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Abstract: Scholars from a variety of disciplines have been working to unravel the complexities of
geodesign as an approach to tackling a host of problems. We argue that a mature understanding of
geodesign requires a systemic perspective to organize the interconnections between ecological, social and
economic conditions at multiple spatial and temporal scales. We reviewed definitions and perspectives
of geodesign and key concepts of ecological systems thinking to develop a new framework for landscape
architecture. We provide the state-of-the-art in geodesign within the context of systems thinking and
coupled human-environmental resilience. We show that geodesign is capable to encourage public
participation and interdisciplinary collaboration through its systemic planning processes and synergetic
technologies. The thrust of geodesign-related research is the emerging paradigm of landscape-based
sustainability. While landscape architecture is complex in many aspects, the integrated framework
promotes our understanding about its social-ecological potential, spatial-temporal association and
resilience of coupled human-environment systems. Based on the findings, we outline key contributions,
implications, challenges and recommendations for future research.

Keywords: sustainable design; geodesign; systems thinking; social-ecological processes; spatial-temporal
patterns; human-environment systems; landscape-based sustainability

1. Introduction

Geodesign has been described as a set of processes and technologies used to collaboratively
design for a broad range of the complex and interconnected spatial challenges inherent in the
built and natural environment [1]. It uses a systems-based procedural approach that explains the
interrelationships between human and environment systems at multiple scales to provide useful
information for design and decision support. Over the last decade, geodesign has gained increasing
momentum [2–4]. Despite a broad acknowledgement of its utility in design and connection to
systems analysis, the literature on geodesign, especially from the lens of ecological systems thinking
in landscape architecture, is still somewhat fragmented [5]. Additionally, a commonly accepted,
comprehensive and theoretically strong definition of geodesign for landscape architecture has yet to
be established.

A systematic review of the geodesign literature and an exploration of its connection to
ecological systems thinking can benefit not only designers and planners but scholars in many fields
(e.g., geographers, engineers, policy makers and ecologists, among others). A core strength is that the
process encourages a multidisciplinary approach with explicit questions that scrutinize targeted issues
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from multiple perspectives (i.e., landscape urbanism, strategic design, ecosystem services, natural
capital, geological survey, stakeholders and facilities). The connection between geodesign processes
and ecological systems thinking can help clarify the complex interconnectivity between ecological,
social and economic issues that make up a landscape and assist in the development of more robust
design solutions.

This paper is neither a literature review nor a historical narrative. Instead, we provide an overview
of the state of geodesign within the context of coupled human-environmental problems. We review
the existing literature to explore how current geodesign-based studies define and utilize the concept.
More specifically, we systematically identify influential articles, search the theoretical origins and evolution
of geodesign-based studies and analyze the idea of geodesign across multiple disciplines. In the
process, we identify four major themes: (1) geodesign as a geography-centered multidisciplinary science,
(2) geodesign as an iterative design process, (3) geodesign as a community participatory planning tool
and (4) geodesign as a process for exploring landscape-based sustainability-oriented ideas. We use these
perspectives to help reveal an overall basic theoretical structure and a synergetic definition of geodesign.
We then illustrate core concepts of ecological systems thinking to explore the systemic connection
to geodesign. By integrating geodesign and ecological systems theory, we create a new heuristic
framework for landscape architecture. The new framework helps to identify significant variables for
studying landscapes and landscape scaled solutions within a coupled human-environmental system.
It also provides a common platform for the accumulation of knowledge in this arena. We conclude the
paper with remarks on the major findings of this study and recommend future research directions.

2. Evolving Definitions and Perspectives in Geodesign

Geodesign first appears in print in a 1993 paper by Klaus Kunzmann titled, “Geodesign: Chance
order Gefahr?” [6] and later in multimedia form, with a 2010 TED talk by Jack Dangermond [7].
Carl Steinitz follows with an influential geodesign process framework, “A Framework for Geodesign”
that has become an important handbook for both scholars and practitioners [1]. Over the last decade,
geodesign has gained increasing momentum in both the research and practice of landscape architecture
and urban design [3,4,8]. Geodesign has proved useful for a number of reasons. First, it enhances
the relationship between Geographic Information System (GIS) and design [9]. It accommodates
progressive development through dynamic design processes and advanced geospatial technologies [7].
Geodesign also acknowledges complex socio-environmental systems [10], while improving the effective
communication of various value structures from groups including stakeholders, designers, scientists
and community members [11–14]. Variations of the geodesign process have been noted as an important
tool for designing for the future, especially when used in conjunction with Planning Support Systems
(PSS), simulation and optimization models [15–17]. Finally, geodesign has been identified as a useful
approach for addressing climate change [18–20].

This paper identifies definitions of geodesign from multiple literature (see Supplementary
Materials for a list of definitions from major literature). The broad and complicated array of geodesign
uses has resulted in a similarly broad array of disparate and fragmented definitions. Landscape
architecture scholar Steinitz [21] defined geodesign as an inclusive term—a framework with 6 essential
questions and a collaboration component. From a technological perspective, Ervin [22] described
geodesign as an activity of “environmental planning and design that leverages the powers of digital
computing, algorithmic processes and communications technologies” and depends upon “timely
feedback about impacts and implications of proposals.” This clearly emphasizes the significance of
technologies for the iterative design process reflecting a procedural approach to simulate and model
landscape changes in the future. Similarly, Foster [14] defined geodesign as, “a design process that . . .
engages GIS at several points including using GIS and relevant scientific data to better evaluate and
understand the potential consequences of design alternatives.” Flaxman [2] notes that “geodesign . . .
tightly couples the creation of design proposals with impact simulations informed by geographic
context, systems thinking and digital technology.” In contrast, Campagna [23] argued that “methods
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and tools to be used in the process phases may vary accordingly . . . central to geodesign is how to
design and manage such complex processes.” This reflects the novelty of the geodesign process.

We synthesized the various definitions using a thematical classification approach with deductive
codes that emerged from the reviews. These codes are as follows: human-environment systems [24];
geographic sciences [1]; iterative design process [14]; community collaboration [25]; and systems-oriented
concepts—hierarchical systems, interconnections, functions, feedback loops, delays and dynamics [26].
In the process four major themes became apparent: (1) geodesign as geography-centered multidisciplinary
science, (2) geodesign as an iterative design process, (3) geodesign as a tool for community participatory
planning and (4) geodesign as a method for landscape-based sustainability solutions.

2.1. Geodesign as Geography-Centered Multidisciplinary Science

In landscape architecture, McHarg was one of the first to encourage collaboration between different
disciplines [27]. To that point the field had been “dominated by narrow views and singular values” [3].
McHarg assembled a group of scientists from various disciplines in geographical, biological, social and
physical sciences to study landscapes, environment and human’s role in natural processes [3,27,28].
The work espoused a socially conscious view of nature and a more sensitive approach to designing (and
developing) urban systems [28]. The socially oriented perspective of McHarg and his contemporaries
was reflective of the social upheaval of the 1960s and 70s worldwide. According to Longley et al. [29],
current conceptions of geodesign are taking shape during a similarly disruptive shift, only this time
the focus is technology and not social norms. He suggests that massive investment in technologies that
advance social and environmental goals with a spatially oriented perspective are disrupting previous
ways of viewing the world.

Building on McHarg, Steinitz explores the relationship between “physical form and activity
organization” in environmental design [30]. This expanded McHarg’s focus on landscape to geography,
human ecology, social ecology, urban design and urban planning. At the International Conference
on Information Technologies in 2010, Jack Dangermond (CEO of ESRI—the leading GIS software
developer in the U.S.) reiterated the multidisciplinary theme by noting that geodesign borrows from
a wide variety of domains: architecture, landscape architecture, urban planning, engineering and
traditional sciences to form a comprehensive and complementary view of landscape design [7].

Global examples of the ‘unbounded’ disciplinary relationships in geodesign are numerous [31–34].
Aina, Al-Naser and Garba [33] presents an integrative geodesign approach in the Middle East that
cuts across several disciplines: sociology, economy, socio-economy, environmental science and urban
design. This integrative approach attempts to resolve the multiple conflicting issues between the
values of traditional urban form and modern urban design models. Campagna and Di Cesare [31]
provide critical insights from both practical and normative perspectives on ways to bridge the gap
between geodesign, planning practices and regulatory structures. Their study, focused on an Italian
example, offers a good example of the relationship between multidisciplinary actors, institutions,
educators, designers and public administrators and the geodesign process. In China, the Wulingyuan
National Scenic Area project used a multidisciplinary geodesign process as a catalyst for improving
multidisciplinary education in the region [32].

2.2. Geodesign as an Iterative Science and Design Process

A common theme in the geodesign literature is that it integrates science with iterative design
processes [1–3]. The integration of science and design has roots in the “design methods movement
(DMM)” from the early 1960s and the formation of the Design Research Society (DRS) in 1966. They
were formed in the wake of post war techno-optimism and were built on a belief that making design
more scientific would help to produce a better world [35]. They also considered ‘the nature of
research’ as an evolutionary account of the design process and the use of case studies as an important
method [36]. The DRS remains an international network of design researchers committed to promoting
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and developing design research, which when connected to geo technologies and spatial analysis, forms
an important connection to geodesign [37].

Iteration in design is foundational and intrinsic to the creative process. It is also a process that
has proven important for tying the science and design disciplines together [38]. Steinitz infuses
iterative design with the scientific method using six models to interpret a comprehensive design
process: representation models, process models, evaluation models, change models, impact models
and decision models. The first three models constitute the assessment of existing conditions within a
geographic context. The second three models encompass an intervention process, determining how
the context might be changed and the potential consequences of those changes. In the Steinitz process
these six models are iterated to explain questions of—what is being studied, why physical processes
act the way they do and how they might be modified. Although the Steinitz framework is typically
depicted as a linear progression, the process is fundamentally non-linear and iterative [39]. Like a
design process, it is a series of, “overlapping spaces rather than a sequence of orderly steps” that can
loop back on themselves at multiple points in different phases [18,38].

Scholars view the iterative geodesign process from different perspectives. Foster [14] juxtaposes
Steinitz’s framework with well-known design theories from five scholars: Simon [40], Asimow [41],
Fogler et al. [42], Brown [18] and Kumar [43]. She found significant similarities among them including
non-linear steps, the importance of decision-driven goals and the combination of “divergent” steps
(collecting disparate information) and “convergent” steps (analyzing and evaluating all relevant
information to assist making final decisions). Campagna [23] integrated the iterative process with
a Business Process Management (BPM) approach to provide process management and setting
requirements for organizing different computational techniques.

2.3. Geodesign as Community Participatory Planning

According to Ruggeri and Young [44], community participation in design can simultaneously
engage the public in decision making, improve deliberative democracy, promote solidarity practice,
encourage social connections across different groups and influence socialization positively in public
spaces. As an approach to community participatory design, geodesign requires and provides a wide
range of opportunities for community collaboration. The process typically encourages community
members and community stakeholders to inform project parameters and goals, participate in consensus
building and engage in design negotiation. A number of scholars have demonstrated the importance
of community engagement and participation in the geodesign process. Steinitz [30] for example,
notes the importance of the role of citizen participation in design. He argues that the efficacy of
understanding and affecting environmental conditions should not be underestimated and should
be done only to achieve more meaningful spaces for people. Wilson [37] emphasizes that geodesign
should gather diverse information from the public to “inspire new geographic literacies and new
retentional strategies for engagement.”

Community participation in planning has a long history that is intertwined with participatory
design concepts [44]. In urban planning, involvement that ‘recognizes an active part in plan making’ is
the most cited definition [45]. In participatory design (or ‘cooperative design’), it is seen as a platform
for active participation in the design process. There is a subtle but distinct difference. One is focused
on participation in a (planning) process, the other is focused on participation in a (design) outcome. In
geodesign participation, people have to negotiate. Latour [46] provides four precise tables discussing
nature, people of nature and religion to illustrate why it is hard for people to negotiate and how to
give negotiation a chance.

Social movements in the U.S. in the 1960s promoted the institutionalization of citizen participation
in local (and national) policy decision making processes [47]. This backlash against authoritarian
decision making sets in motion the modern conceptions of participatory and shared governance models
for decision making (this included design). Putnam [48] uses conceptions of volunteering, voting and
other methods of participation in civic life, to coin the term “social capital.” Social capital has proven
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an effective way of measuring the networks of relationships among people who live and work in a
particular place and their willingness to participate in bottom-up design and decision processes [49,50].

More recently, community participatory design has been enhanced with the development of
social media related technologies that can gather information about residents and their daily habits
and activities to inform design. Zhou et al. [51] use smartphones to determine travel behavior.
Campagna (2014) introduces Social Media Geographic Information (SMGI) to gather social media
information from diverse sources and Spatial-Temporal Textual Analysis (STTx) to explore perceptions
of the environment both spatially and temporally. In design practice, Moran et al. [52] integrate a series
of techniques for community participation in a creek revitalization project in Syracuse, New York.
Wu and Chiang [53] describe a geodesign workshop where they use an interactive 3D urban design
platform to compile people’s ideas, to communicate and to interact. Other approaches include ‘beyond
text’ tools such as storytelling, performance, art and photography [54]; community mapping [55];
participatory design [56]; participatory co-modeling [57,58]; participatory evaluation [59,60]; and
synthesizing, downscaling and visualizing alternative futures [52,61].

2.4. Geodesign as Methodology for Landscape-Based Sustainability

The above perspectives of geodesign are generally in line with the four categories laid out by
Steinitz [1] (geographic sciences, design professions and the people of the place). One exception
however, is ‘information technologies.’ We argue that information technologies are securely embedded
in the other three categories and it need not be given separate attention. We also argue that information
technologies have become so endemic to design and the design process that they are no longer unique
to specific geodesign processes (they are everywhere all the time). In our conception, we replace
‘technologies’ with ‘landscape-based sustainability,’ for a fourth category aimed at a targeted outcome
from the application of geodesign processes.

Ongoing urban studies suggest a landscape-based paradigm. Waldheim [62] demonstrates
the importance of landscape as model and medium for contemporary cities and creates a general
theory for understanding landscape urbanism. This new paradigm is also reflected in geodesign.
We use Wu’s conception of urban ecology [24] to help explain the basis of our Geodesign framework.
Wu uses a triad of spatio-temporal patterns, urban sustainability and human environmental impacts.
We build on that to present three categories for the resolution of complex human-environment
system problems (Figure 1). As the figure shows, geodesign uses representation systems to provide
actionable spatial knowledge to visualize spatiotemporal patterns for general urban sustainable
analysis. Using Planning Support Systems (PSS) and an iterative process, geodesign analyzes
spatiotemporal patterns to generate models and to simulate their impacts on human and environment
systems. Through Information and Communication Technology (ICT), community participation of
geodesign helps people experience the iterative geodesign process and gain ethical and scientific
understanding of sustainability. Using Representation Systems, such as GIS and GeoPlanner, we
visualize multidisciplinary scientific information within geographical context to make the complex
science understandable for people from different fields and communicate with each other efficiently.
All these elements and interrelationships of geodesign and landscape studies ultimately lead to
landscape-based sustainability. Geodesign provides benefits to participants through the collaboration
of these perspectives, linking the three poles of landscape architecture.
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Figure 1. A triadic conceptualization of contemporary landscape studies and the relations with the
four geodesign elements through different technologies.

2.5. Connecting to Landscape Studies

As Figure 2 shows, geography-centered multidisciplinary science emphasizes the spatial changes
of environmental systems. Iterative design integrates systems thinking and creative design processes
to emphatically explore the temporal changes of environment systems and the impacts of the changes
on human beings. These two aspects incorporate to primarily investigate spatiotemporal patterns
and processes of environment systems. Community participation integrates the social, cultural
and economic dimensions with the ecological considerations of geodesign [63]. It emphasizes the
socio-spatial patterns of human systems at multiple scales (neighborhood, city, metropolitan area,
regional area). By cooperating with iterative design, community participation can be expanded
to investigate both spatiotemporal patterns and processes. Landscape-based sustainability treats
cities as coupled human-environment systems, with increasing emphases on spatiotemporally
heterogeneous, multi-scaled landscapes [64–67]. Each aspect has its own emphasis, while they can
be incorporated effectively to address broad-scale problems in real landscapes by simultaneously
considering spatiotemporal patterns and processes in coupled human-environment systems.
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interrelate each other to facilitate geodesign within coupled human-environment systems.

This perspective of landscape-based sustainability has various benefits. According to Agnoletti [68],
the landscape-based approach integrates environmental, social and economic factors, making landscape
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a new paradigm for the local sustainable development model. This reflects a widely adopted
human-environment systems perspective in the study of sustainable development. Forman [69]
emphasizes that landscapes function as collaborative platforms for planners, designers, geographers,
ecologists, social scientists and engineers to “mold the land so nature and people both thrive long
term.” Planners, designers and geographers have long considered urban places as landscapes of
different scales that encompass patches, corridors and matrices [70]. However, multidisciplinary
collaborations that use landscape ecology based approaches (e.g., hierarchical patch dynamics) are in
their infancy. Zonneveld [71] uses the approach to describe the landscape as a comprehensive set of
dynamic relationships between ecological, social and economic factors. From a procedural perspective,
Cerreta et al. [72] notes that a landscape should be considered a process that is constantly changing
based on social and ecological practices.

3. Core Concepts of Ecological Systems Thinking

Systems thinking is a useful lens for understanding the underlying theoretical mechanism of
geodesign. In this section, we describe the core concepts of ecological systems thinking (hierarchy,
adaptability and resilience, the adaptive cycle, connectedness and incorporation, panarchy, innovative
potential, emergence and self-organization and feedback) and their relationship to geodesign studies.
In Supplementary materials (Table S2), as an example, we particularly investigate the systemic basis
of Steinitz [1]’s six models (representation model, process model, evaluation model, change model,
impact model and decision model) which are commonly accepted as standard geodesign processes.
For each model, we have provided a short description with corresponding systems-thinking concepts.
Hierarchy. Hierarchy theory offers a framework from which to view and integrate different scales.
Three dimensions are considered: time, space and organization, which are often viewed as nested
hierarchies [73]. For example, atoms are organized into molecules, molecules into cells, cells into
organs, organs into individuals, individuals into populations, populations into communities and
communities into ecosystems. Lower organizational levels operate in smaller partitions of space and
shorter periods of time. Thus individuals operate on small scales in time and space, while ecosystems
operate on much larger scales in time and space [74]. This simple concept can help in the identification
of similar functional elements and spatial scale properties in the landscape. For example, a human
may live 75 years, a building 100 years, human communities have been known to exist for centuries,
and a landscape can survive millenniums.

The value of ecological systems thinking in geodesign derives from the hierarchical nature of
complex systems [75], where conflicts and contrasts emerge with more hierarchical levels. Geodesign
participants are responsible to negotiate and balance the conflicts and self-beneficial tendencies
of different organizations, as well as to recognize and take their responsibilities within larger
socioeconomic systems [76]. Understanding hierarchy is significant for participants to conceptualize
the complex multi-level systems and prioritize design needs without being entangled in ambiguous
and dispersed thoughts.
Adaptability and Resilience. Resilience or adaptability represents the ability of systems to survive
a perturbation and maintain their desired structure [26]. In his seminal work in systems ecology,
Holling [77] defined resilience as the capacity of a system to tolerate disturbance without collapsing
into a qualitatively different state. From an urban systems perspective, resilience is often used to
describe the capacity of urban environments to withstand the influence of a massive disturbance
(disaster), or a changing circumstance (climate) [78]. Understanding the complexity of the system
being studied and its dynamic interactions has been noted as one of the important challenges to
planning for resilience in a socio-physical (urban) systems context [79].

Recent scholarship has suggested various approaches to planning for resilient places. Fiksel [80]
proposes analyzing multiple models simultaneously in order to simulate the idea of redundancy
and iteration. In order to counteract the challenge of complexity, Folke et al. [81] argue for a better
“understanding of the complex connections between people and nature.” Urban researchers have
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developed some basic tenets to describe the dichotomy in planning for urban resilience: redundancy
and efficiency, diversity and interdependence, strength and flexibility, autonomy and collaboration
and planning and adaptability [78,82–84]. Others espouse a precautionary approach aimed at reducing
vulnerability and enhancing resilience in everyday planning activities [85,86]. To build the adaptability
of a design, geodesign may innovate new design models and transformative learning processes to
cope with changes in complex systems [39,87].
The Adaptive Cycle. Gunderson [88],Holling [89] introduced a heuristic model—an adaptive
cycle—representing the resilience paradigm of ecological systems theory. It consists of an endogenously
driven infinite loop formed by four phases—exploitation (r), conservation (K), release (Ω), reorganization
(α)—with three dimensions—potential, connectedness and resilience. The foreloop (from r to K) is
characterized by a long period and incremental growth. In r phase, resources are freely available.
Through slow growth and extensive distribution of nutrients and biomass, the connectedness and
stability of systems rapidly increase. In K phase, resources become distributed and sequestered to
different components with a slower growth rate. Thence overconnected patterns, rigid structure and
intense competition make it vulnerable to collapse. Systems then very rapidly transit into vulnerable Ω
phase, then rapidly to α phase. In α phase, components of the system minimize energy loss and rapidly
reorganize themselves to get ready for the next r phase. It may also lead to a transformation of systems
into a new state of stability or configuration of landscape with a new foreloop [90,91]. The backloop
(from Ω to α) is characterized by short period, turbulent changes and creative destruction where more
opportunities for creative actions can emerge toward renewal [88].

The adaptive cycle is not just a framework to understand the dynamic processes of resilient
systems. It also elucidates the innovative opportunities throughout all the phases. Westley et al. [92]
advance the adaptive cycle using a model of opportunity context and point out the opportunity of
innovations in each phase: (1) in r phase, initiating innovations when increasing investment of new
capital supports robust ideas; (2) in K phase, institutionalizing innovations when they are strongly
established and disseminated; (3) in Ω phase, creative destruction when the routine built by the old
ideas collapses; and (4) in α phase, exploring new innovations when new ideas are created. To advance
desired transformations, people have to find the opportunities hidden in each phase.
Connectedness & Incorporation. According to hierarchy and panarchy theory, systems result from
evolutionary processes that favor both nested, hierarchical organization and dynamic structures with a
variety of variables [93]. Levels are typically considered in three levels: the level of the system studied,
the next higher level to provide context (constraints) and the next lower level, which contains the
dynamics and structure to be modeled—a hierarchical level being studied derives, by incorporation,
its constraints from the scale larger and its dynamic interactions from the scale smaller. For example, a
disturbance that clears a small section of forest stand is, at one level, a non-equilibrium event—a drastic
change has taken place. But the same disturbance incorporated into the landscape level can prove to
be an equilibrium behavior; it may have little effect on the overall landscape.

In 1970, Orie Loucks presented a field study of incorporation within increasing temporal scales.
He found in the southern Wisconsin forests, a long-term stability of the overall landscape even though
random small-scale disturbances (fires) were a regularly occurring phenomena [94]. Integrating
geodesign with theories of incorporation, we can associate small-scale design processes with larger
scales using appropriate indicators and criteria to facilitate dynamic analysis of systems [95,96].
Chrisman [97] documented the historical shift from small-scale to cross-scale landscape planning
with the development of comparing maps and spatial data in multiple layers using GIS. With an
understanding of the incorporations of heterogeneity and scale multiplicity, geodesign encompasses
cross-scale impacts and systems evolutions to facilitate decision making processes.
Panarchy. All systems exist and function at multiple scales. Interactions across scales are fundamentally
important in determining the dynamics of the system. This interacting set of hierarchically structured
scales has been termed a “panarchy” [98]. A panarchy illustrates a semi-autonomous structure formed
from the interactions among multiple variables at multiple time and geographic scales [99]. Similar to
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theories of incorporation, a panarchy framework connects adaptive cycles in a nested hierarchy. There are
potentially multiple connections between phases of the adaptive cycle at one level and phases at another.
The smaller, faster, nested levels invent, experiment and test, while the larger, slower levels stabilize
and conserve accumulated memory of system dynamics. Like incorporation, the slower and larger
levels set the parameters in which faster and smaller levels function. Similar to resilience theories,
reorganization occurs following phases of destruction, allowing for the establishment of new system
configurations and opportunities for the incorporation of an entirely novel system. The adaptive cycle
explicitly introduces mutations and rearrangements as a periodic process within each hierarchical
level in a way that partially isolates the resulting experiments, reducing the risk to the integrity of the
whole structure.
Innovative potential. After a vulnerable system experiences a serious disturbance, increasing
uncertainties emerge. To address the uncertainties, scenarios and testing models are introduced
to enable the evaluation and comparison between potential future conditions [26]. Scenarios are
generally thought of as cogent stories intended to aid decision makers. One typology classifies
scenarios as predictive (i.e., forecasts), normative (i.e., preserving, transforming) and explorative
(i.e., external and strategic) [100]. Each type of scenario planning requires a different mode of operation.
For example, construction of predictive scenarios may involve modeling, whereas normative scenario
construction may involve workshops, backcasting, or Delphi methods [87]. Irrespective of motivations
and methodologies, however, scenario planning assumes that if decision makers consider multiple
futures, they are more likely to make better decisions [101]. Using scenarios and testing models in
geodesign, the avalanche of disordered data can be clarified and simplified into a tractable number
of clear possibilities [79,102]. Scenarios also translate these modeled possibilities into narratives to
facilitate communications among multi-disciplinary participants in geodesign processes.
Emergence and self-organization. According to Goldstein [103], emergence is “the arising of novel
and coherent structures, patterns and properties during the process of self-organization in complex
systems.” Referred to as spontaneous order (in the social sciences), self-organization is a process where
some form of order emerges from interactions within a previously disordered system. Using geodesign
processes, the nature of complex systems can be assessed by investigating how changes in one part
affect the others and the behavior of the whole. Thus, systems modeling and simulation can analyze
the dynamics and facilitate the emergence of a complex system, which reveals more interactions within
the system, increases more options for solutions and ultimately enhance final decisions [87,104,105].
Feedback. Feedback is an important type of interconnection. They are “the secondary effects of a
direct effect of one variable on another, they cause a change in the magnitude of that effect. A positive
feedback enhances the effect; a negative feedback dampens it” [106]. Forrester [107] relates urban
systems to complex systems (i.e., ecosystems) in which positive feedback and other processes influence
spatial constructs. He uses dynamic models to describe urban transformation as a process of stagnation,
decay and health. According to Forrester:

“Complex systems are counterintuitive. Most of our intuitive responses have been developed from
first-order, negative feedback loops where the goal seeking action has one state variable. This helps
to link cause and effect with space and time. But cause and effect are not always related to the same
space and don’t always occur in successional time periods. A complex system has a multiplicity of
intersecting feedback loops, controlled by nonlinear relationships. In the complex system the cause
of an occurrence may lie far back in time and far away from the symptoms noted. In fact causes are
usually found in the policies and structure of the system” [107].

In Forrester’s view higher-order complex systems require more intricate analysis that assesses
localized cause-and-effect relationships from a global, higher-order perspective. Using this approach,
in geodesign, we realize the importance of people’s responses toward the feedback loops. When we
respond positively to the feedback loops through proper strategies, the larger systems can be advanced
across multiple scales. When we fail to understand the feedback loops, the systems may become
vulnerable to disaster [108].
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4. Integrating Geodesign with Ecological Systems Thinking: A Heuristic Framework

Ecological systems thinking is a useful lens for exploring the underlying theoretical structure of
geodesign and landscape architecture within a coupled human-environment system. As noted above,
geodesign is a procedural approach that systemically analyzes, evaluates and makes changes to the
landscape by investigating the interrelationships between different systems across time and space.
Its procedural framework also helps discern the latent opportunities hidden in other systems or scales
by examining systems hierarchy, interactions and feedback controls. By integrating our geodesign
framework with Gunderson’s adaptive cycle, a new heuristic framework evolves that can help us
understand landscape dynamics in complex, coupled human-environment systems (Figure 3).

In our reconceived adaptive cycle framework, a “process analysis” identifies the significant
systems elements and their processes in the studied landscape. It helps define the inherent hierarchies
and panarchies that help determine scales and system interconnections. Geodesign participants
negotiate and balance the conflicts and self-beneficial tendencies of different organizations with
their benefits within larger socioeconomic systems [76]. Hierarchy and panarchy theories help to
conceptualize the complex multi-level systems and prioritize design needs. We also investigate the
dynamic processes from r to K and interconnections among the accumulated landscape features.
Multiple processes may be identified in multiple levels: storage, accumulation, sequestration,
competitive processes and so forth. Incorporation within different levels is critical to digest the complex
processes and mechanisms of the important elements involved in the study area. Moreover, leveraging
such incorporations in design does not bring local benefits right away; it generates additional services
long after the design is completed and extends the services to surrounding areas.

In the “performance evaluation” step, we identify evaluation measures by considering how
vulnerable or resilient the system is. In K phase, resources become distributed and sequestered to
separate areas with high potential of change. With consistent growth and distribution of resources,
systems will become vulnerable to collapse in the case of extreme and rigidity [88]. “Performance
evaluation” is to evaluate the resilience of systems, especially the current performance from K to
Ω to find out the underlying reasons why systems collapse. A good example can be found in the
study by Loures et al. [109]. They combine multiple approaches (including scientific sample survey,
statistical analysis and geographical analysis using GIS) to evaluate how sodium exchange capacity
of irrigated and rainfed soils affects agricultural systems. This study investigates the performance of
cultural systems practiced (irrigated versus rainfed) to analyze the deterioration of soils. Resilience also
suggests continual learning over time through systems’ changes and experience, which demonstrates
the necessity for participants to constantly take the evaluation measures into consideration during all
geodesign processes.

In “scenario creation,” we explore possible innovations by modeling and simulation to reorganize
from current disturbed state and to design for future conditions [87]. This step is to stimulate emergence
the recovery of the systems from Ω phase (release / creative destruction) to reorganization (α phase).
According to Goldstein [103], emergence is “the arising of novel and coherent structures, patterns and
properties during the process of self-organization in complex systems.” Referred to as spontaneous
order (in the social sciences), self-organization/reorganization is a process where some form of order
emerges from interactions within a previously disordered system. Using geodesign processes, the
nature of complex systems can be assessed by investigating how changes in one part affect the
others and the behavior of the whole. Thus, systems modeling and simulation can analyze the
dynamics and facilitate the emergence of a complex system, which reveals more interactions within
the system, increases more options for solutions and ultimately enhances final decisions [87,104,105].
The classification of scenarios should be defined by the objectives of the project through effective
communications of people from different perspectives. Scenarios enable the evaluation of and
comparison between potential future conditions [26].

“Impact assessment” investigates the feedback loops underlying the changes from the scenarios
and responds positively to feedback through appropriate design strategies. After systems progress
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from release to reorganization, uncertainty suddenly increases from formal chaotic behavior [88].
To deal with uncertainties, we evaluate the impact of scenarios by restrictions and regulations
in a broader context for the transition from α to r phase. We should also explore what new
structures, patterns and properties of landscape might emerge from the system’s self-organization
during the changes. In this process, feedback from stakeholders and communities is significant to
facilitate assessment.

The integrated framework with its general form functions as a metaphor. It demonstrates dynamic
tendencies of a landscape system with an inspiring design process in between each dynamic phase.
Multiple participants (stakeholders, designers, planners, communities) build their actions based
on their understandings and roles. The four phases of the adaptive cycle may overlap except the
transition from K to Ω [110]. The sequence of the design steps is not always linear and straight forward
in practice.

Sustainability 2018, 10, x FOR PEER REVIEW  11 of 24 

broader context for the transition from α to r phase. We should also explore what new structures, 

patterns and properties of landscape might emerge from the system’s self-organization during the 

changes. In this process, feedback from stakeholders and communities is significant to facilitate 

assessment. 

The integrated framework with its general form functions as a metaphor. It demonstrates 

dynamic tendencies of a landscape system with an inspiring design process in between each dynamic 

phase. Multiple participants (stakeholders, designers, planners, communities) build their actions 

based on their understandings and roles. The four phases of the adaptive cycle may overlap except 

the transition from K to Ω [110]. The sequence of the design steps is not always linear and straight 

forward in practice. 

 

Figure 3. An integrated heuristic framework for landscape architecture by integrating geodesign and 

the adaptive cycle. 

5. Three Dimensions of the Integrative Framework 

We have presented key aspects of geodesign and integrated it with the adaptive cycle of 

ecological systems theory to develop a conceptual framework. In this section, we elaborate on the 

three dimensions of the framework to guide the responses of landscapes, ecosystems and people 

toward resilience and sustainability. 

Gunderson [88] illustrate three dimensions of the adaptive cycle: potential, connectedness and 

resilience, in which all changes/dynamics are reflected. Understanding changes/dynamics is the key 

to explore, quantify, analyze and make decisions of any systems. Potential indicates the possibility of 

change for futures or other systems, which is an internal attribute of the aggregated resources. 

Connectedness refers to the degree of relatedness among controlling variables. Resilience is the 

capacity to withstand the influence of a massive disturbance (disaster, war), or a changing 

circumstance (climate, economics) while maintaining its current functions [77]. In landscape 

architecture, we use the three terms in a broader sense, which may represent different aspects in 

different contexts. For example, in a natural landscape, potential refers to the potential from the 

resources of biomass and nutrients. In an urban landscape, social potential could also be from 

people’s relationships, skills, mutual trust and so forth. 

A coupled human-environment system is a combination of many interconnected landscape 

features. Understanding these connections can help us to adapt, transform and persist under 

constantly changing conditions [111]. An urban system is characterized by temporally dynamic and 

spatially heterogeneous landscapes whose components and interrelations are profoundly influenced 

Figure 3. An integrated heuristic framework for landscape architecture by integrating geodesign and
the adaptive cycle.

5. Three Dimensions of the Integrative Framework

We have presented key aspects of geodesign and integrated it with the adaptive cycle of ecological
systems theory to develop a conceptual framework. In this section, we elaborate on the three
dimensions of the framework to guide the responses of landscapes, ecosystems and people toward
resilience and sustainability.

Gunderson [88] illustrate three dimensions of the adaptive cycle: potential, connectedness and
resilience, in which all changes/dynamics are reflected. Understanding changes/dynamics is the key
to explore, quantify, analyze and make decisions of any systems. Potential indicates the possibility
of change for futures or other systems, which is an internal attribute of the aggregated resources.
Connectedness refers to the degree of relatedness among controlling variables. Resilience is the
capacity to withstand the influence of a massive disturbance (disaster, war), or a changing circumstance
(climate, economics) while maintaining its current functions [77]. In landscape architecture, we use the
three terms in a broader sense, which may represent different aspects in different contexts. For example,
in a natural landscape, potential refers to the potential from the resources of biomass and nutrients. In
an urban landscape, social potential could also be from people’s relationships, skills, mutual trust and
so forth.

A coupled human-environment system is a combination of many interconnected landscape
features. Understanding these connections can help us to adapt, transform and persist under
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constantly changing conditions [111]. An urban system is characterized by temporally dynamic and
spatially heterogeneous landscapes whose components and interrelations are profoundly influenced
by the interactions of coupled human-environment systems [26,112]. The relations among three
dimensions are illustrated in Figure 4. The diagram describes our integrated framework as a centric
process that influences and is influenced by these elements and their interconnections. Resilience
of the coupled human-environment system is divided into two separate pieces. Variables within
human and environment systems should be organized into a nested hierarchical structure to facilitate
geodesign analysis. Our framework determines the resilience of human and environment systems
using the measures of social-ecological potential and spatial-temporal association. Elements interact
through social-ecological processes and spatial-temporal patterns within a multi-scale holistic system.
Both spatial (local-regional-national) and temporal (year-decade-century) scales should be taken
into consideration.
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5.1. Social-Ecological Potential

Landscape should not just be treated as a result; rather, the breadth of the complex discourse
should be considered a process that is constantly changing its potential with social and ecological
practices [113]. Extensive literature has shown that social processes in urban environments have
caused a great number of problems in ecosystem processes and vice versa. For example, intensified
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human activities resulting from urbanization are the major causes of urban heat islands [114],
eutrophication [115] and greenhouse gas emissions [116].

The potential for social-ecological change can be measured through different methods in different
contexts. Ecological potential can be represented by potential energy efficiency. It can be measured by
the extraction efficiency of biomass or spatial distribution of energy. Social potential can be represented
by networks of social relationships, such as mutual trust, competition, friendship and so forth [117].
In landscape architecture, potential could be utilized and accomplished by innovative design that
leverages multiple social-ecological processes, such as nutrient cycling, energy production, social
accommodation and so forth (see Figure 4 for a more detailed list). Social and ecological processes
profoundly influence each other through altering landscape patterns, for which the urban heat island
(UHI) effect is a good example. Because of increasing human accommodations in concentrated urban
areas, UHI effects generate higher surface and air temperatures in urban regions than surrounding
areas, which influence a number of ecological processes, such as habitat distributions for animals, plants
and phenology [118–120]. UHI is related to spatial land cover through a spatially nested hierarchical
UHI system that is composed of smaller UHIs in certain urban areas [118,121,122]. Altering the UHI
system will ultimately change spatial patterns, such as land use and land cover distributions and
landscape patterns and vice versa.

Evidence is mounting that geodesign approaches influence social and ecological processes through
social learning, cooperation, opinions, competition/negotiation and acculturation. For instance,
researchers have demonstrated that geodesign approaches enhance collaborative and deliberative
processes by analyzing people’s demands, designing feasible scenarios, evaluating change impacts, and
assessing trade-offs between conflicting values. This approach eventually drives urban transformation
and affects ecological quality.

Assessing how geodesign processes influence the sustainability of design has been a major
research focus recently. As Campagna and Di Cesare [31] note, geodesign aims to achieve sustainable
design through a range of integrated processes, including site analysis, design conceptualization,
simulation and evaluation, scenario alternation, impact assessment and decision making. From a
normative and practical perspective, they found that six processes of the geodesign framework bridged
the gap from planning to implementation for the Strategic Environmental Assessment (SEA), which
was ratified by the European Directive 2001/42/EC. Without a framework that shows how various
methods are connected, methods remain isolated. Cumulative knowledge cannot be applied in real
projects. The conceptual framework also highlights the collaboration of environmental, social and
economic dimensions. In particular, the social dimension of community participation in geodesign
processes has gained great momentum recently thanks to the popularity of interactive participatory
techniques, mobile devices with GPS and crowd-sourced data.

5.2. Spatial-Temporal Association

Spatial-temporal association is the property to reflect the strength of interconnections that constrict
and control internal and external disturbance of the system. A system with high spatial-temporal
association is managed by strong internal regulations and processes, which makes the system hard
to collapse. This property, for example, can be represented by the intensity of people’s control on
ecological environment, which can be measured by the spatial value of biodiversity and distribution of
landscape habitat [123]. Spatial-temporal association is a significant attribute of landscape patterns,
which provide a guidance to quantify and assess the organization and assortment of environment.

The study of spatiotemporal patterns in landscape architecture includes two aspects: the
quantification of the structures of landscape compositions, and how they change over space and
time. Quantifying spatiotemporal patterns is indispensable for understanding the basic organization
of the environment that human beings reside in, as well as for exploring the related driving forces and
potential impacts resulting from human intervention in the urban and natural environment.
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First, multiple technologies for geodesign have been developed to depict spatiotemporal landscape
patterns for the most elemental relationship in landscape design—the geo-relationship, including basic
position, adjacency, proximity and changes over time [124]. For instance, Miller et al. [125] emphasizes
the importance of geographic patterns (especially the multi-scale assessment of the patterns) in the
geodesign study of transportation system performance, taking traffic congestion as an example that is
sorted spatially and temporally based on demographic and cultural factors. Such 2D studies influenced
later multi-scale 3D explorations [126,127]. Innovative 3D technologies are well suited to visualize
the built environment in urban areas and easily encourage participation of non-designers, including
stakeholders and the broader public. Aiming to mitigate climate change impacts (especially the urban
heat island effect), Danahy, Mitchell, Feick and Wrigh [126] incorporated 2D and 3D geospatial models
to visualize heat island data by integrating small-scale data of regional and local land use and land
cover with macro-scale remote sensing climate data. The 3D technologies expand the strategies from
horizontal on-surface changes to vertical building-scale interventions, which is significant for vertical
urban sustainability that involves buildings, such as urban heat island mitigation, energy saving
projects and underground sustainability.

Second, some scholars integrate spatiotemporal patterns and intangible social activities to gain a
deeper understanding of more complex and dynamic relationships. Besides quantifying simple and
algebraic geo-patterns, more and more studies are exploring incalculable and heuristic relationships
between landscape patterns and real-world objects [124]. One example is studying the relationship
between the behavior of residents in a neighborhood and the neighborhood’s streetscape design
or the layout design of available facilities. Such relationships are significant in the geodesign
simulation phase to evaluate multiple design alternatives based on social demands and to negotiate
under varying circumstances and changes over time. These studies are in line with the complexity
theory [128] developed from the systems theory [129]. The complexity theory suggests characterizing
and analyzing relationships among different levels of the complex and dynamic systems at multiple
spatiotemporal scales, which is essential in sustainable development of coupled human-environment
systems [130–132]. Multiple spatio-temporal scales are also indicated in Figure 4, where spatial scales
include local, regional and national; and temporal scales are represented by year, decade and century.

Some empirical studies have investigated the relationships among the spatiotemporal patterns
of environmental benefits [133,134], social configurations [10] and economic development [135],
which compose the three pillars of sustainability in coupled socio-ecological systems. For instance,
Waldheim [136] incorporates urban studies and agrarian analysis to explore the relationship between
agrarian development on urban structure by investigating spatial-temporal patterns and ecological
processes of agricultural production. Of course, the landscape patterns and their impacts on the three
pillars vary geographically due to the distinctions in socioeconomic drivers, ecological environments
and land use policies [24]. Geodesign, however, as a design approach uses sustainable principles to deal
with these complexities through its collaborative framework to adapt to temporal changes and different
contexts. A number of geospatial visualization and simulation model technologies, especially Planning
Support Systems (PSS) [23], have enhanced our capability to understand spatiotemporal patterns and
analyze their relationships with ecological, social and economic development to achieve sustainability.

5.3. Adding Another Dimension: Resilience of the Coupled Human-Environment Systems

Most landscape design takes place in an environment that influences both human well-being
and natural conditions. Assessing how landscape design affects human and environment systems
(also referred to as coupled social-ecological systems, or socio-environmental systems) has been a
popular research topic in most sustainability studies for the last decade [137,138]. According to the
U.S. Environmental Protection Agency, sustainability is generation and maintenance of the conditions
that humans’ need for survival and well-being, which depend on the natural environment directly
or indirectly [139]. It is a concept that requires both recognition of natural ecosystem services and
the acceptance of humans’ manipulation of the environment to successfully manage the integrated
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holistic human-environment system [140]. Similarly, the Nobel Laureate Ostrom [131] developed a
social-ecological system (SES) framework to facilitate sustainability research in multiple disciplines,
explaining the use of four core subsystems in a framework to analyze an SES.

Resilience of the coupled systems illustrates the capacity to tolerate disturbance while retaining
stability domains. It can be measured by the level of disruption that can be tolerated with its multiple
stable states without collapsing [78]. Several attempts have been made to assess the resilience of
landscape architecture and its impacts on human and environment systems from different angles.
For example, in a transportation planning project, Miller, Witlox and Tribby [125] use a geodesign
concept (coupling proposal generation with impact simulations) to generate a framework and
multidimensional indicators for constructing livable and sustainable communities that promote social
(encouraging safe and reliable transportation choices, supporting community revitalization, increasing
safe and walkable neighborhoods, promoting human health), economic (enhancing affordable and
equitable housing, promoting economic competitiveness) and environmental (improving air quality)
aspects of people’s lives and related environments.

However, understanding and creating sustainable designs should not only consider how a design
approach affects these systems but also how the mutual relationships of these systems change over
time. Using ecological systems thinking, we aim to highlight the main relations between human
and environment systems and to understand the pattern of systems’ behaviors over time through
the stock-and-flow diagram (Figure 5). The stock-and-flow diagram is a simple modeling method to
show all complex and dynamic behaviors in a system when flows accumulate in stocks and generate
feedback to change the stocks [26]. A stock variable represents an entity that is accumulated by
inflows and depleted by outflows over time. It can only be changed by flows and measured at one
specific time. A flow variable is measured as rate or speed (per unit of time) over an interval of
time. In coupled human-environment systems, the two stocks are human and environment systems.
They are interconnected by three kinds of flows: social needs, economic controls and ecological
processes (e.g., ecological capital’s regeneration rates). As the three pillars of sustainability, these flows
influence the dynamics of the holistic human-environment system. At the same time, the changes
of the two systems also conduct feedback controls through flows on social, economic and ecological
elements within the systems. Ultimately, several feedback loops are generated as closed chains of
casual relations from the stocks [26]. In order to achieve resilience, the feedback loops should be
balanced through equilibrating and goal-seeking the structures of systems.

Numerous studies have demonstrated that geodesign reorganizes ecological, economic and
social objectives to improve the long-term health of environment systems and the vitality of
human systems [33,141]. For example, Slotterback, Runck, Pitt, Kne, Jordan, Mulla, Zerger and
Reichenbach [25] have particularly noted the significance of the geodesign approach in agricultural
landscape that facilitates the creation of multifunctional landscapes that not just produce food,
fiber, fuel and aesthetic value to human systems, but also provide ecosystem services such as CO2

sequestration, habitat for animals and plants and purification of air and water. Flaxman [8] also states
that geodesign allows users to incorporate multiple kinds of information for multifunctional landscape
analysis, scenarios generation and evaluation; to make changes for multiple ecosystem services; and to
simulate the social, economic and ecological impacts of these landscape changes in real-time evaluative
feedback loops. Vaz [142] provides a systemic vision of regional science that highlights the importance
of humans in making changes of environment to gain sustainability. Geodesign also addresses the
conflicts among the three pillars of sustainability in coupled human-environment systems. For example,
Huang and Zhou [32] describes geodesign as a comprehensive design-oriented ecological method
that addresses the conflict between the ecological conservation of wildlife habitat and economic
tourism development. Geodesign provides a simulation platform where overlaid maps show both the
constraints and the opportunities of these conflicts.
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Figure 5. A stock-and-flow diagram of systems thinking illustrating the relationships between
human and environment systems—human systems with its reinforcing growth loop constrained by
environment systems. Human and environment systems—representing the accumulations of material
or information that has built up within its own system over time—are the two stocks (or subsystems) of
the larger-scale integrated holistic system. The quantities of the two stocks change over time through
the actions of flows, which are influenced directly or indirectly by each other’s feedback loops. Thus,
understanding and creating the sustainable design should not only consider how design affects these
subsystems but also how their interrelationships change in time.

6. Discussion

6.1. Major Findings and Contributions

This framework extends the reach of geodesign into multiple fields, including sustainable
development, urban studies, landscape architecture and urban planning. This framework will encourage
more scholars in these fields to understand the complexities of sustainability by integrating ecological
systems thinking and geodesign. It guides scholars with systemic processes and comprehensive
interconnections rather than fragmented ideas. This framework identifies the interconnections between
geodesign approaches and elements of human-environment systems. It explains how geodesign
approaches explore social-ecological processes and landscape patterns to achieve landscape-based
resilience. In contrast to site-specific design solutions, this framework provides a systematic approach
that can be used at multiple scales both spatially and temporally.

6.2. Implications

This framework presented in this paper invites future scholars, designers and planners to look
beyond the boundaries of the project and embed geodesign approaches and systems’ elements
into multi-scale, multi-level, nested human-environment systems. For landscape architecture, this
framework provides guidance about how to use geodesign process with ecological systems approach
at multiple scales and dimensions, rather than individual design ideas for specific sites. For sustainable
management, this framework invites managers to identify social-ecological and spatial-temporal
dimensions to move beyond the boundaries of industries, firms or products to find a broader spectrum
of opportunities. In the field of policy, especially environmental policy, policy analysts can use this
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framework to study existing interventions and their relations with coupled social-ecological systems
to prevent dangerous combinations of policies across scales.

Future research should continue to co-opt ideas and approaches from other disciplines for geodesign
purposes [23,125]. In practice, studies that assess different landscape forms and patterns should be
assessed based on their local contexts. We need to adapt and examine the implementation of the general
geodesign framework into more diverse research fields. In technological development, some scholars note
an opportunity to develop shared code to mutually understand urban values for democratically managed
cities, more equitable societies and sustainable futures [37,143]. Related technology development may
occur by advancing Crowdsourcing, Social Media Geographic Information (SMGI) and WebGIS [63,144].
Besides advocating and accommodating public engagement, modern technologies also provide rich
support for incorporating sketching and computer modeling in the interface at different scales, which
may facilitate scenario modeling and influence the scope and style of the geodesign experience [124,145].

6.3. Gaps and Prospects

Although we were able to identify a comprehensive framework for landscape architecture, we
acknowledge that there are challenges and gaps: (i) theoretical gaps—operationalizing the framework
is difficult because it involves complex systems and dynamic processes. (ii) practical gaps—there are
challenges within geodesign collaborations in coping with the differences between disparate contexts
and groups of people with different backgrounds and its inherent multidisciplinarity makes the process
challenging for professional practice; (iii) technology challengers—there are challenges in adapting
geodesign tools and models from disparate sources.

We explain each gap in more detail and propose some theoretical, practical and technological
perspectives which might inform future studies in the following sections.

6.3.1. Theoretical Gaps and Prospects

This paper provides a new point of ecological systems thinking as a theoretical basis for
geodesign studies. However, the basic systems-thinking theories of stocks, flows, feedback loops,
dynamic equilibrium and so forth have not yet been elaborated in geodesign theoretical and practical
studies. An incomplete understanding makes people neglect the feedback loops that are critical
across subsystems, which may be fatal flaw to the whole system. It may also result in the misuse
of geodesign processes in contexts where they do not belong. Ecological systems thinking helps
people to comprehensively understand the geodesign framework, to realize the highly complex
and dynamic reality of systems and to safeguard multidisciplinary collaboration that strengthens
sustainable practices.

Future theoretical research should borrow ideas and approaches from other disciplines related to
systems thinking for different purposes in different geodesign phases [23,125]. At the same time, we
acknowledge the importance of adapting these approaches to local contexts. As we describe in this
paper, a few approaches have been used to assist the geodesign process. For example, the Multi-Actor
MultiCriteria Analysis (MAMCA) is used for maintaining and incorporating various stakeholders’
viewpoints throughout the geodesign process [125]. More approaches in diverse disciplines should be
explored and integrated in geodesign studies if appropriate. They should also be examined in different
contexts and summarized holistically.

6.3.2. Practical Gaps and Prospects

There is a tension between the geodesign framework’s effectiveness regarding common issues
and site-specific actions. Studies that assess different landscape forms and patterns should be
assessed differently based on their context. We need to adapt and examine the implementation
of the general geodesign framework into diverse research fields. For example, Perkl [146] adapts the
general geodesign framework into a hybrid geodesign and connectivity conservation framework to be
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used in corridor connectivity conservation with locally-specific considerations and design processes.
More research is needed to discover how to adapt a general geodesign framework in different contexts.

Some papers also discuss the practical failures of long-term achievement due to ignorance in
ecological and social monitoring [32] and the trade-offs between studies’ depth, breadth and execution
speed [147]. These practical gaps involve integrating multiple spatiotemporal scales. Here, we recommend
that future research test the transferability of these proposed approaches in different contexts and
scales and identify their limitations and potential throughout longer time periods. Future research
should proactively broaden the extent of geodesign studies to larger territories (especially developing
countries with pressing design issues and data-scarce environment) and more industries (agriculture,
infrastructure construction, mining, forestry, etc.).

6.3.3. Technological Gaps and Prospects

Some studies raise concerns regarding adapting geodesign tools in data-scarce, rapidly-changing
environments [32,144]. Some also address the issue of geodesign understandability to broaden public
participation [37,143]. Li and Milburn [4] note the problem of integrating human creativity with
digital codes in the interface [4]. Longley, Goodchild, Maguire and Rhind [29] demonstrates the
privacy problems of data with geographic information. He also discerns the lack of interoperability
among model codes from different sources to be integrated for implementation [9]. Finally, Ervin [22]
points out the likelihood of counterproductive, destructive and unwanted interactions from the
combination of different technologies. These technology concerns are essential for the evolution of
computer-mediated geodesign. Moving beyond the technological aspect of geodesign, however, we
need to rethink the following questions: How will technology shape the geodesign process [148]?
What role does technology play in geodesign’s future and what are the actual essentials of geodesign?
We argue that systemic thinking in geodesign is the most crucial piece of geodesign. Future studies
should seek to understand this way of thinking and utilize it in practice.

Furthermore, our paper also reveals some unexploited opportunities. Some scholars note
an opportunity to develop shared code to mutually understand urban values for democratically
managed cities, more equitable societies and sustainable futures [37,143]. Related technology
development may occur by advancing Crowdsourcing, Social Media Geographic Information
(SMGI) and WebGIS [63,144]. Besides advocating and accommodating public engagement, modern
technologies also provide rich support for incorporating sketching and computer modeling in the
interface at different scales, which may facilitate scenario modeling and influence the scope and style
of the geodesign experience [124,145].

7. Conclusions

Until quite recently, several parallel approaches and principles to geodesign evolved with little
communication. During the past decade, an increasing number of scholars and practitioners have
begun to develop a more general (and practical) conceptualization of geodesign [1,146,149]. Although
geodesign as a practice is on the rise, a comprehensively operational and theoretically strong definition
has yet to be established. To date, geodesign has been defined by simply combining different concepts
based on personal or project-based objectives or contexts. However, the environment that people
reside in, especially urban areas, are complex, adaptive and spatially heterogeneous systems with
dynamic processes and complicated interconnections [24]. We therefore should contemplate geodesign
more comprehensively, which can be achieved by incorporating ecological systems thinking.

This paper examined influential geodesign based studies to identify major perspectives of
geodesign, achieve a range of definitions of geodesign and integrate core concepts of systems
thinking to generate a new framework for landscape architecture. In order to achieve true resilience
and sustainability, we need approaches that: comprehensively identify the variables of coupled
human-environment systems; explore the relationships between social, economic and ecological
processes; and alter spatiotemporal patterns in multi-scale landscapes.
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