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Abstract: Increasingly popular virtualized healthcare services such as online health consultations
have significantly changed the way in which health information is sought, and can alleviate
geographic barriers, time constraints, and medical resource shortage problems. These online
patient–doctor communications have been generating abundant amounts of healthcare-related
data. Medical entity extraction from these data is the foundation of medical knowledge discovery,
including disease surveillance and adverse drug reaction detection, which can potentially enhance
the sustainability of healthcare. Previous studies that focus on health-related entity extraction
have certain limitations such as demanding tough handcrafted feature engineering, failing to
extract out-of-vocabulary entities, and being unsuitable for the Chinese social media context.
Motivated by these observations, this study proposes a novel model named CNMER (Chinese
Medical Entity Recognition) using deep neural networks for medical entity recognition in Chinese
online health consultations. The designed model utilizes Bidirectional Long Short-Term Memory
and Conditional Random Fields as the basic architecture, and uses character embedding and context
word embedding to automatically learn effective features to recognize and classify medical-related
entities. Exploiting the consultation text collected from a prevalent online health community in
China, the evaluation results indicate that the proposed method significantly outperforms the related
state-of-the-art models that focus on the Chinese medical entity recognition task. We expect that our
model can contribute to the sustainable development of the virtualized healthcare industry.

Keywords: medical entity extraction; deep neural networks; online health consultations; conditional
random fields; virtualized healthcare; long short-term memory

1. Introduction

Healthcare has drawn considerable attention in recent years, and increasing numbers of
patients are engaging in online health communities (OHCs) for health information exchange [1–3].
Online health communities are becoming an essential channel for users to search for health information
and share their experiences of medical treatments [4]. According to Health Information National
Trends Survey 2017, about 80 percent of adults in the U.S. search for health-related information
online [5]. In China, there were around 195 million people using online medical services by the
end of 2016 [6]. With the rapid growth of healthcare service delivery, a number of new models
have been developed recently, including online health consultations [7]. Patients not only interact
with their peers, but also consult doctors about their diseases through online communities [8],
which forms a new communication channel between patients and doctors. This new form of online
patient–doctor communication has greatly changed the traditional delivery model of healthcare service.
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Online communication between patients and physicians can potentially alleviate the medical resource
shortage problem and eliminate geographic barriers and time constraints to some extent [9].

Online health consultations generate large amounts of valuable health-related information [10].
The wide spread of periodic general health examinations [11] also contributes to the fast growth of the
medical datasets available. The vast development of information and communication technologies
dramatically improves the deposition and exchange of health-related data, which facilitates healthcare
Big Data analytics. As one of the Sustainable Development Goals (SDGs), sustainable healthcare is
dedicated to ensuring healthy lives and promoting well-being for all people. Medical-related entity
extraction from online health consultations can contribute to the sustainability of visualized healthcare
in the following aspects. First, the extracted entities in online health consultations can facilitate the
procedure of online patient–doctor communication by automatically recognizing and classifying the
critical health concepts in patient- and doctor-generated text. The high efficiency of online health
consultation helps improve the convenience and flexibility, saving costs and time for healthcare service
delivery [7,12]. It can potentially support users to manage their health conditions electronically and
thus attain more promising health outcomes and reduce future health risks [13]. OHCs can also
benefit from entity extraction by attracting more participants to engage in the information exchange
platforms. Second, medical entity recognition is an essential task in clinical information extraction
and medical knowledge discovery [14], and can facilitate a number of healthcare-related applications
such as disease surveillance [15] and adverse drug reaction detection [16]. Early detection of disease
activity can reduce the impact of certain diseases such as seasonal influenza with a rapid response [17].
Adverse drug reactions are among the top causes of morbidity and mortality and have been drawing
considerable public attention [18]. Disease surveillance and adverse drug reaction detection using
social media data can enhance public health monitoring and ensure a healthier life [19].

In this study, we aim to recognize several types of medical entities, namely, medical problems,
medical tests, and treatments [20], which are critical health concepts in medical knowledge discovery.
Medical problem entity recognition aims to identify the states of diseases or symptoms in text to extract
the health conditions of a patient, such as “breast cancer” and “fever”. The medical test entity recognition
task seeks to find the medical examinations mentioned in text, including laboratory tests and physical
examinations such as “blood test” and “CT scan”. Treatment entity recognition attempts to extract the
mentions of therapy in medical text including drug names and surgery procedures, such as “glucose” and
“heart transplantation”. For example, in the post “My right face was slightly swollen and accompanied by
fever. . . . I didn’t feel better after taking glucocorticoid. After a blood test and other thorough examination,
it was diagnosed as a facial lymphoma and now I’m ready for chemotherapy”. In this post, “slightly
swollen”, “fever”, and “facial lymphoma” are medical problem entities; “blood test” is a medical test entity;
and “glucocorticoid”, “chemotherapy” are treatment entities.

Extensive studies have been conducted to extract medical-related entities. Lexical-based methods
recognize an entity by matching to the most similar or identical terms in a dictionary [21], which
makes lexical-based approaches particularly useful for practical information extraction [22]. In the
medical field, the most widely used controlled terminology dictionaries include UMLS (Unified
Medical Language System) [23], ICD (International Classification of Diseases) [24], and SNOMED
CT (Systematized Nomenclature of Medicine–Clinical Terms) [25]. However, the short terms in the
dictionary would result in false positives and significantly degrade the overall accuracy, and spelling
variations which are quite common in the social media context make lexical-based approaches less
usable. Machine learning approaches have been widely adopted for entity recognition because of
their excellent environmental adaptability. The commonly used algorithms in entity recognition tasks
include Maximum Entropy (ME) [26], Support Vector Machine (SVM) [27], Hidden Markov Model
(HMM) [28], and Conditional Random Fields (CRF) [16,29,30]. Despite their excellent performance
in some studies, the machine-learning-based models usually need tough feature engineering work.
In recent years, the rapid improvement of deep learning techniques has brought new opportunities for
natural language processing (NLP) studies including entity extraction [31–33], and has significantly
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contributed to overcoming the above problem. Due to their capacity for automatically learning
effective features from word embedding, deep neural network (DNN)-based models such as recurrent
neural networks (RNNs) have been employed in state-of-the-art models [31,34]. As a unique RNN
architecture, Long Short-Term Memory (LSTM) and its variant bidirectional LSTM (BiLSTM) have
been utilized in entity extraction tasks and have shown encouraging performance [31,34,35].

Although medical entity extraction has been widely studied, existing approaches have several
limitations when applied to the Chinese social media context. First, most traditional machine
learning approaches require complicated feature engineering work [16,23,27–30]. Feature engineering
relies on handcrafted rules and language-specific knowledge, which is inherently tough and
time-consuming [34]. Second, most current works are designed for the English language context
and ignore the uniqueness of Chinese. Compared with English, there is no blank space between words,
and seldom do morphological changes exist in Chinese, making existing entity extraction approaches
challenging in the context of Chinese. Third, unlike clinical notes that are described by healthcare
professionals, the content in social media could be extensively informal, with features such as lexical
variants, internet slang, typos, and grammatical errors. Previous approaches that used clinical notes as
a data resource may fail to recognize out-of-vocabulary (OOV) terms, resulting in unsatisfying entity
extraction performance [36].

Recognizing the significance of medical entity extraction and the limitations of existing related
works, this study proposes a novel DNN-based approach to extracting medical entities in the context
of Chinese social media that can overcome the aforementioned problems. This study intends to
enhance the sustainability of online healthcare services and public health monitoring by improving
the performance of health concept extraction in online health consultations. Recent developments in
DNN have achieved great success in many areas, providing new opportunities for natural language
processing (NLP) research [31,33]. Specifically, we aimed to design a model that can automatically
capture the context features of text to avoid tough feature engineering work and is effective in medical
entity recognition in Chinese social media text. Considering the uniqueness of Chinese, we also
evaluate the effect of recognition granularity on the performance of the entity extraction.

The rest of the paper is organized as follows. In Section 2, we introduce the proposed medical
entity extraction model, followed by the evaluation procedure in Section 3. The experimental results are
presented in Section 4. Section 5 discusses the evaluation results and reviews the practical implications
of our model for the healthcare system. Lastly, we conclude our major research findings and research
limitations in Section 6.

2. Method

This study proposes a novel DNN-based model named CNMER (Chinese Medical Entity
Recognition) to extract medical entities from Chinese OHCs. Figure 1 depicts an overview of our
approach. After data collection, preprocessing was performed, and a subset of the processed data was
randomly selected for data annotation. The remaining unlabeled dataset was utilized as the text corpus
for unsupervised training on the domain word and character embeddings. With the part-of-speech
(POS) feature and position feature, the trained embeddings were then used to formulate the character
representation as the input for the BiLSTM-CRF.
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Figure 1. An overview of the CNMER (Chinese Medical Entity Recognition) model.

As shown in Figure 2, the BiLSTM-CRF architecture consists of an embedding layer, a BiLSTM
layer, and a CRF layer. The embedding layer maps each character in a sentence using the predefined
numerical representation vector. The BiLSTM layer includes forward LSTM and backward LSTM,
and takes the representation vectors of the character sequence as input and returns another sequence
by considering both left and right context information. The CRF layer makes final tagging decisions
based on the output of the BiLSTM layer using the CRF model.
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2.1. Data Preprocessing and Annotation

The communications between physicians and patients in OHCs generate abundant health-related
text. In this study, we exploited the online consultation text as the data resource. First, data preprocessing
was performed to remove irrelevant contents such as private information, html tags, and other invalid
characters. We also filtered out the consultations that were shorter than five characters. Unlike English text,
words are not separated by blank spaces in Chinese sentences; thus, word segmentation was conducted to
split each word in a sentence. We utilized Jieba, an open source NLP application in the Python language
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to segment sentences into words and perform POS tagging, for which a total of 40 types of POS tags
were predefined. In this study, we employed Chinese Unified Medical Language System (CUMLS) [37],
a repository of biomedical terminologies developed by Chinese Academy of Medical Sciences to help
improve the performance of Chinese word segmentation for the health-related corpus. CUMLS integrates
more than ten biomedical sources such as biomedical thesauri, classifications, and text words of biomedical
literature. Specifically, CUMLS includes 100,000 medical terms. Using CUMLS as the supplementary
dictionary, terms in consultations that are matched with the repository can be extracted and segmented as
a single word automatically.

After data preprocessing, we randomly selected a small subset from the obtained corpus as the
source of data annotation. An annotation protocol was developed before annotation. To obtain the
annotation dataset, two expert annotators were recruited to independently label the entity boundaries
and types in sentences. Another expert annotator was asked to check any disagreements and make the
final judgement. In this study, we labeled entities using the “BIO” tagging formalism, where the “B”
category represents the beginning of an entity, the “I” category represents the continuity of an entity,
and “O” denotes all other characters. As an illustration, for a medical problem entity which consists of
four characters in total, namely c1, c2, c3, c4, the annotators are supposed to tag the character sequence
as “B-prob, I-prob, I-prob, I-prob”.

2.2. Embedding Layer

Conventional machine learning approaches lack the ability to process natural data in their raw
form and require careful engineering and designing work to extract effective features from raw data
such as plain text [38]. The input of machine learning approaches is usually represented in the form of
a fixed-length feature vector. For text input, bag-of-words is one of the most common used features.
Although they have been widely used, bag-of-words features have certain disadvantages: they fail
to capture the order of words in text and they miss the semantic information of words. For example,
the word “sickness”, “illness”, and “hospital” are represented with the same distance by bag-of-words,
although “sickness” should be closer to “illness” than to “hospital”, semantically.

Distributed representations of words in the form of a vector space can group similar words and
facilitate many natural language processing tasks toward better performance. Representation learning
approaches can automatically detect the information needed and represent it at a higher and more abstract
level. A word embedding maps a word to a numerical vector in a low-dimensional vector space which can
capture semantic or syntactic properties of the word; semantically similar words are expected to be assigned
similar vectors [34]. The learned word representations explicitly encode many linguistic regularities and
patterns, and many of these patterns can be represented as linear translations [39]. For example, the result
of calculation vec(“Beijing”) − vec(“China”) + vec(“Japan”) is closer to vec(“Tokyo”) than to any other
learned word vectors, where “vec” represents the learned embedding vector of a word. This study uses the
skip-gram method for both word- and character-level embedding training [39], which predicts the words
that are most likely to appear around the focused word. Given a sequence of training words w1, w2,...,wT,
the model is trained by maximizing the average log probability

1
T ∑T

t = 1 ∑−s≤j≤s, j 6=0 log p
(
wt+j

∣∣wt
)
, (1)

where s is the size of training context, and wt+j are the words surrounding the focused wt. The basic
skip-gram formulation defines p

(
wt+j

∣∣wt
)

using the Softmax function

p(wO|wI) =
exp

(
v′wO

TvwI

)
∑W

w = 1 exp
(
v′wTvwI

) , (2)

where vw and v′w denote the “input” and “output” vector representations of w, respectively, and W
represents the total number of words in the vocabulary [39]. We use word2vec, an open source tool
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developed by Google, to train the character and word embedding [39]. We trained a 100-dimensional
embedding for both characters and words based on the unlabeled dataset [33].

For Chinese online health-related text, word segmentation is a challenging task [40] which could
result in unsatisfying performance for word-based entity extraction methods. To address this issue,
character-based entity recognition was proposed [41]. The character representation has been recognized
as an important factor that impacts the entity recognition performance [32,33]. However, the semantic
information of a character varies according to context, while the same character in different contexts is
usually represented by the same embedding. Therefore, the direct use of character-level embedding
for the various contexts will lead to inaccurate character feature representation [33]. In this study,
we propose to combine character embedding with the context word embedding as a part of the
character embedding vector. Thus, the character representation incorporates not only the features of
the focal character, but also the context information of the related word.

The POS feature and the position of a character in the context word [42] were also incorporated
into our model as they carry critical context information for the focused character. According to the
tagging scheme in Jieba, we predefined a list of POS tags and mapped each tag to a 40-dimensional
one-hot vector to represent the POS feature of the context word. To represent the position feature of a
character, we used a 4-dimensional one-hot vector to present the positional information of a character
in the context word: single-character word, the beginning of a word, the middle of a word, or the
end of a word. All the embeddings and vectors were then concatenated together as a single vector,
and finally we obtained a 244-dimensional numerical representation for each character as input for the
BiLSTM network. Figure 3 illustrates an example of character representation used in our model, where
dc represents the dimension of the character embedding and dw indicates the dimension of the word
embedding. In the example, the entity is divided into two parts during word segmentation, namely,
w1 which consists of c1, c2, c3, c4, and w2, which consists of c5. Therefore, the representation vector of
the character c1 consists of four parts, which are the character embedding of c1, the word embedding
of w1, the POS feature vector of the word w1, and the position feature (i.e., “the beginning of a word”)
vector of the character c1 in the word w1.
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2.3. BiLSTM Layer

A typical neural network contains a set of input units, multiple hidden layers that contain hidden
units, a set of output units that stands for tags, and the connections between those units [43]. The model
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is trained using an algorithm named “back-propagation” to adjust the weights of connections between
units, so that any input tends to generate the corresponding output. The relationship between inputs
and outputs that a neural network learns can be regarded as a mapping, and neural networks with
multiple hidden layers are believed to be good at learning mappings.

Deep neural networks are neural networks with a large number of hidden layers. A deep neural
network system is usually regarded as a classification system that decides what category (e.g., entity
type) a given input (e.g., word) is mapped to. Theoretically, given infinite data, a deep learning
system is capable of representing any deterministic mapping for any given inputs and corresponding
outputs [43]. However, due to the finite amount of data available in real-world applications, deep
learning systems have to generalize beyond the training data.

Compared with human beings, deep learning systems lack the ability to learn abstractions from
explicit and verbal definitions. Instead, they rely on the large amount of training examples to learn these
rules. In the context of entity recognition, given the definition of a medical entity, humans can easily tell
whether a word is a medical entity and what type the entity is. However, deep learning models have to
learn this “definition” through large numbers of annotated examples. In a DNN, the final tagging result
of a given input character in terms of medical recognition depends on many features, such as the POS
information, the positional information, and the context words. The hidden layers in a DNN are considered
as complex feature transformations in the networks and produce the most abstract features for the final
output layer; this is a critical process in learning the implicit rules embedded in the training set.

The RNN is an extension of the traditional feedforward neural network, and can handle
variable-length input sequences. An RNN contains a recurrent hidden state, and the activation
of the hidden state depends on that of the previous time. Nevertheless, RNNs fail to capture long-term
dependencies as the gradient tends to either vanish or explode during training.

The LSTM is a special kind of RNN that is designed to avoid the long-term dependency issue by
joining with a gated memory cell [44]. Typically, an LSTM unit consists of an input gate it, an output gate
ot, a forget gate ft, a memory cell ct, and a hidden state ht. The LSTM incorporates these structures called
gates to optionally remove or add information; they contain a sigmoid neural net layer and a pointwise
multiplication operation. The sigmoid layer outputs values between 0 and 1 to indicate how much of each
component should be reserved, in which a value of 0 denotes “let nothing through” and 1 denotes “let
everything through”. The LSTM computes the output by iterating the following equations:

it = σ(Wxixt + Whiht−1 + Wcict−1 + bi), (3)

ft = σ
(

Wx f xt + Wh f ht−1 + Wc f ct−1 + b f

)
, (4)

ct = ft � ct−1 + it � tanh(Wxcxt + Whcht−1 + bc), (5)

ot = σ(Wxoxt + Whoht−1 + Wcoct + bo), (6)

ht = ot � tanh(ct), (7)

where σ means the sigmoid function; � denotes pointwise multiplication; Wi, W f , Wc, and Wo (with
subscripts x, h, and c) are the weight matrices for input xt, hidden state ht, memory cell ct, and output
ot, respectively; and bi, b f , bc, and bo denote the bias vectors. The BiLSTM is composed of a forward
LSTM and a backward LSTM to capture both past and future information, which are two separated
networks with different parameters.

The entity extraction task can be modeled by deep learning methods as a sequence labeling task.
In OHCs, there are many long sentences in patient-contributed content, and the semantic meaning
of a focused character can be shaped by the characters before and after it over a long distance. In the
text sequence of online consultations, users report their health conditions in detail and the mentions
of each medical entity could rely on long-distance information in the text. Based on these intuitions,
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we utilized BiLSTM to extract medical named entities, as BiLSTM can learn long-distance dependencies
and the bidirectional information of a character at the same time.

2.4. CRF Layer

When it comes to the context of entity recognition in text, it is always beneficial to consider the
correlations between the sequential labels as there are many tagging constraints in natural language
sentences. However, the widely used Softmax method predicts the final labels independently, and using
Softmax as the top inference layer to extract medical entities will probably break these constraints.

CRF is the most successful model that can control the structure prediction of tagging results.
Therefore, CRF was employed to predict the final label sequence in the proposed model. CRF is a
probabilistic framework and is usually adopted for sequential data including text [45]. The basic idea
of CRF is to use a series of potential functions to estimate the conditional probability of the output
label sequence given the input sequence. More specifically, CRF uses an undirected graphical model to
calculate the conditional probability p(y|x, w) of a label sequence y given an input sequence x, where w
denotes the parameters in the model. Ψ(x, y) denotes the feature vector and Z(w, x) is the cumulative
sum of p(y|x, w) over all the possible y:

p(y|x, w) =
exp

(
wTΨ(x, y)

)
Z(w, x)

. (8)

The model is trained over a given training set (Y, X) = {xi, yi}, i = 1 . . . N, by maximizing the
conditional likelihood:

w = arg maxw p(Y|X, w). (9)

For the input sequence x and the trained parameters w, the final prediction of a trained CRF is the
label sequence y∗ that maximizes the model:

y∗ = arg maxy p(y|x, w). (10)

CRF predicts the optimal sequence of labels using a Viterbi algorithm for the input sequence.
In our model, the final output of the entity recognition task imposes several hard constraints; for
example, “I-cure” cannot follow “B-prob”. The CRF layer considers the interactions between successive
labels and can automatically learn these constraints from training data to ensure the validity of the
final entity tagging results.

3. Evaluation

3.1. Datasets

The dataset used in the experiment was collected from the Good Doctor website (www.haodf.com).
Established in 2006, the Good Doctor website is one of the largest online patient–doctor communication
platforms. The platform enables patients to consult physicians about their health-related concerns
by providing personal healthcare information in the manner of online posts, by telephone,
and even by teleconference. Currently there are over 180,000 certificated doctors registered on the
platform providing professional medical consultation services, attracting around 10,000 online health
consultations from patients or their caregivers every day. In online health consultations, patients
provide their basic health conditions and ask questions to physicians. A sample of an online health
consultation on the Good Doctor website is provided in Figure 4. In the section “condition description”
of medical consultations, patients describe their medical information such as symptoms, medical
testing, treatment, medicine, cause of disease, and family medical history, which contains abundant
health-related concepts. Therefore, we select the “condition description” sector of medical consultations
as our entity tagging target.

www.haodf.com


Sustainability 2018, 10, 3292 9 of 18

Sustainability 2018, 10, x FOR PEER REVIEW  9 of 18 

 

Figure 4. A sample of an online health consultation on the Good Doctor website. 

We collected the “condition description” section of consultations that were posted on the Good 

Doctor platform from 1 January 2014 to 30 April 2017 using a crawler programmed in Python. After 

data preprocessing, we finally obtained around 8.6 million unlabeled medical consultations across 

all departments from the Good Doctor website for embedding training. After training using 

word2vec based on the collected consultation text corpus, we finally obtained 852,497 unique words 

and 10,336 unique characters in the word embedding table and the character embedding table, 

respectively. We collected another medical consultation dataset from the oncology departments of 

the Good Doctor website of consultations that were posted in May 2017 for manual annotation. Each 

selected consultation contains at least one medical-related entity and should be longer than 20 

characters. The consultations in the oncology department were selected for evaluation in this study 

as cancer is one of the leading causes of morbidity and mortality worldwide [46]. After data 

annotation, we obtained 536 labeled medical consultations as our final annotated dataset. The 

Cohen’s kappa value for inter-annotator reliability is 0.96, which indicates a near-perfect agreement 

[47]. The statistics of the annotated dataset are shown in Table 1. The collected consultation datasets 

and trained word and character embeddings were deposited in Harvard’s Dataverse [48]. 

Table 1. Statistics of the annotated dataset. 

Statistics Numbers 

Number of sentences 536 

Average number of characters in each sentence 163 

Number of mentioned problems 3870 

Number of mentioned tests 987 

Number of mentioned treatments 1608 

3.2. Metrics 

In this study, precision (P), recall (R), and F-measure (F) were adopted as the performance 

evaluation metrics. More specifically, precision represents the portion of entities that are correctly 

recognized, while recall denotes the portion of correctly recognized entities among all correct entities; 

indicating the overall performance of precision and recall, the F-measure is calculated as the 

harmonic average of precision and recall. The values of precision, recall, and F-measure are all real 

values between 0 and 1, with higher values indicating better performance. 
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We collected the “condition description” section of consultations that were posted on the Good
Doctor platform from 1 January 2014 to 30 April 2017 using a crawler programmed in Python.
After data preprocessing, we finally obtained around 8.6 million unlabeled medical consultations
across all departments from the Good Doctor website for embedding training. After training using
word2vec based on the collected consultation text corpus, we finally obtained 852,497 unique words
and 10,336 unique characters in the word embedding table and the character embedding table,
respectively. We collected another medical consultation dataset from the oncology departments
of the Good Doctor website of consultations that were posted in May 2017 for manual annotation.
Each selected consultation contains at least one medical-related entity and should be longer than
20 characters. The consultations in the oncology department were selected for evaluation in this study
as cancer is one of the leading causes of morbidity and mortality worldwide [46]. After data annotation,
we obtained 536 labeled medical consultations as our final annotated dataset. The Cohen’s kappa
value for inter-annotator reliability is 0.96, which indicates a near-perfect agreement [47]. The statistics
of the annotated dataset are shown in Table 1. The collected consultation datasets and trained word
and character embeddings were deposited in Harvard’s Dataverse [48].

Table 1. Statistics of the annotated dataset.

Statistics Numbers

Number of sentences 536
Average number of characters in each sentence 163

Number of mentioned problems 3870
Number of mentioned tests 987

Number of mentioned treatments 1608

3.2. Metrics

In this study, precision (P), recall (R), and F-measure (F) were adopted as the performance
evaluation metrics. More specifically, precision represents the portion of entities that are correctly
recognized, while recall denotes the portion of correctly recognized entities among all correct entities;
indicating the overall performance of precision and recall, the F-measure is calculated as the harmonic
average of precision and recall. The values of precision, recall, and F-measure are all real values
between 0 and 1, with higher values indicating better performance.
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3.3. Baseline Models

To evaluate the performance of our proposed approach on medical entity recognition in Chinese
OHCs, we assessed our model against the following baseline systems: a CRF-based model that uses
words as tag units [49], a CRF model that uses characters as tag units [50], and a DNN-based model
using Character–Word Mixed Embedding (CWME) [32]. The reasons for selecting those three works
as the baseline models in this study are as follows. First, the CRF-based methods have been widely
adopted in sequence labeling problems such as POS and word segmentation, and have achieved
promising performance in entity extraction tasks [31]. Second, the CWME method is also based on
DNN and focuses on the Chinese social media context; it has been reported to perform well in entity
extraction. Third, the first baseline model uses words as the basic tagging unit [49], while the second
baseline model uses characters as the basic tagging unit [50]. We chose these two baseline models to
evaluate the impact of recognition granularity on the performance of entity extraction, which has not
been fully investigated in the context of Chinese health-related social media.

3.4. Model Settings

A 10-fold cross-validation procedure was utilized to run our proposed model and the baseline
methods. The annotated dataset was split into three parts: six folds for training, two for validation,
and the remaining two for testing. We tested the CRF baseline methods using the same additional
features that were incorporated into our proposed model to establish fair comparisons. In this
study, we utilized an open source tool named CRF++ to construct the CRF baseline models as it is
fast and customizable [51]. TensorFlow was utilized to construct DNN-based models [52], and the
adapted codes were uploaded and made available in an open repository [53]. We selected Adam,
an optimization algorithm that can be used to update network weights iteratively based on training
data, to update the parameters [54]. To avoid overfitting, the hidden layer size was set to 150 [55].
The initial learning rate was set to 0.001 and the dropout rate was set to 0.1. During model training,
the predefined character embeddings were fine-tuned based on the training data [35]. To achieve
better results, the hyperparameters were tuned based on the performance for different combinations
of hyperparameter values using the validation dataset.

4. Results

4.1. Evaluation Results

Based on the results from the 10-fold cross-validation, a general performance comparison of the
proposed model with the baseline models across different medical entity types is presented in Table 2.
As shown in Table 2, based on our experimental data, we observe that our proposed method attained
considerably higher recall and a better F-measure in general, while attaining relatively lower precision
for most entity types compared with the CRF-based baseline models. In general, our model obtained
7.36% improvement over the word-based CRF model, and 2.31% improvement over the character-based
CRF model in terms of overall F-measure. In general, our model attained better overall performance
in terms of precision, recall, and F-measure over the CWME approach. For the two CRF baseline
models, the character-based method generated a substantially better overall performance over the
word-based method.

From the perspective of different entity types, the DNN-based models achieved moderately lower
performance in terms of precision compared with the CRF-based models across almost all entity types.
In contrast, the DNN-based models substantially outperformed the CRF-based models in terms of
recall for all three entity types. We notice that CNMER obtained a relatively higher recall than CWME
for the entity types of medical problems and treatment. The character-based CRF model extensively
outperformed the word-based CRF model in terms of recall for all entity types. For the F-measure,
we observe that CNMER achieved better performance over the other three baseline models for the
entity types of medical problems and treatment.
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Table 2. Performance comparison of CNMER and baseline methods 1.

Models
Problem (%) Test (%) Treatment (%) All (%)

P R F P R F P R F P R F

CRF_W 66.30 55.17 60.22 70.05 56.18 62.33 71.23 55.57 62.41 68.02 55.42 61.07
CRF_C 69.75 63.30 66.36 71.61 63.10 67.08 70.84 60.05 64.98 70.28 62.43 66.12
CWME 67.25 67.72 67.46 68.17 68.70 68.40 65.83 66.95 66.35 67.00 67.65 67.31
CNMER 67.46 69.80 68.55 67.78 68.18 67.95 69.62 67.44 68.47 67.97 68.96 68.43

1 CRF_W, the word-based CRF baseline model; CRF_C, the character-based CRF baseline model; CWME, deep
neural network (DNN) baseline model based on Character–Word Mixed Embedding; CNMER, the model proposed
in this study.

For further explanation, a t-test was conducted on the 10 general results of the 10-fold
cross-validation. Based on our experimental datasets, the evaluation results indicate that the recall of
our model (mean = 68.96%) is significantly higher than those of CRF_W (mean = 55.42%) (t = −24.485,
p < 0.01), CRF_C (mean = 62.43%) (t = −12.297, p < 0.01), and CWME (mean = 67.65%) (t = −2.745,
p < 0.05). In terms of F-measure, our model (mean = 68.43%) statistically outperforms CRF_W
(mean = 61.07%) (t = −16.241, p < 0.01), CRF_C (mean = 66.12%) (t = −6.369, p < 0.01), and CWME
(mean = 67.31%) (t = −2.983, p < 0.05).

To further evaluate the contribution of the predefined character representation, we conducted a
comparison of the proposed models over different character representations. As shown in Table 3, CNMER
generally outperforms the models that use “Random” or “CW” as the character representation, where
“CW” denotes the model that uses concatenated character and context word embedding as the character
representation. The t-test results also indicate that CNMER substantially outperforms “Random” in terms
of precision (t = −6.265, p < 0.01), recall (t = −9.352, p < 0.01), and F-measure (t = −9.821, p < 0.01).
Meanwhile, CNMER outperforms “CW” in terms of precision (t = −2.596, p < 0.05) and F-measure
(t =−4.720, p < 0.01).

Table 3. Performance comparison of the results across different DNN models and entity types 1.

Models
Problem (%) Test (%) Treatment (%) All (%)

P R F P R F P R F P R F

Random 62.92 65.06 63.94 65.77 65.48 65.54 63.41 61.33 62.33 63.42 64.16 63.76
CW 66.61 70.45 68.46 65.47 69.42 67.37 67.24 66.70 66.93 66.53 69.34 67.90

CNMER 67.46 69.80 68.55 67.78 68.18 67.95 69.62 67.44 68.47 67.97 68.96 68.43
1 Random, the model that uses random embedding as character representation; CW, the model that only uses
concatenated character and context word embedding as the character representation; CNMER, the model proposed
in this study.

4.2. Extracted Medical Entities

Our proposed model tags each single character instead of segmented words to recognize medical
entities, and the representation of each character is designed according to the uniqueness of Chinese
health-related social media. Using CNMER, we can effectively extract medical-related entities including
medical problems, tests, and treatment from the informal text of Chinese social media. Table 4 presents
some examples of the extracted medical entities from the Good Doctor website. Some of those entities
are colloquial such as “Face is itching” and “There is a malignant tumor in the left lung”. There are even
extracted entities that are misspellings in Chinese such as “Hilar mediastinal lymph node metastasis”.
However, these entities are rarely recognized and classified correctly by existing related models.
The informal medical entities are quite common in Chinese social media, yet they are rare in medical
dictionaries and it is tough to manually capture their unique features, making it challenging for most
existing models.
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Table 4. Examples of extracted medical entities from online health consultations.

Entity Types Examples

Problem

Face is itching
Hilar mediastinal lymph node metastasis

The size of tumor is about two centimeters
There is a malignant tumor in the left lung

Central poorly differentiated lung adenocarcinoma

Test

Liver puncture
Enhanced CT scan
X-ray examination

DNA genetic testing
Enhanced nuclear magnetic resonance images of brain

Treatment

Erlotinib
Surgical removal of lesions

Six-cycle course of chemotherapy
Traditional Chinese medicine for blood circulation
Radiation therapy for brain and spinal cord tumors

5. Discussion

In spite of the comparatively weak performance in terms of precision, the experimental
results reveal the substantial ability of our proposed model over existing approaches in medical
entity extraction, indicating the advantage of our designed model. The further character
representation evaluation implies that using pretrained embeddings based on the domain corpus
can dramatically improve the performance of medical entity recognition over randomly initialized
ones, and incorporating position and POS features can further improve the overall performance.
The evaluation also suggests the advantage of character-based methods over word-based methods
in the Chinese social media context. By the inclusion of context word embedding with character
embedding as the representation of the text input, our model can effectively extract medical-related
entities in Chinese OHCs without complex feature engineering.

The Bidirectional LSTM architecture is capable of learning long-term dependencies from both forward
and backward directions to capture further context features, which results in better performance of the DNN
model over traditional machine learning models in terms of overall recall and F-measure. The inclusion
of context word embedding with the character embedding can partly capture the context information
and avoid use of the same character embedding vector in varied contexts. Therefore, a character with
the same location tag might be assigned a different representation vector, while a character in a different
context would be represented with the same embedding in CWME; this could be the reason why CNMER
generally outperforms the CWME approach. The overall higher recall over traditional machine learning
approaches and better F-measure over the three baseline models demonstrates that our model is more
appropriate for medical entity extraction in online medical consultations.

In the setting of online consultations, physicians need to process abundant unstructured text
information, among which medical entities are the most critical part for efficient health assistance.
The rapid development of information and communication technology in recent years has greatly
changed the manner of health service delivery in modern society. Compared with real-world
face-to-face visits, e-mediated patient–doctor communication has certain unique characteristics that
touch the critical components of the relationship between patients and physicians [56] and would
potentially affect the sustainability and effectiveness of online communities.

Confirmation bias means that one is more inclined to the evidence that supports their existing
beliefs, expectations, and hypothesis in hand [57]. In online health consultations, users are anonymous
to physicians and the user-generated content is the only cue for physicians to infer the health conditions
of patients. With the limited information available in online consultations, physicians need to evaluate
the health conditions of patients and make professional medical suggestions. However, adequate
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and accurate evidence are required in medical services. During this process, confirmation bias could
occur in two possible ways. First, before reporting their conditions to healthcare professionals online,
some patients may have their own prior judgement for the medical problem and thus unconsciously
describe their conditions with bias. Second, due to the limited information available, even the most
seasoned healthcare practitioner can be prejudiced occasionally and be led to misdiagnose a problem
by confirmation bias [58]. CNMER has been proven effective in extracting health-related concepts
from Chinese OHCs, and these medical concepts are essential components for health professionals to
provide feedback. In the context of online medical consultations, the principal contents submitted by
users are highlighted with the extracted medical entities. Users can check and edit what they have
written, and physicians can effectively examine the posts without ignoring the critical information in
the text, which could potentially help to alleviate the effect of confirmation bias.

Trust is another critical concern in e-mediated patient–doctor interaction. The first and foremost
function of trust is to reduce complexity [59]. Trust has been shown to affect a host of behaviors
including patients’ willingness to seek care, reveal sensitive information, and remain with a
physician [60]. In the context of e-mediated communication, patients are anonymous to healthcare
service providers, which further highlights the importance of trust. Patients’ trust in their doctor and
doctors’ trust in their patients during online consultations play an essential role in dealing with the
health issues of patients. For patients that seek online medical support, trust in their doctors can
help to sustain well-being when coping with health risks. The continuous trust between patients and
physicians in online heath consultations is one of the key critical elements that ensure the sustainability
of online healthcare service delivery. The higher level and status of a healthcare system have proven
to be associated with more trust [61]. The extracted medical concepts facilitate efficient information
processing and boost the information exchange in online consultations, improving the relationship
between patient and doctor. Patient–doctor communication is more than transferring information
about medical conditions from patient to doctor and medical knowledge from doctor to patient: it is
about releasing the patient’s feelings of stress, anxiety, and risk in health issues [56]. The significant
positive relationship between trust and the perceived value of social interaction has been reported in a
previous study [62]. An efficient, intelligent healthcare system employing an online platform can thus
improve the trust between patients and doctors as the social exchange is perceived to be beneficial.

Despite the wide use of health insurance and other related programs, economic or time cost
is usually inevitable for most healthcare consumers when dealing with their health problems.
Healthcare consumers tend to reduce the cost without impairing the quality of care; they evaluate
the return and corresponding cost of different healthcare services and make decisions according to
their related knowledge and experience. Chronic diseases such as diabetes, cancer, cardiovascular
disease, and chronic respiratory diseases have been a substantial economic burden for patients due
to expenditure on long-term medical care, especially for those from low-income and middle-income
countries such as China [63]. The introduction of online healthcare services provides users with
alternative options to cope with these health concerns. OHCs have been reported as powerful platforms
for chronic disease patients to tackle some of the challenges, with certain advantages including
the exchange of medical knowledge, supporting self-management, and improving patient-centered
care [64]. Online healthcare platforms not only provide modern patients an open communication
channel with their physicians, but also facilitate patients gaining control over their lives and improving
the quality of care by self-management [64]. While the sensitivity to cost of healthcare services
varies [65], individuals can seek medical support with minimal time and cost restrictions in OHCs.

Health information technology has been widely adopted in recent years due to its capacity
to improve the cost savings, efficiency, quality, and safety of medical service delivery. Among all
the components, cost remains the primary barrier that impedes the adoption of health information
technology [66], and cost–benefit analysis of healthcare system adoption is meaningful. For the
proposed health system designed for OHCs, online platforms can employ the system on their websites,
and both patients and doctors can utilize the system to enhance the healthcare service delivery.
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As stated before, the engagement of the intelligent system can benefit the OHCs by attracting more
doctors and patients to participant in healthcare information exchanges due to its advantages including
diminishing confirmation bias, gaining trust, and reducing cost. Despite the potentially high cost of
DNN systems at the moment, the rapid development of deep learning technologies and the booming of
related web services make the system more applicable. It is economically feasible for online healthcare
platforms to employ the system as further considerable benefits are expected.

The utilization of DNN in our model achieved more promising performance over conventional
machine learning methods. From the perspective of practical implementation, DNN systems are known
for their lack of transparency, and the prediction results are tough to explain. Consequently, there are
concerns regarding the safety issue of employing the system as DNN-based models remain mysterious
to their users. However, as our system are designed for extracting medical entities to facilitate
information processing rather than providing health-related professional suggestions, the transparency
of our model and the explanation of results are actually dispensable in real-world applications.

The sustainable employment of the proposed DNN-based healthcare system by online health
platforms relies on the continuous benefits that are obtained from the system. The powerful capacity to
extract medical concepts from the healthcare system can moderately improve the quality of information
transmission between patient and doctors in OHCs, which reduces economic and time cost and
enhances quality of life [67,68]. According to the medical advice provided by health professionals,
users can cope with their health issues more properly and thus decrease their medical expenditures.
The effective health-related information seeking powered by the proposed model can also minimize
patients’ future health risks by reducing medical uncertainty. The sustainable development of OHCs
depends on the participation of health professionals, and doctors can gain social and economic returns
by participating in OHCs [69]. For healthcare service providers, the system can assist them to improve
the efficiency of medical information processing with higher accuracy. As increasing numbers of
participants engage with and benefit from the system, OHCs can gain more profit and thus invest more
in the development of intelligent healthcare systems, which in turn attracts more participants to the
platforms. Medical concept discovery is the basis of healthcare knowledge discovery strategies such as
disease surveillance and adverse drug reaction detection. Healthcare knowledge discovery from social
media has been validated as viable in previous works [15,16], and can contribute to the sustainability of
public health. Therefore, the adoption of the proposed system can directly or indirectly benefit various
participants including health consumers, health service providers, and online healthcare platforms,
contributing to the sustainability of the virtualized healthcare industry.

6. Conclusions

Our study contributes to the literature mainly in terms of the following points. Firstly, this work
designs an effective DNN model that can automatically learn context features of text to replace complex
and time-consuming handcrafted feature engineering work. The evaluation results demonstrate
that the proposed model considerably outperforms traditional machine learning approaches and a
strong DNN baseline model. Second, this paper investigates the medical entity extraction task in
the context of Chinese social media, while prior research primarily focused on the English language
context. Considering the uniqueness of health-related Chinese social media text, this study proposes
concatenating character embedding with context word embedding, together with position and a POS
features vector, to enhance the feature representation of characters in Chinese online medical text.
As far as we know, this research is among the first works to focus on medical-related entity recognition
in Chinese social media. Third, based on a large domain text corpus collected from a well-known
Chinese OHC, this work builds a word embedding dataset and a character embedding dataset in
the context of Chinese medical-related social media, which are available to the public online [48].
The learned distributed representations of words and characters capture both syntactic and semantic
features, and can facilitate learning algorithms to achieve more promising performance in many
NLP-related tasks, including sentiment analysis [70], text classification [71], and recommendation [72].



Sustainability 2018, 10, 3292 15 of 18

Previous studies have certain limitations when applied to the context of Chinese health-related social
media. This study designed a BiLSTM-CRF-based model named CNMER to extract medical-related entities
from Chinese OHCs. The model utilizes character embedding, word embedding, position, and POS feature
vectors as the character representation and avoids tough feature engineering work. Despite the relatively
unsatisfying results in terms of precision compared with the CRF-based methods, the proposed CNMER
approach attained statistically better performance in terms of recall and F-measure over all three baseline
models including a strong DNN model, which indicates that our model is more effective in extracting
health-related entities from Chinese OHCs. The advantages of using characters as the basic tag units are
also validated in this study. The proposed medical entity extraction system contributes to the sustainable
development of virtualized healthcare as it benefits many stakeholders including health consumers, health
service providers, and online healthcare platforms.

Besides the above achievements, the designed model has certain limitations. First, we only
considered the recognition of three main types of medical-related concepts; other entity types such
as body part, medical department, and time which are also essential for medical decision support
were not investigated in this study. Second, only the focal character and word were considered when
constructing a representation vector, while further context characters and words could also contribute
to additional performance improvement; this was not explored in our study. Lastly, although the
evaluation results indicate that our model outperforms the baseline approaches, the performance is
still not satisfying enough for real-world applications. Medical entity extraction in Chinese social
media remains a challenging task and deserves further investigation.

Author Contributions: Conceptualization, H.Y.; Data curation, H.Y.; Funding acquisition, H.G.; Methodology,
H.Y.; Supervision, H.G.; Validation, H.Y.; Writing—original draft, H.Y.; Writing—review & editing, H.G.

Funding: This research was funded by National Key Research & Development Plan of China (grant number:
2017YFB1400101), National Natural Science Foundation of China (grant number: 71572013).

Acknowledgments: The manuscript was approved by all authors for publication. We would like to thank all the
anonymous reviewers for their valuable comments and suggestions which improved this paper. We would also
thank the Editors and the Editorial Office for their professional work.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Yan, L.; Tan, Y. The Consensus Effect in Online Health-Care Communities. J. Manag. Inf. Syst. 2017, 34, 11–39.
[CrossRef]

2. Jung, Y.; Hur, C.; Kim, M. Sustainable Situation-Aware Recommendation Services with Collective Intelligence.
Sustainability 2018, 10, 1632. [CrossRef]

3. Wang, X.; Zhao, K.; Street, N. Analyzing and predicting user participations in online health communities:
A social support perspective. J. Med. Internet Res. 2017, 19, e130. [CrossRef] [PubMed]

4. Kazmer, M.M.; Lustria, M.L.A.; Cortese, J.; Burnett, G.; Kim, J.H.; Ma, J.; Frost, J. Distributed knowledge in
an online patient support community: Authority and discovery. J. Assoc. Inf. Sci. Technol. 2014, 65, 1319–1334.
[CrossRef]

5. HINTS. HINTS-FDA Survey Instrument. Available online: http://hints.cancer.gov/question-details.aspx?
PK_Cycle=8&qid=757 (accessed on 13 March 2018).

6. CNNIC. 39th Statistical Report on Internet Development in China. Available online: http://www.cnnic.cn/
hlwfzyj/hlwxzbg/hlwtjbg/201701/P020170123364672657408.pdf (accessed on 13 March 2018).

7. Jung, C.; Padman, R. Virtualized healthcare delivery: Understanding users and their usage patterns of online
medical consultations. Int. J. Med. Inf. 2014, 83, 901–914. [CrossRef] [PubMed]

8. Li, M.; Mao, J. Hedonic or utilitarian? Exploring the impact of communication style alignment on user’s
perception of virtual health advisory services. Int. J. Inf. Manag. 2015, 35, 229–243. [CrossRef]

9. Yan, Z.; Wang, T.; Chen, Y.; Zhang, H. Knowledge sharing in online health communities: A social exchange
theory perspective. Inf. Manag. 2016, 53, 643–653. [CrossRef]

10. Barrett, M.; Oborn, E.; Orlikowski, W. Creating value in online communities: The sociomaterial configuring
of strategy, platform, and stakeholder engagement. Inf. Syst. Res. 2016, 27, 704–723. [CrossRef]

http://dx.doi.org/10.1080/07421222.2017.1296742
http://dx.doi.org/10.3390/su10051632
http://dx.doi.org/10.2196/jmir.6834
http://www.ncbi.nlm.nih.gov/pubmed/28438725
http://dx.doi.org/10.1002/asi.23064
http://hints.cancer.gov/question-details.aspx?PK_Cycle=8&qid=757
http://hints.cancer.gov/question-details.aspx?PK_Cycle=8&qid=757
http://www.cnnic.cn/hlwfzyj/hlwxzbg/hlwtjbg/201701/P020170123364672657408.pdf
http://www.cnnic.cn/hlwfzyj/hlwxzbg/hlwtjbg/201701/P020170123364672657408.pdf
http://dx.doi.org/10.1016/j.ijmedinf.2014.08.004
http://www.ncbi.nlm.nih.gov/pubmed/25193501
http://dx.doi.org/10.1016/j.ijinfomgt.2014.12.004
http://dx.doi.org/10.1016/j.im.2016.02.001
http://dx.doi.org/10.1287/isre.2016.0648


Sustainability 2018, 10, 3292 16 of 18

11. Vuong, Q.-H. Survey data on Vietnamese propensity to attend periodic general health examinations. Sci. Data
2017, 4, 170142. [CrossRef] [PubMed]

12. Remondino, M. Information Technology in Healthcare: HHC-MOTES, a Novel Set of Metrics to Analyse IT
Sustainability in Different Areas. Sustainability 2018, 10, 2721. [CrossRef]

13. Lu, H.-Y.; Shaw, B.R.; Gustafson, D.H. Online health consultation: Examining uses of an interactive cancer
communication tool by low-income women with breast cancer. Int. J. Med. Inf. 2011, 80, 518–528. [CrossRef]
[PubMed]

14. Lei, J.; Tang, B.; Lu, X.; Gao, K.; Jiang, M.; Xu, H. A comprehensive study of named entity recognition in
Chinese clinical text. J. Am. Med. Inform. Assoc. 2014, 21, 808–814. [CrossRef] [PubMed]

15. Kagashe, I.; Yan, Z.; Suheryani, I. Enhancing Seasonal Influenza Surveillance: Topic Analysis of Widely Used
Medicinal Drugs Using Twitter Data. J. Med. Internet Res. 2017, 19, e315. [CrossRef] [PubMed]

16. Nikfarjam, A.; Sarker, A.; O’Connor, K.; Ginn, R.; Gonzalez, G. Pharmacovigilance from social media: Mining
adverse drug reaction mentions using sequence labeling with word embedding cluster features. J. Am. Med.
Inform. Assoc. 2015, 22, 671–681. [CrossRef] [PubMed]

17. Ginsberg, J.; Mohebbi, M.H.; Patel, R.S.; Brammer, L.; Smolinski, M.S.; Brilliant, L. Detecting influenza
epidemics using search engine query data. Nature 2009, 457, 1012. [CrossRef] [PubMed]

18. Pirmohamed, M.; James, S.; Meakin, S.; Green, C.; Scott, A.K.; Walley, T.J.; Farrar, K.; Park, B.K.;
Breckenridge, A.M. Adverse drug reactions as cause of admission to hospital: Prospective analysis of
18 820 patients. BMJ 2004, 329, 15–19. [CrossRef] [PubMed]

19. Liu, Y.; Cheng, Y.; Yan, Z.; Ye, X. Multilevel Analysis of International Scientific Collaboration Network in the
Influenza Virus Vaccine Field: 2006–2013. Sustainability 2018, 10, 1232. [CrossRef]

20. Uzuner, Ö.; South, B.R.; Shen, S.; Duvall, S.L. 2010 i2b2/VA challenge on concepts, assertions, and relations
in clinical text. J. Am. Med. Inform. Assoc. 2011, 18, 552–556. [CrossRef] [PubMed]

21. Gupta, S.; MacLean, D.L.; Heer, J.; Manning, C.D. Induced lexico-syntactic patterns improve information
extraction from online medical forums. J. Am. Med. Inform. Assoc. 2014, 21, 902–909. [CrossRef] [PubMed]

22. Song, M.; Yu, H.; Han, W.-S. Developing a hybrid dictionary-based bio-entity recognition technique.
BMC Med. Inform. Decis. Mak. 2015, 15, S9. [CrossRef] [PubMed]

23. Liu, J.; Zhao, S.; Zhang, X. An ensemble method for extracting adverse drug events from social media.
Artif. Intell. Med. 2016, 70, 62–76. [CrossRef] [PubMed]

24. Coden, A.; Savova, G.; Sominsky, I.; Tanenblatt, M.; Masanz, J.; Schuler, K.; Cooper, J.; Guan, W.; de Groen, P.C.
Automatically extracting cancer disease characteristics from pathology reports into a Disease Knowledge
Representation Model. J. Biomed. Inform. 2009, 42, 937–949. [CrossRef] [PubMed]

25. Sanz, X.; Pareja, L.; Rius, A.; Rodenas, P.; Abdon, N.; Galvez, J.; Esteban, L.; Escriba, J.M.; Borras, J.M.; Ribes, J.
Definition of a SNOMED CT pathology subset and microglossary, based on 1.17 million biological samples
from the Catalan Pathology Registry. J. Biomed. Inform. 2018, 78, 167–176. [CrossRef] [PubMed]

26. Saha, S.K.; Sarkar, S.; Mitra, P. Feature selection techniques for maximum entropy based biomedical named
entity recognition. J. Biomed. Inform. 2009, 42, 905–911. [CrossRef] [PubMed]

27. Jiang, M.; Chen, Y.; Liu, M.; Rosenbloom, S.T.; Mani, S.; Denny, J.C.; Xu, H. A study of machine-learning-based
approaches to extract clinical entities and their assertions from discharge summaries. J. Am. Med.
Inform. Assoc. 2011, 18, 601–606. [CrossRef] [PubMed]

28. Sampathkumar, H.; Chen, X.-W.; Luo, B. Mining adverse drug reactions from online healthcare forums using
hidden Markov model. BMC Med. Inform. Decis. Mak. 2014, 14, 91. [CrossRef] [PubMed]

29. Sun, C.; Yi, G.; Wang, X.; Lin, L. Rich features based Conditional Random Fields for biological named entities
recognition. Comput. Biol. Med. 2007, 37, 1327–1333. [CrossRef] [PubMed]

30. Kovačević, A.; Dehghan, A.; Filannino, M.; Keane, J.A.; Nenadic, G. Combining rules and machine learning
for extraction of temporal expressions and events from clinical narratives. J. Am. Med. Inform. Assoc. 2013,
20, 859–866. [CrossRef] [PubMed]

31. Xie, J.; Liu, X.; Zeng, D.D. Mining e-cigarette adverse events in social media using Bi-LSTM recurrent neural
network with word embedding representation. J. Am. Med. Inform. Assoc. 2017, 25, 72–80. [CrossRef]
[PubMed]

32. Xiang, Y. Chinese Named Entity Recognition with Character-Word Mixed Embedding. In Proceedings of the
2017 ACM on Conference on Information and Knowledge Management, Singapore, 6–10 November 2017;
pp. 2055–2058.

http://dx.doi.org/10.1038/sdata.2017.142
http://www.ncbi.nlm.nih.gov/pubmed/28972572
http://dx.doi.org/10.3390/su10082721
http://dx.doi.org/10.1016/j.ijmedinf.2011.03.011
http://www.ncbi.nlm.nih.gov/pubmed/21530381
http://dx.doi.org/10.1136/amiajnl-2013-002381
http://www.ncbi.nlm.nih.gov/pubmed/24347408
http://dx.doi.org/10.2196/jmir.7393
http://www.ncbi.nlm.nih.gov/pubmed/28899847
http://dx.doi.org/10.1093/jamia/ocu041
http://www.ncbi.nlm.nih.gov/pubmed/25755127
http://dx.doi.org/10.1038/nature07634
http://www.ncbi.nlm.nih.gov/pubmed/19020500
http://dx.doi.org/10.1136/bmj.329.7456.15
http://www.ncbi.nlm.nih.gov/pubmed/15231615
http://dx.doi.org/10.3390/su10041232
http://dx.doi.org/10.1136/amiajnl-2011-000203
http://www.ncbi.nlm.nih.gov/pubmed/21685143
http://dx.doi.org/10.1136/amiajnl-2014-002669
http://www.ncbi.nlm.nih.gov/pubmed/24970840
http://dx.doi.org/10.1186/1472-6947-15-S1-S9
http://www.ncbi.nlm.nih.gov/pubmed/26043907
http://dx.doi.org/10.1016/j.artmed.2016.05.004
http://www.ncbi.nlm.nih.gov/pubmed/27431037
http://dx.doi.org/10.1016/j.jbi.2008.12.005
http://www.ncbi.nlm.nih.gov/pubmed/19135551
http://dx.doi.org/10.1016/j.jbi.2017.11.010
http://www.ncbi.nlm.nih.gov/pubmed/29158204
http://dx.doi.org/10.1016/j.jbi.2008.12.012
http://www.ncbi.nlm.nih.gov/pubmed/19535010
http://dx.doi.org/10.1136/amiajnl-2011-000163
http://www.ncbi.nlm.nih.gov/pubmed/21508414
http://dx.doi.org/10.1186/1472-6947-14-91
http://www.ncbi.nlm.nih.gov/pubmed/25341686
http://dx.doi.org/10.1016/j.compbiomed.2006.12.002
http://www.ncbi.nlm.nih.gov/pubmed/17239841
http://dx.doi.org/10.1136/amiajnl-2013-001625
http://www.ncbi.nlm.nih.gov/pubmed/23605114
http://dx.doi.org/10.1093/jamia/ocx045
http://www.ncbi.nlm.nih.gov/pubmed/28505280


Sustainability 2018, 10, 3292 17 of 18

33. Peng, N.; Dredze, M. Named entity recognition for chinese social media with jointly trained embeddings.
In Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing, Lisbon,
Portugal, 17–21 September 2015; pp. 548–554.

34. Unanue, I.J.; Borzeshi, E.Z.; Piccardi, M. Recurrent neural networks with specialized word embeddings for
health-domain named-entity recognition. J. Biomed. Inform. 2017, 76, 102–109. [CrossRef] [PubMed]

35. Lample, G.; Ballesteros, M.; Subramanian, S.; Kawakami, K.; Dyer, C. Neural Architectures for Named Entity
Recognition. In Proceedings of the NAACL-HLT, San Diego, CA, USA, 12–17 June 2016; pp. 260–270.

36. Xu, Y.; Wang, Y.; Liu, T.; Liu, J.; Fan, Y.; Qian, Y.; Tsujii, J.; Chang, E.I. Joint segmentation and named entity
recognition using dual decomposition in Chinese discharge summaries. J. Am. Med. Inform. Assoc. 2013, 21,
e84–e92. [CrossRef] [PubMed]

37. Li, D.; Hu, T.; Li, J.; Qian, Q.; Zhu, W. Construction and Application of the Chinese Unified Medical Language
System. J. Intell. 2011, 30, 147–151.

38. LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436. [CrossRef] [PubMed]
39. Mikolov, T.; Sutskever, I.; Chen, K.; Corrado, G.S.; Dean, J. Distributed representations of words and phrases

and their compositionality. In Proceedings of the 26th International Conference on Neural Information
Processing Systems, Lake Tahoe, NV, USA, 5–10 December 2013; pp. 3111–3119.

40. Duan, H.; Sui, Z.; Tian, Y.; Li, W. The cips-sighan clp 2012 chineseword segmentation onmicroblog corpora
bakeoff. In Proceedings of the Second CIPS-SIGHAN Joint Conference on Chinese Language Processing,
Tianjin, China, 20–21 December 2012; pp. 35–40.

41. Klein, D.; Smarr, J.; Nguyen, H.; Manning, C.D. Named entity recognition with character-level models.
In Proceedings of the CoNLL-2003, Edmonton, AB, Canada, 31 May–1 June 2003; pp. 180–183.

42. Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, Ł.; Polosukhin, I.
Attention is all you need. In Proceedings of the Advances in Neural Information Processing Systems,
Long Beach, CA, USA, 4–9 December 2017; pp. 5998–6008.

43. Marcus, G. Deep learning: A critical appraisal. arXiv, 2018; arXiv:1801.00631.
44. Hochreiter, S.; Schmidhuber, J. Long short-term memory. Neural Comput. 1997, 9, 1735–1780. [CrossRef]

[PubMed]
45. Lafferty, J.; McCallum, A.; Pereira, F. Conditional random fields: Probabilistic models for segmenting and

labeling sequence data. In Proceedings of the Eighteenth International Conference on Machine Learning,
Williamstown, MA, USA, 28 June–1 July 2001; pp. 282–289.

46. Ferlay, J.; Soerjomataram, I.; Dikshit, R.; Eser, S.; Mathers, C.; Rebelo, M.; Parkin, D.M.; Forman, D.; Bray, F.
Cancer incidence and mortality worldwide: Sources, methods and major patterns in GLOBOCAN 2012.
Int. J. Cancer 2014, 5, E359–E386.

47. Blackman, N.J.M.; Koval, J.J. Interval estimation for Cohen’s kappa as a measure of agreement. Stat. Med.
2000, 19, 723–741. [CrossRef]

48. Yang, H. Replication Data for: Toward Sustainable Virtualized Healthcare: Extracting Medical Entities in
Chinese Online Health Consultations with Deep Neural Networks. Available online: https://doi.org/10.
7910/DVN/4GBJIU (accessed on 1 September 2018).

49. Mao, X.; Dong, Y.; He, S.; Bao, S.; Wang, H. Chinese word segmentation and named entity recognition
based on conditional random fields. In Proceedings of the Sixth SIGHAN Workshop on Chinese Language
Processing, Hyderabad, India, 11–12 January 2008.

50. Song, S.; Zhang, N.; Huang, H. Named entity recognition based on conditional random fields. Clust. Comput.
2017, 1–12. [CrossRef]

51. Kudo, T. CRF++: Yet Another CRF Toolkit. Available online: http://crfpp.sourceforge.net/ (accessed on
13 March 2018).

52. Abadi, M.; Barham, P.; Chen, J.; Chen, Z.; Davis, A.; Dean, J.; Devin, M.; Ghemawat, S.; Irving, G.; Isard, M.
TensorFlow: A System for Large-Scale Machine Learning. In Proceedings of the 2016 OSDI, Savannah, GA,
USA, 2–4 November 2016; pp. 265–283.

53. Yang, H. CNMER: A Model for Chinese Medical Named Entity Extraction. Github, 2018. Available online:
https://github.com/yhzbit/CNMER (accessed on 20 August 2018).

54. Kingma, D.P.; Ba, J. Adam: A Method for Stochastic Optimization. In Proceedings of the 3rd International
Conference on Learning Representations (ICLR), San Diego, CA, USA, 7–9 May 2015.

http://dx.doi.org/10.1016/j.jbi.2017.11.007
http://www.ncbi.nlm.nih.gov/pubmed/29146561
http://dx.doi.org/10.1136/amiajnl-2013-001806
http://www.ncbi.nlm.nih.gov/pubmed/23934949
http://dx.doi.org/10.1038/nature14539
http://www.ncbi.nlm.nih.gov/pubmed/26017442
http://dx.doi.org/10.1162/neco.1997.9.8.1735
http://www.ncbi.nlm.nih.gov/pubmed/9377276
http://dx.doi.org/10.1002/(SICI)1097-0258(20000315)19:5&lt;723::AID-SIM379&gt;3.0.CO;2-A
https://doi.org/10.7910/DVN/4GBJIU
https://doi.org/10.7910/DVN/4GBJIU
http://dx.doi.org/10.1007/s10586-017-1146-3
http://crfpp.sourceforge.net/
https://github.com/yhzbit/CNMER


Sustainability 2018, 10, 3292 18 of 18

55. Ling, W.; Dyer, C.; Black, A.W.; Trancoso, I.; Fermandez, R.; Amir, S.; Marujo, L.; Luis, T. Finding Function in
Form: Compositional Character Models for Open Vocabulary Word Representation. In Proceedings of the
2015 Conference on Empirical Methods in Natural Language Processing, Lisbon, Portugal, 17–21 September
2015; pp. 1520–1530.

56. Andreassen, H.K.; Trondsen, M.; Kummervold, P.E.; Gammon, D.; Hjortdahl, P. Patients who use
e-mediated communication with their doctor: New constructions of trust in the patient-doctor relationship.
Qual. Health Res. 2006, 16, 238–248. [CrossRef] [PubMed]

57. Nickerson, R.S. Confirmation bias: A ubiquitous phenomenon in many guises. Rev. Gen. Psychol. 1998, 2,
175. [CrossRef]

58. Patel, V.L.; Kaufman, D.R.; Arocha, J.F. Emerging paradigms of cognition in medical decision-making.
J. Biomed. Inform. 2002, 35, 52–75. [CrossRef]

59. Luhmann, N. Trust and Power Chichester; John Wiley and Sons, Inc.: Chichester, UK, 1979.
60. Hall, M.A.; Dugan, E.; Zheng, B.; Mishra, A.K. Trust in physicians and medical institutions: What is it, can it

be measured, and does it matter? Milbank Q. 2001, 79, 613–639. [CrossRef] [PubMed]
61. Johansson, E.; Winkvist, A. Trust and transparency in human encounters in tuberculosis control: Lessons

learned from Vietnam. Qual. Health Res. 2002, 12, 473–491. [CrossRef] [PubMed]
62. Singh, J.; Sirdeshmukh, D. Agency and trust mechanisms in consumer satisfaction and loyalty judgments.

J. Acad. Mark. Sci. 2000, 28, 150–167. [CrossRef]
63. Abegunde, D.O.; Mathers, C.D.; Adam, T.; Ortegon, M.; Strong, K. The burden and costs of chronic diseases

in low-income and middle-income countries. Lancet 2007, 370, 1929–1938. [CrossRef]
64. van der Eijk, M.; Faber, M.J.; Aarts, J.W.; Kremer, J.A.; Munneke, M.; Bloem, B.R. Using online health

communities to deliver patient-centered care to people with chronic conditions. J. Med. Internet Res. 2013, 15,
e115. [CrossRef] [PubMed]

65. Vuong, Q.-H.; Ho, T.-M.; Nguyen, H.-K.; Vuong, T.-T. Healthcare consumers’ sensitivity to costs: A reflection
on behavioural economics from an emerging market. Palgrave Commun. 2018, 4, 70. [CrossRef]

66. Goldzweig, C.L.; Towfigh, A.; Maglione, M.; Shekelle, P.G. Costs and benefits of health information
technology: New trends from the literature. Health Aff. (Millwood) 2009, 28, w282–w293. [CrossRef]
[PubMed]

67. Lorig, K.R.; Holman, H.R. Self-management education: History, definition, outcomes, and mechanisms.
Ann. Behav. Med. 2003, 26, 1–7. [CrossRef] [PubMed]

68. Newman, S.; Steed, L.; Mulligan, K. Self-management interventions for chronic illness. Lancet 2004, 364,
1523–1537. [CrossRef]

69. Guo, S.; Guo, X.; Fang, Y.; Vogel, D. How doctors gain social and economic returns in online health-care
communities: A professional capital perspective. J. Manag. Inf. Syst. 2017, 34, 487–519. [CrossRef]

70. Peng, H.; Ma, Y.; Li, Y.; Cambria, E. Learning multi-grained aspect target sequence for Chinese sentiment
analysis. Knowl.-Based Syst. 2018, 148, 167–176. [CrossRef]

71. Zhu, G.; Iglesias, C.A. Exploiting semantic similarity for named entity disambiguation in knowledge graphs.
Expert Syst. Appl. 2018, 101, 8–24. [CrossRef]

72. Pourgholamali, F.; Kahani, M.; Bagheri, E.; Noorian, Z. Embedding unstructured side information in product
recommendation. Electron. Commer. Res. Appl. 2017, 25, 70–85. [CrossRef]

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1177/1049732305284667
http://www.ncbi.nlm.nih.gov/pubmed/16394212
http://dx.doi.org/10.1037/1089-2680.2.2.175
http://dx.doi.org/10.1016/S1532-0464(02)00009-6
http://dx.doi.org/10.1111/1468-0009.00223
http://www.ncbi.nlm.nih.gov/pubmed/11789119
http://dx.doi.org/10.1177/104973202129120025
http://www.ncbi.nlm.nih.gov/pubmed/11939249
http://dx.doi.org/10.1177/0092070300281014
http://dx.doi.org/10.1016/S0140-6736(07)61696-1
http://dx.doi.org/10.2196/jmir.2476
http://www.ncbi.nlm.nih.gov/pubmed/23803284
http://dx.doi.org/10.1057/s41599-018-0127-3
http://dx.doi.org/10.1377/hlthaff.28.2.w282
http://www.ncbi.nlm.nih.gov/pubmed/19174390
http://dx.doi.org/10.1207/S15324796ABM2601_01
http://www.ncbi.nlm.nih.gov/pubmed/12867348
http://dx.doi.org/10.1016/S0140-6736(04)17277-2
http://dx.doi.org/10.1080/07421222.2017.1334480
http://dx.doi.org/10.1016/j.knosys.2018.02.034
http://dx.doi.org/10.1016/j.eswa.2018.02.011
http://dx.doi.org/10.1016/j.elerap.2017.08.001
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Method 
	Data Preprocessing and Annotation 
	Embedding Layer 
	BiLSTM Layer 
	CRF Layer 

	Evaluation 
	Datasets 
	Metrics 
	Baseline Models 
	Model Settings 

	Results 
	Evaluation Results 
	Extracted Medical Entities 

	Discussion 
	Conclusions 
	References

