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Abstract: Assessing the performance of algorithms in solving building energy optimization (BEO)
problems with different properties is essential for selecting appropriate algorithms to achieve the best
design solution. This study begins with a classification of the properties of BEO problems from three
perspectives, namely, design variables, objective functions, and constraints. An analytical approach
and a numerical approach are proposed to determine the properties of BEO problems. Six BEO test
problems with different properties, namely, continuous vs. discrete, convex vs. non-convex, linear vs.
non-linear, uni-modal vs. multimodal, and single-dimensional vs. multi-dimensional, are composed
to evaluate the performance of algorithms. The selected optimization algorithms for performance
assessment include the discrete Armijo gradient, Particle Swarm Optimization (PSO), Hooke-Jeeves,
and hybrid PSO and Hooke-Jeeves. The assessment results indicate that multimodality can cause
Hooke-Jeeves and discrete Armijo gradient algorithms to fall into local optima traps. The convex,
non-convex, linear and non-linear properties of uni-modal BEO problems have little impact on the
performance behavior of the algorithms. The discrete Armijo gradient and Hooke-Jeeves are not
recommended for solving discrete and multi-dimensional BEO problems.

Keywords: building energy optimization; performance of optimization algorithms; building
optimization problem; problem property

1. Introduction

1.1. Background

The global energy consumption has increased significantly due to population growth and
industrial development in recent years. In particular, residential and commercial buildings account for
approximately 30%–40% of global energy consumption and about 39% of the total CO2 emissions [1].
As a result, energy-efficient design of buildings has become mainstream among governments,
developers, architects, engineers, and other stakeholders [2].

The conventional building energy design methodology is essentially a “trial-and-error” approach.
The designer (an architect or engineer) generates a design, evaluates its energy performance, and revises
the design based on the evaluation results. The process is iterated until the design meets certain
requirements. The effectiveness and efficiency of this approach are largely dependent on the complexity
of the design problem and the technical competence of the designer. In view of the limitations
of manually adjusting designs, building energy optimization (BEO), a new technique that can
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automatically adjust designs, has emerged [3]. It combines optimization techniques with building
energy simulation tools and relies on optimization algorithms to create new designs according to
pre-defined optimization objectives and simulation results [4]. Thus, optimization algorithms are the
key to the BEO workflow, and the effectiveness and efficiency of this technique significantly depend
on the performance of the algorithms.

There are various algorithms for solving optimization problems in many science and engineering
fields. The optimization algorithms commonly used in BEO can be generally divided into three groups,
namely, hybrid algorithms, direct search algorithms and heuristic algorithms [5]. As shown in some
reviews [6–8], evolutionary algorithms are the most popular algorithms, accounting for about 60%.
The genetic algorithm (GA) [9] and its variations such as the non-dominated sorting genetic algorithm
II (NSGA-II) [10] are typical examples of evolutionary algorithms. The Hooke-Jeeves algorithm [11] is
a representative of direct search algorithms. A hybrid algorithm [12] is an algorithm that combines
two or more other algorithms into a hybrid operation so that the overall algorithm performs better
than the individual ones.

Although a number of algorithms are currently used in BEO, their performance, i.e., in terms
of effectiveness and efficiency, can vary and at times significantly. The reasons for the difference in
performance of algorithms are two-fold. First, BEO problems have different properties, e.g., linear or
non-linear, single-dimensional or multi-dimensional, uni-modal or multimodal, etc. Second,
the performance of a particular algorithm is closely linked with the properties of the BEO problem to be
solved. Hence, analyzing and understanding the properties of a specific BEO problem is a prerequisite
for selecting the proper solution algorithm. Furthermore, assessment of the performance of a certain
algorithm must consider the properties of the BEO problem to be solved.

This study aims to assess the performance of algorithms for BEO problems with different
properties. The reasons why this study is both timely and valuable are multi-folds. Firstly, the properties
of BEO problems are essential to the performance of algorithms. Secondly, current research on
the properties of BEO problems and assessment of algorithms performance is insufficient [2].
Although certain existing works have been published in non-architectural fields [13–16], however,
whether these findings apply to BEO problems is still unclear, and few studies have shed light on this
topic. In general, this study will deepen understanding of the performance of algorithms used in BEO
and benefit the selection of proper algorithms for a given BEO problem.

1.2. Literature Review

In relation to the optimization algorithms used in BEO, three types of studies can be found:

• Exclusively focus on the algorithms’ performance in solving BEO problems. Based on our recently
published review [2], only a few researchers have paid close attention to such topics [4,17,18].
However, in this sector, research studies that focus on the properties of BEO problems are
seriously scarce.

• Use of existing or improved algorithms to solve specific BEO problems without exploring their
effectiveness and efficiency. Such studies are the major portion of this body of literature, and
many algorithms have been used in optimization of the energy generation, building envelope
and systems [6]. Such studies can be found in [19–22].

• Experimental design for the control parameter settings in algorithms. The performance of
algorithms is dependent on the settings of their control parameters. Development of a helpful
method for setting the appropriate algorithm parameters is one of the most demanding and
important areas of research in BEO especially for expensive computational optimization problems.
Few works have examined this topic [23–25]. In this study, we do not focus on this topic.
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1.3. Research Outline

The outline of this paper is as follows:

• Classification of the properties of BEO problems.
• Proposal of two approaches to analyze the properties of BEO problems.
• Development of six BEO test problems with different properties for the performance evaluation

of algorithms.
• Assessment of the performance of the four chosen algorithms in solving the test problems using

the indices proposed in our previous work [4].

Section 2 describes the methodology of assessing the performance of optimization algorithms
for BEO problems with specific properties, including classification of the properties of BEO problems,
two approaches used to determine the properties of BEO problems, six BEO test problems with
different properties and description of the four selected optimization algorithms. Section 3 presents
the evaluation results. Section 4 summarizes the paper. Section 5 suggests a few related studies for
future research.

2. Methodology

2.1. Classification of the Properties of BEO Problems

To select the correct optimization algorithm for a specific BEO problem, the first task of the
designer is to investigate the properties involved in the problem. The properties of BEO problems
are various and can be generally classified into three basic schemes, namely, objective functions,
design variables, and constraints. Figure 1 summarizes the properties of BEO problems that are adopted
and modified from Nguyen et al. [7] and Rao [16]. This categorization offers an important foundation
for development of new optimization approaches and selection of proper algorithms for different BEO
problems as well. Each classification scheme and their categories are briefly discussed below.
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2.1.1. Design Variables

To design energy-efficient buildings, lots of variables must be considered. According to the
number of variables to be optimized, BEO problems can be single-dimensional or multi-dimensional.
A BEO problem can be viewed as dynamic or static if the design variables are continuous functions of
or are independent of time, respectively. If the design variables have no uncertainty, the BEO problem
can be stated as deterministic. In contrast, problems in which all design variables are described by



Sustainability 2019, 11, 18 4 of 22

random or probabilistic variables within a given range are defined as probabilistic [26]. According to
the type of permitted values, design variables can be categorized as discrete (taking on only discrete
or integer values), continuous (taking on any real value within a range), and hybrid. For example,
the number of floors must be an integer that is greater than zero. The decision variable of the ventilation
scheme should be either 0 or 1, modeling a yes or no decision, respectively. Variables such as size
and ratio are generally continuous in that any two adjacent values can take on infinite segmentation.
In particular, in real-world BEO problems, analysts often must address problems with hybrid types of
variables, which is known as the “mixed-integer programming” problem [27]. Variable dependence
occurs when a variable is a function of other variables, which is often observed in real-world BEO
problems and has the impact on constraining the solution space.

2.1.2. Objective Functions

Objective functions are criteria for comparison of different alternative designs to select the best
option. A problem that involves only one criterion expressed as an objective function is referred as
single-objective problem, whereas a multi-objective problem involves multiple objective functions.
According to the properties of the expressions, the objective function of a BEO problem can be classified
as quantitative and qualitative, computationally expensive and inexpensive, linear and non-linear,
continuous and discontinuous, uni-modal and multimodal, differentiable and non-differentiable,
convex and non-convex. Quantitative objective functions can be calculated via statistical, mathematical
or computational techniques. All BEO problems lie within this branch. In contrast, qualitative objective
functions involve issues that are descriptive, subjective or difficult to measure, such as architectural
aesthetics. Addressing computationally expensive objective functions is one of the key challenges faced
by the BEO technique. Typically, simulation-based models that require plenty of time to assess can
cause the overall optimization workflow to become infeasible [28]. According to the number of local
optima for a problem, a BEO problem can be classified as uni-modal or multi-modal. Multi-modality
poses one significant difficulty for certain algorithms in converging to the global optimum because
they might fail to jump from local optima traps. Furthermore, in BEO, discrete or integer values must
be assigned to design variables at times, which can cause the objective function to become disordered
and discontinuous [29]. It is worth mentioning that convex functions are significant in the study of
BEO problems because they have several distinctive properties. For instance, there exist no more than
one minimum for a strictly convex function on an open set. More specifically, for a strictly non-convex
problem, the minimum does not exist/on the bound if it is on an open set/an explicit domain. Generally,
BEO problems are usually non-differentiable with discontinuous simulation outputs, often resulting
in failure of technologies that require differentiability. Separability is an important property for
multi-dimensional problem. If the design variables are independent of each other, the problem can be
simply addressed by decomposing it into several sub-problems that are easy to be solved. However,
most BEO problems are likely to be inseparable.

2.1.3. Existence of Constraints

BEO problems can be grouped into constrained or unconstrained, depending on whether
constraints exist. Addressing a constrained problem is generally harder than an unconstrained one,
but most BEO problems are constrained, and this feature affects the optimization technology to
be used. Equality or inequality are two major types of constraints, and the latter is recognized as
more difficult to solve [9]. A constraint function might have properties similar to those of objective
functions, including convex or non-convex, linear or non-linear, separable or inseparable, differentiable
or non-differentiable. In BEO, a variable’s bounds constitute a general case of constraints and are
relatively easy to solve. In addition, dependent variable constraints are often unavoidable, and the
most common method in BEO is the use of penalty or barrier functions [30].
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2.2. Approaches Used to Determine the Properties of BEO Problems

As demonstrated in Section 2.1, diverse properties are probably involved in one BEO problem.
Certain properties can be easily and intuitively determined, e.g., discrete or continuous variables,
whereas several significant properties are rather difficult to determine directly, such as linear or
non-linear. In view of this situation, two approaches, namely, analytical approach and numerical
approach, are proposed in this section to determine the properties of BEO problems. To demonstrate
the applicability of these two approaches, we take the optimization of the opaque wall conductivity to
minimize the annual energy consumed by a standard building as an example.

2.2.1. Standard Building Model

A single-zone rectangular-shaped office building located in Nanjing, Jiangsu province, China is
chosen as the standard building. As shown in Figure 2, the floor height of the single-story building is 4
m, and the length and width are both 20 m. Only the southern wall has a single-layer window [31]
which is spread over the entire length of the wall and the initial window-to-wall ratio is 50%.
The exterior walls and roof are simplified as one-layer construction [32] with an initial thermal
conductivity of 0.16 W/mK and 0.1 W/mK, respectively, complying with the minimum requirements
of the China Design Standard for Energy Efficiency in public buildings (GB50189-2015) [33].
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Figure 2. Architectural schematic view of the standard building.

The building is assumed to be equipped with an ideal heating, ventilation, and air conditioning
(HVAC) system which supplies sufficient quantity of cooling or heating air to the building to meet
the internal load. According to the GB50189-2015 [33], the internal heat gains of the building include
lights (9.0 W/m2), equipment (15 W/m2), and heat released by 40 people. The fresh air volume is
30 m3/hp. Schedules for the HVAC system, zone thermostat control, lights, equipment, fresh air unit
and occupant rate are set based on Table B.0.4-1 through Table B.0.4-10 in the GB50189-2015 [33].

2.2.2. Analytical Approach

The analytical approach derives the logical mechanism behind BEO problems from the basic
laws of physics and is a description of a system using mathematical concepts and language. A whole
building is a real system placed in the real environment and represents a highly complex situation.
To perform analysis on the system, a specific physical calculation model of energy consumption that
can reflect the real working state of the building must be determined first. Compared with selected
mature, widely recognized and commonly used energy simulation engines (including EnergyPlus,
eQUEST, TRANSYS, ESP-r, DOE-2, BLAST, etc.), EnergyPlus (version 8.3.0, Lawrence Berkeley National
Laboratory, Berkeley, California, USA) is definitely the most frequently used detailed and dynamic
energy simulation program [34]. Thus, the EnergyPlus calculation model can be selected as the
theoretical foundation of the analytical approach, as shown in Figure 3. The computing core is a
calculation model based on fundamental heat balance principles of the building’s inside and outside.
By using the analytical approach, the expression for the annual energy consumption and the opaque
wall conductivity of the standard building is derived as follows.
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Defining the energy consumption of the building as Qtotal, it can be formulated as:

Qtotal = Qsys + Qlights + Qequip + Qothers (1)

where Qsys is the energy consumed by HVAC systems, Qlights is the energy consumed by lights, Qequip is
the energy consumed by equipment, and Qothers is the energy consumed by other facilities.

As in this study, the building is equipped with an ideal HVAC system with a coefficient of
performance (COP) of 1, so Qsys is equal to the heat flux released by the ideal system to the indoor
air which is defined as Q′sys, and then Qtotal is directly proportional to Q′sys. To develop the explicit
equations between Q′sys and the wall conductivity k, the formulation begins with the heat balance in
the zone air:

Q′sys = Qin −Qconv −Qint −Qzones −Qin f (2)

where Q′sys is the system energy provided to the zone, Qin is the energy kept in the zone air, Qconv is
convective heat transfer from the surfaces, Qint is the total of convective internal loads, Qinf is heat
transfer due to infiltration of outside air, and Qzones is heat transfer owing to air mixing between zones.

Thus, Q′sys is proportional to Qconv which is influenced by the variable of wall conductivity k.
To identify the relationship between Qconv and k, the EnergyPlus calculation modules of the conduction
through the walls and heat balance on the inside surface are subsequently explored, and the detailed
derivation processes are given in Appendix A to make the main text concise.

Finally, assuming that the time step δ is 1 h, substituting Equations (A24) and (2) into Equation (1)
in the text yields:

Qtotal = s[(ut + S1ut−δ + S2ut−2δ − e1qki,t−δ − e2qki,t−2δ) + qLWX + qSW
+ qLWS + qsol ] + Qin −Qint −Qzones −Qin f + Qlights + Qequip + Qothers

(3)

where:
S0 =

[
0 Nh−2h

2

]
S1 =

[
MNh(2+L)

2
h(8+8L+4L2+4M2−L2 N−M2 N)

4

]
,

S2 =
[

MNh(L2−M2+2L)
4

h(−4−8L−8L2−4L3+4LM2−L4+2L2 M2−M4+M2 N−4LN−3L2 N−L3 N+L2 M2 N−2N)
4

]
,

L =
−2k− 2hl

ρcl2 M =
2k

ρcl2 N =
2h
ρcl

Moreover, s is the inner surface area of the wall. ut is a vector of indoor and outdoor temperatures
at time t. l is the length of the wall. ρ is the density of the wall. k is the thermal conductivity of the wall.
c is the specific heat of the wall, and h is the convection coefficient. Thus, the energy consumption of
the standard building Qtotal is a quartic polynomial of the wall conductivity k.
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2.2.3. Numerical Approach

The numerical approach is another technique used to identify relationships among variables,
such as correlation or causation. Instead of deriving accurate mathematical formulas, the relationship
between an optimization objective (e.g., annual energy consumption, thermal comfort or cost) and
one or more independent variables (e.g., architectural design parameters) is determined by data
analysis. The program collects data by varying the values of the independent variable to obtain the
corresponding values of the objective. Such a statistical method enables analysis of experimental
data and construction of empirical models so as to capture the most accurate description of the
physical situation.

When using the numerical approach to understand the impacts of the opaque wall conductivity
of the standard building on its annual energy consumption, the feasible region (0.02 to 0.3 W/mK)
of the opaque wall conductivity was first discretized into 56 intervals and 57 points with a step size
of 0.005 W/mK. All 57 values of the independent variable were input to the EnergyPlus to compute
the corresponding design objective (i.e., building annual energy consumption). Finally, inferential
statistics, i.e., regression analysis, were applied to the series of data to identify the regression function
among the variables, which can be approximately considered as the mathematical objective formulas
of the given optimization problem. Figure 4 shows the final statistical data and the fitting curve.
The regression function is written as:

Qtotal = 39.37k4 − 7.16k3 − 109.65k2 + 193.22k + 108.91 (4)

where Qtotal is the annual energy consumption, and k is the wall conductivity of the standard building.
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2.2.4. Results Comparison

Comparing the final formulas obtained by the two aforementioned approaches (i.e., Equations (3)
and (4)), the mathematical model developed on the theoretical side agrees quite well with the result of
the numerical approach, which are all quartic equations. Thus, the reliability of the two approaches is
mutually proved and reveals that the relationship between the exterior opaque wall conductivity k
and the annual energy consumption Qtotal is a quartic polynomial.

Compared with the analytical approach, which requires designers (e.g., architect, engineer, etc.)
have a solid mathematical background, the numerical approach is much easier to apply at a slight cost
to accuracy. Moreover, for some real-world building optimization problems, the models may be too
complicated to make it difficult for analytical approach to develop exact mathematical expressions.
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Therefore, in real-life practice, designers are encouraged to select a proper approach according to the
specific optimization problems to be solved and their academic backgrounds.

2.3. Six Test BEO Problems with Different Properties

Since the primary goal of this research is to assess the performance of algorithms in solving
different BEO problems with specific properties, so the properties (e.g., linear or non-linear, convex or
non-convex, etc.) must be isolated so that it can be identified which property may cause difficulty for a
particular algorithm. Therefore, a set of test problems was designed, with only one significant property
for each problem and the performance of the selected algorithms in solving them was systematically
evaluated. By using the two approaches proposed above, the properties of each test problem were
determined. In particular, for Test 1, both the analytical and the numerical approaches were used as
demonstrated in Section 2.2. For Tests 2–6, only the numerical approach was used. Each test problem
and its properties are discussed below.

2.3.1. Test 1: Wall Conductivity

Test 1 was designed to optimize the exterior wall conductivity of the standard building for
minimization of the annual energy consumption, as introduced in Section 2.2. Although it is generally
considered that the energy consumption increases with the increase of wall conductivity, the specific
linear or non-linear monotonically increasing relationship is complex and cannot be determined
intuitively. Additionally, Test 1 is a significantly representative problem that is worthy of investigation
in BEO.

Section 2.2 implied that Test 1 is single-dimensional because only one variable is considered in
the problem. In addition, as demonstrated in Figure 4, the regression line is a continuous non-linear
monotone curve, and the problem has only one optimal solution. Therefore, the property of the search
space is classified as uni-modal. Moreover, according to the definitions of convex and non-convex,
the underlying equation in the objective function of Test 1 is strictly non-convex with the unique
optimal solution located at the lower bound of the variable domain.

2.3.2. Test 2: Orientation

Test 2 was designed to optimize the building orientation of the standard building for minimization
of the annual energy consumption. Figure 5 demonstrates their relationship, which is in essence the
graph of the objective function of Test 2. The figure shows that only one variable is involved. In addition,
the objective function is non-linear and is convex in three intervals and non-convex in two intervals.
As a result, two peaks and three valleys appear in the graph. Thus, this problem has single-variable,
non-linear, convex, non-convex and multimodal properties.
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2.3.3. Test 3: Floor Height

Test 3 was designed to optimize the floor height of the standard building for minimization of the
annual energy consumption. Their relationship is illustrated in Figure 6, which was derived using the
numerical approach by discretizing the variable feasible region into 41 points. The final regression
function is a linear polynomial with one variable and is written as f (X) = 2.41369X + 105.12669.
Therefore, this is a single-variable and linear problem.Sustainability 2018, 10, x FOR PEER REVIEW  9 of 21 
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2.3.4. Test 4: Aspect Ratio

Test 4 was designed to optimize the building aspect ratio for minimization of the annual energy
consumption by changing the length of the south wall. In this test, the standard building was modified
by reducing the window length to 5 m, as shown in Figure 7, to ensure that the window area was
constant whenever the aspect ratio of the building changed. The volume, floor height and floor
area of the modified building model remain unchanged. Thus, if the length of the south wall is
symbolized by L, the length of the east wall is 400/L, and the aspect ratio of the building is L2/400.
Specifically, the lengths of the relative elevations are the same. By discretizing the feasible region of L,
the corresponding building aspect ratio and annual energy consumption can be calculated. The final
numerical experiment results are demonstrated in Figure 8, which implies the objective function is
strictly convex, non-linear and has only one optimum.
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2.3.5. Test 5: Wall Conductivity and Orientation

Test 5 is a multi-dimensional problem with two variables. To identify the properties of the
objective function, the numerical approach was applied to find how the value of the annual energy
consumption changed when the wall conductivity and building orientation of the standard building
were varied. The graph of the objective function is illustrated in Figure 9, which is non-linear,
multimodal, convex and non-convex.
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2.3.6. Test 6: Wall Conductivity and Cooling Setpoint for the Zone Air Temperature

Test 6 is also a multi-dimensional problem with two variables, one of which is the wall conductivity
and the other is the cooling thermostat setpoint. It is noted that Test 6 is a mixed-integer problem,
in which the variable of cooling setpoint is discrete with a step size of 1 and the wall conductivity is
continuous. To identify the properties of the objective function, the numerical approach was applied
and the design space is illustrated in Figure 10.
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In conclusion, Table 1 lists the variables used in each test problem as well as their initial values,
ranges of variation, step sizes, initial solutions and the true optimal solutions. Table 2 summaries the
properties of the six test problems.

Table 1. Specifications of optimization variables in each test problem.

Test Problems Design Variables Symbol Unit Step Size Range Initial Solution True Optimum

x1 f (X1) x* f (X*)

Test 1 Wall Conductivity x1 W/m·K 0.008 0.02–0.3 0.225 116.700 0.02 109.741

Test 2 Orientation x2
◦ 8 0–360 120 120.082 1 114.760

Test 3 Floor height x3 m 0.2 3–5 4.5 120.082 3 112.409

Test 4 Length of south wall
(Aspect ratio) x4 m 4 5–80 60 117.931 22 111.423

Test 5
Wall Conductivity x5 W/mK 0.008 0.02–0.3 0.225

121.277
0.02

109.834
Orientation x6

◦ 8 0–360 148 1

Test 6
Wall Conductivity x7 W/m·K 0.008 0.02–0.3 0.225

194.847
0.02

68.922

Cooling Setpoint x8
◦C 1

{20, 21,
. . . , 39,

40}
20 40

Table 2. Summary of six test problems and their properties.

Test Problems Properties of Test Problems

Test 1 Single-dimensional, Non-linear, Uni-modal, Non-convex, Continuous
Test 2 Single-dimensional, Non-linear, Multimodal, Convex, Non-convex, Continuous
Test 3 Single-dimensional, Linear, Continuous
Test 4 Single-dimensional, Non-linear, Uni-modal, Convex, Continuous
Test 5 Multi-dimensional, Non-linear, Multimodal, Convex, Non-convex, Continuous
Test 6 Multi-dimensional, Non-linear, Uni-modal, Non-convex, Discrete

2.4. Description of the Optimization Algorithms Being Evaluated

In this study, the representatives of four algorithm types, i.e., Particle Swarm Optimization
(PSO) [9], discrete Armijo gradient, Hooke-Jeeves and hybrid PSO and Hooke-Jeeves, were compared
to evaluate their performance in solving the six test problems with distinct properties. All of the
algorithms were implemented in GenOpt (version 3.1.1, Lawrence Berkeley National Laboratory,
Berkeley, California, USA), a popular platform that can integrate with EnergyPlus. Only the key
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operation concepts of the algorithms are discussed in this section. We refer the readers to [35] for
more information about the original development of each algorithm, a detailed description of their
workflows and the control parameters. In this study, we set the parameters of the algorithms to values
that are revealed to perform nicely for building optimization problems by other researchers [18,36].
They also passed some pre-testing conducted by the authors.

2.4.1. Discrete Armijo Gradient Algorithm

This algorithm is affiliated with the family of gradient-based algorithms and can be applied to
minimize continuously differentiable functions. This algorithm approximates the gradients using finite
differences, and the optimization progress is driven by the difference increment reduced. The Armijo
step-size rule is used to perform line searches.

The main control parameters and their settings for the discrete Armijo gradient algorithm used in
this work include: Alpha = 0.5, Beta = 0.8, Gamma = 0.1, K0 = 0, KStar = −10, LMax = 50, Kappa = 25,
EpsilonM = 0.01, and EpsilonX = 0.05. The reader is referred to [34] for additional details on the
operational strategy of the algorithm and parameters.

2.4.2. Hooke-Jeeves Algorithm

This algorithm [37] is a Generalized Pattern Search algorithm. It is initiated from a given starting
solution and subsequently performs exploration and pattern search alternatively in the solution space.
The exploration searches along the direction of each coordinate from a base solution using a predefined
step size for a better performing solution. The pattern search strategy accelerates the searches along
the improved objective value direction. The algorithm terminates when the maximum number of step
reduction or the predefined convergence precision is achieved.

In GenOpt, the incremental reductions in step size are controlled by the parameters of initial mesh
size exponent, mesh size exponent increment, mesh size divider and number of step reduction. In this
study, their values of 0, 1, 2, 4, respectively [34], are used.

2.4.3. PSO Algorithm

The PSO algorithm is a member of the population-based stochastic algorithms [38]. It is inspired
by the social behavior of a shoal of fish or a flock of birds. Each individual, such as a “fish” in the
shoal, is called a “particle”. For each particle, the PSO algorithm tracks the best position of the particle
(which models cognitive behavior) as well as the best position of the population (which models social
behavior) in terms of the objective function.

The PSO algorithm adopted in this study uses the constriction coefficient method and applies the
von Neumann topology [39], the values of the parameters of random seed, social acceleration constant,
cognitive acceleration constant, constriction gain and velocity clamping with a maximum velocity gain
are 1, 1.3, 2.8, 0.5, 0.5, respectively [34].

2.4.4. Hybrid PSO and Hooke-Jeeves Algorithm

The hybrid algorithm first runs the PSO to achieve a near-optimal solution. This step is performed
based on a pre-defined number of generations. When the PSO finishes, its optimal solution is utilized
as the initial solution for the Hooke-Jeeves. This hybrid algorithm aims to locate the optimal area of
the solution space by running the PSO first and subsequently to carry out a refined search in that area
by running the Hooke-Jeeves [40]. The control parameters and the settings of the hybrid algorithm are
the same as in the two aforementioned algorithms.

2.5. Performance Evaluation Criteria

The performance behavior of the selected algorithms in addressing the six test problems is
assessed using four important performance indices proposed in our previous work, namely, stability,
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validity, speed and coverage [4]. For an algorithm, the stability is used to describe its capability of
consistently finding similar optimal solutions when the optimization run is repeated multiple times.
The validity describes the accuracy of the optimum found by the algorithm. The speed describes how
fast the algorithm convergences to the optimal solution, and the coverage describes the ability of an
algorithm to look for the optimal solution in the global solution space. Readers are referred to [4] for
details of the applicable definitions and quantitative calculation formulas.

3. Results and Analysis

The programs GenOpt 3.1.1 and EnergyPlus 8.3.0 were applied for all optimizations.
Each optimization run had the same initial population and the number of simulations was limited
to no more than 300. We used a computer with Windows 10 operating system (Microsoft, Redmond,
Washington, USA), 8 GB of main memory, and an Intel (R) Core (TM) i7-6700HQ 475 CPU @ 2.60 GHz
to conduct all simulations. It took about 8 seconds to finish one simulation and approximately 1–1.5 h
for 300 simulations in total.

3.1. Stability

For each test problem, six repeated runs were conducted with each algorithm, and Table 3 listed
the final results. As shown, the six optimization runs of each algorithm generated the same results
for each test problem. Particularly, the discrete Armijo gradient failed to solve Test 5 because the
optimization process suddenly terminated halfway without converging. While using the discrete
Armijo gradient and the Hooke-Jeeves to solve Test 6, GenOpt terminated with error as both algorithms
can only have continuous variables. Therefore, the stability of the four selected algorithms is perfect for
all test problems. However, the discrete Armijo gradient and the Hooke-Jeeves are not recommended
for solving BEO problems with discrete variables.

Table 3. Optimal solution x’, its objective function value f (x’), and number of simulations m before
finding the optimum for each optimization run.

Variable Unit
Algorithm

Discrete Armijo Gradient Hooke-Jeeves PSO Hybrid PSO and Hooke-Jeeves

Run Index 1–6 1–6 1–6 1–6

Test1
m - 206 23 7 100
x1’ W/mK 0.02002 0.02 0.025 0.02

f (x1’) kWh/m2a 109.838 109.741 110.008 109.741

Test 2
m - 66 12 7 84
x2’ ◦ 175.953 176 0 1

f (x2’) kWh/m2a 117.805 117.804 114.762 114.760

Test 3
m - 226 11 7 89
x3’ m 3 3 3.1 3

f (x3’) kWh/m2a 112.409 112.409 112.639 112.409

Test 4
m - 123 18 51 86
x4 m 22.044 22 24 22

f (x4’) kWh/m2a 111.424 111.423 111.468 111.423

Test 5

m - - 50 225 98
x5’ W/mK - 0.02 0.025 0.02
x6’ ◦ - 176 356 360

f (x5’, x6’) kWh/m2a - 111.152 110.07 109.838

Test 6

m - - - 295 105
x7’ W/mK - - 0.071 0.02
x8’ °C - - 40 40

f (x7’, x8’) kWh/m2a - - 72.941 68.922

3.2. Validity

It has been verified that the stability of all four optimization algorithms is good, which is
necessary for the validity evaluation. To examine the closeness of the best solution obtained in an
optimization run to the true optimum, the normalized Euclidean distance d(X*, X’) between them
and the relative distance in their objectives g(f (X*), f (X’)) were calculated according to our previous
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work [4]. If both d(X*, X’) and g(f (X*), f (X’)) have small values, the optimal solution locates near the
true optimum in the design space, demonstrating that the validity of the corresponding algorithm is
high. Table 4 summarizes the calculated d(X*, X’) and g(f (X*), f (X’)) values of each algorithm for each
test problem.

Table 4. The calculated values of d(X*, X’) and g(f (X*), f (X’)) obtained by each algorithm for each
test problem.

Test 1 Test 2 Test 3 Test 4 Test 5 Test 6

d(X*,
X’)

g(f (X*),
f (X’))

d(X*,
X’)

g(f (X*),
f (X’))

d(X*,
X’)

g(f (X*),
f (X’))

d(X*,
X’)

g(f (X*),
f (X’))

d(X*,
X’)

g(f (X*),
f (X’))

d(X*,
X’)

g(f (X*),
f (X’))

Discrete Armijo
gradient 0.00007 0.00088 0.48598 0.02653 0 0 0.00059 0.000009 - - - -

Hooke-Jeeves 0 0 0.48611 0.02653 0 0 0 0 0.48611 0.012 - -

PSO 0.01786 0.00243 0.00278 0.00002 0.05 0.00205 0.02667 0.0004 0.98627 0.00215 0.1821 5.831

Hybrid PSO and
Hooke-Jeeves 0 0 0 0 0 0 0 0 0.99722 0.00004 0 0

For Test 1, which is strictly non-convex, the unique global optimum is at the boundary of the
feasible region. The Hooke-Jeeves and the hybrid algorithms finally found the true optimum, and the
other two algorithms found near-optimal solutions with good quality. Thus, the validity of the four
algorithms is highly satisfactory in this case.

For Test 2, which is multi-model, the hybrid algorithm found the true optimum. The PSO algorithm
found an acceptable near-optimal solution that has notably small d(X*, X’) and g(f (X*), f (X’)) values.
Conversely, the other two algorithms were trapped by the local optimum with large d(X*, X’) and
g(f (X*), f (X’)) values.

For Test 3, all four algorithms converged to the true optimum or a satisfactory near-optimum,
indicating that the validity of all four algorithms is high in solving linear BEO problems.

For Test 4, which is strictly convex, the validity performance of the four algorithms is quite similar
to that of Test 1, which is strictly non-convex. The test reveals that strictly convex or non-convex
properties in BEO problems may not cause different validity behavior for the four selected algorithms.

For Test 5, none of the algorithms found the true optimum, but the PSO algorithm and the hybrid
algorithm found satisfactory solutions with quite small g(f (X*), f (X’)) values. However, the optimal
solution found by the Hooke-Jeeves algorithm has poor quality with a large g(f (X*), f (X’)) value.
In addition, the discrete Armijo gradient algorithm failed for this test. Therefore, the discrete Armijo
gradient and the Hooke-Jeeves display worse performance in terms of validity for BEO problems with
a multi-dimensional property while the validity performance of the other two algorithms is acceptable.

For test 6, which contains a discrete variable, the hybrid algorithm found the true optimum.
In contrast, the discrete Armijo gradient and the Hooke-Jeeves failed to optimize discrete variables
and terminate from the very beginning. The PSO algorithm did not find an acceptable solution with
large d(X*, X’) and g(f (X*), f (X’)) values.

In general, the validity of the hybrid algorithm is good for all test problems. This result implies that
linear or non-linear monotone, uni-modal or multimodal, convex or non-convex, single-dimensional
or multi-dimensional properties in BEO problems may not cause difficulty for this algorithm in terms
of validity. Multi-modality tends to cause the discrete Armijo gradient and the Hooke-Jeeves to fall
into local optima traps considering their poor validity behavior in Test 2 and 5.

3.3. Speed

Generally, computing time can be greatly reduced by using of a high-speed algorithm, particularly
for complex problems whose objective function evaluations commonly require lots of time and
resources [4]. To evaluate the speed of the four algorithms in solving the six test optimization problems,
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the numbers of simulations required before finding the optimal solution by each algorithm were
compared for each test problem.

Figure 11 shows that the PSO algorithm requires the fewest number of simulations to reach
convergence for Tests 1–3, but it consumes additional time in solving Tests 5 and 6. The speed of
the Hooke-Jeeves algorithm is notably good for Tests 1–4. This result indicates that strictly convex,
non-convex, linear, non-linear, uni-modal and multi-modal properties in BEO problems have no
effect on the speed of the PSO algorithm and the Hooke-Jeeves algorithm if multi-dimensionality is
not involved.
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The hybrid algorithm displayed mediocre performance in speed despite its perfect performance in
validity. One explanation is the global search conducted by the PSO algorithm was fixed at a constant
number of iterations, which means the local search began to converge to the optimal solution only
after the predetermined number of iterations was finished. However, at times, the PSO algorithm did
not need as many iterations to find the optimal area. Thus, this operation strategy artificially increased
the unnecessary speed burden for the hybrid algorithm.

The speed of the discrete Armijo gradient cannot be evaluated for Tests 5 and 6, because of its
failure in validity. In addition, for the other four test problems, this algorithm performed quite poorly
due to the large number of simulations required to find optimal solutions.

Generally, as illustrated in Figure 11, multi-dimensionality caused all four algorithms difficulty in
terms of speed, according to comparison of their performance in Tests 5 and 6 with those of the other
four test problems.

3.4. Coverage

The standard deviation of all searched solutions in each variable domain and their products can be
used if comparing the coverage of algorithms in solving only one specific problem. Detailed calculation
equations are included in [4], and their values are dependent of the units. In this study, to eliminate
the influence of different units for coverage comparison between different test problems, the standard
deviation of all searched solutions in each variable domain was divided by its feasible region
size, as developed in Equation (5). Thus, the final value is independent of the units and is a
dimensionless number.

SD′k =
SDk

uk − lk
(5)

where SDk is the standard deviation of the kth variable values of all searched solutions; uk and lk are
the upper and lower bounds of the kth variable, respectively. A large value of SD′k indicates wide
distribution of all searched solutions in the kth variable domain, powerful global search ability of the
algorithm and good performance behavior in terms of coverage.
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Table 5 lists the standard deviations of all solutions searched by each algorithm for each test
problem, as calculated in Equation (5). The table reveals that for each test problem, the standard
deviations of the Hooke-Jeeves are the smallest of the four compared algorithms, especially for Tests 2
and 5, which are multi-modal. Thus, the Hooke-Jeeves has poor performance in coverage and is easy
to be trapped by local optima.

Table 5. Standard deviations of all solutions searched by each algorithm for each test problem.

Algorithms Test 1 Test 2 Test 3 Test 4 Test 5 Test 6

SD1’ SD2’ SD3’ SD4’ SD5’ SD6’ SD5’* SD6’ SD7’ SD8’ SD7’* SD8’

Discrete Armijo gradient 0.328 0.079 0.331 0.209 - - - - -
Hooke-Jeeves 0.107 0.016 0.085 0.062 0.133 0.01 0.001 - - -

PSO 0.184 0.311 0.175 0.127 0.234 0.25 0.058 0.205 0.256 0.052
Hybrid PSO and Hooke-Jeeves 0.193 0.283 0.193 0.133 0.219 0.238 0.052 0.322 0.341 0.11

The standard deviations of the discrete Armijo gradient algorithm are generally larger than those
of the other three algorithms for Tests 1, 3 and 4. This result implies the coverage of the algorithm
is outstanding in solving BEO problems with single-dimensional, convex, non-convex, uni-modal,
linear or non-linear properties. However, based on the small distribution of all searched solutions
in Tests 2, 5 and 6, the global search ability of this algorithm is poor in solving multi-model and
multi-dimensional BEO problems.

Considering its acceptable standard deviation values for Tests 1–5, the PSO algorithm showed
good performance in coverage. However, for Test 6, the PSO algorithm failed to search wide areas of
the solution space because the product of the standard deviations in the two variable domains was
small. Thus, the existence of discrete variables in BEO problems increases the difficulty of global search
for the PSO algorithm.

In general, the global search ability of the hybrid algorithm is noted to be perfect for all test
problems with large values of standard deviations.

4. Conclusions

• Strictly convex and non-convex. As shown in Tables 6 and 7, the performance behavior of each
algorithm in solving Test 1 is quite similar to that of Test 4. This result means strictly convex or
non-convex properties in BEO problems do not drive different performance behaviors for the
four selected algorithms. Additionally, the strictly convex property appears to require the discrete
Armijo gradient and the PSO to use additional time to converge to the global optimum.

• Linear and non-linear. For each selected algorithm, linear or non-linear properties in uni-modal
BEO problems appear to have no influence on their performance behaviors, according to the
evaluation results for Test 3 with Test 1 and 4. Specifically, the speed of the Hooke-Jeeves is
excellent in solving linear problems.

• Multimodal. In tackling Test 2, the Hooke-Jeeves and the discrete Armijo gradient performed
poorly in terms of validity and coverage. Both algorithms were confirmed to be trapped by local
optima. Thus, multi-modality tends to cause difficulty for these two algorithms. In contrast,
the specific property does not pose problems for the PSO algorithm and the hybrid algorithm,
considering their good performance in Test 2.

• Multi-dimensional. Based on the poor performance behavior in Test 5, the Hooke-Jeeves and
the discrete Armijo gradient appear to have suffered from the “curse of dimensionality”,
which indicates that as the dimensions of the search space increases, their performance deteriorates
rapidly. The reason for this is that the solution space of a problem typically grows exponentially
with the problem dimension. As a result, algorithms may fail to explore all possible space within
limited time.

• Discrete. According to the optimization results of Test 6, the Hooke-Jeeves and the discrete
Armijo gradient are not applicable for BEO problems with discrete variables. In contrast,
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the hybrid PSO and Hooke-Jeeves algorithm is the best choice among the four algorithms for
mixed-integer problems.

• All of properties in the six test problems do not affect the stability of all selected algorithms,
considering their notably good performance in the stability evaluation for each test problem.

Table 6. Summary of algorithm performance for the six test problems under four indices.

Discrete Armijo Gradient Hooke-Jeeves

Stability Validity Speed Coverage Stability Validity Speed Coverage

Test 1 G G P G G G G P
Test 2 G P F P G P G P
Test 3 G G P G G G G P
Test 4 G G P G G G G P
Test 5 - - - - G P G P
Test 6 - - - - - - - -

Notes: G indicates good performance; F indicates fair performance; P indicates poor performance.

Table 7. Summary of algorithm performance for the six test problems under four indices.

PSO Hybrid PSO and Hooke-Jeeves

Stability Validity Speed Coverage Stability Validity Speed Coverage

Test 1 G F G G G G F G
Test 2 G F G G G G F G
Test 3 G F G G G G F G
Test 4 G F G G G G F G
Test 5 G F P F G F F F
Test 6 G F P P G G F G

Notes: G indicates good performance; F indicates fair performance; P indicates poor performance.

In conclusion, the four algorithms’ performance for each test problem is summarized
in Tables 6 and 7. The four selected algorithms exhibit the following performance behaviors in solving
BEO problems with specific properties.

In general, the hybrid PSO and Hooke-Jeeves algorithm performs better than the other three
algorithms. The PSO algorithm also performs well except in solving mixed-integer problems, but it
is slightly weaker in terms of validity. In particular, the Hooke-Jeeves algorithm and the discrete
Armijo gradient algorithm are not suggested for solving multimodal, multi-dimensional and discrete
BEO problems.

5. Future Works

This paper has attempted to reveal some important aspects of algorithm performance for
BEO problems with specific properties. In this study, only one optimization objective was
considered, although extensions of the methodology to problems with multiple objectives can also
be performed in future works. Besides, complex constraints have not been considered in this paper.
Performance assessment of different algorithms for complex constrained BEO test problems should be
emphasized in the future.
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Appendix A

This appendix demonstrates the EnergyPlus calculation methods of the conduction through the
walls and the inside surface heat balance. The heat balance on the inside surface of wall is written
as follows:

qconv = −qLWX − qSW − qLWS − qki − qsol (A1)

where qconv is convective heat flux to zone air, qLWX is net longwave radiant exchange flux between
zone surfaces, qSW is net short wave radiation flux to surface from lights, qLWS is longwave radiation
flux from equipment, qki is conduction flux through the wall, and qsol is transmitted solar radiation
flux absorbed at surface. In Equation (A1), qki is proportional to qconv and is directly connected to the
variable of wall conductivity k. Thus, the calculation method for conduction flux through the wall in
EnergyPlus must be explored.

EnergyPlus uses conduction transfer functions (CTFs) to calculate the heat flux conducted through
the walls [30,41,42]. In this study, the exterior wall of the standard building is simplified into a
one-layer construction with two interior nodes and convection at both sides, as shown in Figure A1.
The calculation of CTFs and resulting finite difference equations are given below.
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qki = h(Ti − T2) (A4)

qko = h(T1 − To) (A5)

where C = ρcls/2, R = l/ks. C is the thermal capacitance. ρ is the density of the wall. c is the specific
heat of the wall. R is the thermal resistance. l is the length of the wall. k is the thermal conductivity
of the wall. s is the inner surface area of the wall. h is the convection coefficient. To is the outdoor
temperature. Ti is the indoor temperature. T1 is the temperature of node 1. T2 is the temperature of
node 2, and qki and qko are the heat fluxes (desired output).

Equation (A2) through Equation (A5) can be expressed as the following state space equations by
considering the temperatures of the nodes as the two states:[

dT1
dt

dT2
dt

]
=
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− 1
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1
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1
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+
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]
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[
qko
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=
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h 0
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+
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−h 0
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]
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Equation (A6) is the state equation. Equation (A7) is the output equation. According to [41],
the transfer function equation for this two node example can be written as follows:

qki,t = S0ut + S1ut−δ + S2ut−2δ − e1qki,t−δ − e2qki,t−2δ (A8)

where u is a vector of the outside and inside temperatures. qt is the output vector. t is the time. δ is the
time step. Moreover,

S0 = CR0Γ2 + D (A9)

S1 = C[R0(Γ1 − Γ2) + R1Γ2] + e1D (A10)

S2 = CR1(Γ1 − Γ2) + e2D (A11)

Φ = eAδ (A12)

Γ1 = A−1
(

eAδ − I
)

B (A13)

Γ2 =
[

A−1 A−1
(

eAδ − I
)
− A−1δ

]B
δ
= A−1

(
Γ1

δ
− B

)
(A14)

eAδ = I + Aδ +
A2δ2

2!
+

A3δ3

3!
+ . . . +

Ajδj

j!
+ . . . (A15)

R0 = I (A16)

R1 = ΦR0 + e1 I (A17)

e1 = −Trace(ΦR0)

1
(A18)

e2 = −Trace(ΦR1)

2
(A19)

A =

[
− 1

RC −
hs
C

1
RC

1
RC − 1

RC −
hs
C

]
(A20)

B =

[
hs
C 0
0 hs

C

]
(A21)

C =
[

0 h
]

(A22)

D =
[

0 −h
]

(A23)

Finally, substituting Equation (A8) into Equation (A1) yields:

− qconv = (S0ut + S1ut−δ + S2ut−2δ − e1qki,t−δ − e2qki,t−2δ) + qLWX + qSW + qLWS + qsol (A24)

where, to facilitate calculation and explicitly the variable k, elements in Equations (A20)–(A23) are
substituted by three independent variables:

L = − 1
RC
− hs

C
= − 2

ρcl

(
k
l
− h
)

, M =
1

RC
=

2k
ρcl2 , and N =

hs
C

=
2h
ρcl

. (A25)

Furthermore,

A =

[
L M
M L

]
, B =

[
N 0
0 N

]
, C =

[
0 h

]
, D =

[
0 −h

]
, (A26)



Sustainability 2019, 11, 18 20 of 22

eAδ =

[
2+2L+L2+M2

2 M + LM
M + LM 2+2L+L2+M2

2

]
, Φ = eAδ, e1 = −2− 2L− L2 −M2, (A27)

e2 =
1
4

(
4 + 8L + 8L2 + 4L3 − 4LM2 + L4 − 2L2M2 + M4

)
, (A28)

R0 =

[
1 0
0 1

]
, R1 =

[
− 2+2L+L2+M2

2 M + LM
M + LM − 2+2L+L2+M2

2

]
, Γ1 =

[
2N+LN

2
MN

2
MN

2
2N+LN

2

]
, (A29)

Γ2 =

[
N
2 0
0 N

2

]
, S0 =

[
0 Nh−2h

2

]
, S1 =

[
MNh(2+L)

2
h(8+8L+4L2+4M2−L2 N−M2 N)

4

]
, (A30)

S2 =
[

MNh(L2−M2+2L)
4

h(−4−8L−8L2−4L3+4LM2−L4+2L2 M2−M4+M2 N−4LN−3L2 N−L3 N+L2 M2 N−2N)
4

]
. (A31)
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