitigation than scattered patches [33,34].
The more complex the GL patch shape, the lower the LST. The reason for this is that complex GL has
more surfaces to exchange energy with the outside, which reduces the temperature of the external
environment [31].

According to Table 7, the LST of CL is significantly correlated with the five selected landscape
pattern indices (p < 0.05). CL is positively correlated with PLAND and LPI and negatively correlated
with NP, LSI, and ENN_MN. The reason is that large PLAND and LPI means a large proportion of
CL in the area and concentrated distribution, thus the average LST is high. Large NP and ENN_MN
means fragment distribution and dispersed distribution of CL, thus the average LST is low. Large LSI
means a complex shape of CL, which leads to massive surface contact with the surroundings. Then the
thermal energy can be well exchanged, thus increasing the average LST around it.

The average temperature of AL is significantly lower than that of the whole city, so AL has the
function of reducing the LST and alleviating UHI effects. Large PLAND and LPI values indicate a high
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proportion and concentrated distribution of AL in the selected area, so the average LST is low. Large
NP and ENN_MN lead to a serious degree of fragmentation and dispersed distribution of AL, so the
average LST is high. A large LSI indicates a complex shape of AL, which brings more contact with
the outside, thus more effective average LST reduction can be achieved. To sum up, large patch area,
concentrated distribution, and complex shape of AL result in low average LST and significant relief
from UHI effects.

The average temperature of WL is significantly lower than that of the whole surface, so WL can
reduce the LST and alleviate UHI effects [35]. Large PLAND and LPI values indicate a high area
ratio and concentrated distribution of WL in the area, which results in a low average LST. High NP
and ENN_MN mean serious fragmentation and dispersed distribution of WL. This leads to a high
average LST. A large LSI indicates a complex shape of WL and more external surface contact with the
surroundings. This results in an effective reduction of average LST. In other words, large patch area,
concentrated distribution, and complex shape of WL result in a low average LST and significant relief
from UHI effects.

5. Conclusions

In this paper, multidisciplinary theories and methods were applied to study the impact of LCTs
and their configurations on the LST of the megacity of Shanghai. The results show that the thermal
environment of Shanghai has become worse over the years. The LSTs of different LCTs are significantly
different. The average LST ranking of LCTs is CL > BL > GL > AL > WL. CL contributes the most to the
UHI effect and forms heat island centers easily, while WL and GL have significant effects on relieving
UHI effects and form cold island centers easily. For GL, WL, and AL, a large area, a small degree of
fragmentation, concentrated distribution, and complex shape lead to low average LST rankings and
strong mitigation of the UHI. For CL, the effect is the opposite, which means that a large area, a small
degree of fragmentation, concentrated distribution, and a complex shape lead to a high average LST
and obvious UHI effect. Therefore, to carry out effective landscape planning in order to mitigate UHI
effects as much as possible, CL should be distributed in as many discrete pieces as possible, and large
areas of CL should be broken up by GL or WL, which can effectively alleviate UHI effects. The study
helps with the understanding of the UHI in Shanghai and provides a reference basis for authorities to
formulate targeted strategies to alleviate UHI effects.

In further study, the following points still need to be addressed:
(1) The correlation analysis between LST and LCT landscape patterns can be improved by

introducing multivariate analysis. Principal component analysis can also be introduced to avoid
correlation of the variants.

(2) The most frequently applied landscape indices for LCT are used in this study without
justification. More indices may influence the LST of the LCT and should be evaluated.
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