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Abstract: As environmental and energy issues have attracted more and more attention from the
public, research on electric vehicles has become extensive and in-depth. As driving range limit is
one of the key factors restricting the development of electric vehicles, the energy supply of electric
vehicles mainly relies on the building of charging stations, battery swapping stations, and wireless
charging lanes. Actually, the latter two kinds of infrastructure are seldom employed due to their
immature technology, relatively large construction costs, and difficulty in standardization. Currently,
charging stations are widely used since, in the real world, there are different types of charging station
with various levels which could be suitable for the needs of network users. In the past, the study of
the location charging stations for battery electric vehicles did not take the different sizes and different
types into consideration. In fact, it is of great significance to set charging stations with multiple
sizes and multiple types to meet the needs of network users. In the paper, we define the model as a
location problem in a capacitated network with an agent technique using multiple sizes and multiple
types and formulate the model as a 0–1 mixed integer linear program (MILP) to minimize the total
trip travel time of all agents. Finally, we demonstrate the model through numerical examples on
two networks and make sensitivity analyses on total budget, initial quantity, and the anxious range
of agents accordingly. The results show that as the initial charge increases or the budget increases,
travel time for all agents can be reduced; a reduction in range anxiety can increase travel time for
all agents.
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1. Introduction

In recent years, Battery Electric Vehicles (BEVs) have developed rapidly because of the
serious environmental pollution and the huge energy consumption of fuel vehicles [1–3]. With the
improvement of people’s environmental awareness and the strong support from the government,
many companies began to develop and use BEVs [4]. For example, plenty of city buses have been
gradually popularized as electric vehicles, and the proportion of BEVs in private vehicles is increasing
too [5]. BEVs have many advantages over motor vehicles. Since electric vehicles use electricity
and don’t emit exhaust gas, they greatly reduce the pollution of the environment and reduce the
consumption of non-renewable energy such as coal and oil. These kinds of vehicles are also comfortable,
safe, convenient in operation, noise free and possess a long service life [3]. It is predicted that sales of
BEVs will maintain an annual growth rate above 25% by 2025 [6].
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Even though BEVs have many advantages, there are reasons why they have not been popularized
so far. Among the known reasons, the battery is one of the dominant factors. Due to the limited battery
capacity of BEVs, the driving range is also limited. Studies have shown that the longest driving range
of BEVs is 424 km and the shortest driving range is 60 km. Most BEVs’ driving range is distributed from
100 km to 160 km [7]. Nowadays, with the improvement of technology, the fast charging technique is
already well developed, including the CHArge de Move standard (CHAdeMO) and the Combined
Coupler Standard (CCS) [8]. Generally, fast charging can charge up to 80 percent of a vehicle’s rated
battery capacity within 0.2 to 1 h. Slow charging, however, can take 10 to 20 h for full charge [9].
Fast charging is much faster than slow charge, but it’s also more expensive to build a station with
fast chargers. Private BEVs will be more inclined to recharge at home all night long, and thus can be
charged by a slow charger, but for the urgent needs of life, quick charging is greatly needed. Therefore,
the government should set up different sizes and types of charging stations to meet different needs
of travelers.

1.1. Literature Review

The most common way to charge a BEV is to charge its battery by connecting it with a cable
when the vehicle is stationary. This method is generally divided into different grades according to the
charging rate [10]. It takes at least half an hour to charge a battery, even if in a fast way. Another way
to solve this problem is to set up a battery swapping station, which can effectively solve the problem
of a too-long charging time [11]. This can replace a depleted battery with a full one in a short time.
However, this method requires huge battery swapping and storage spaces, and it involves battery
standardization, which is not easy to popularize [5]. Other researchers have proposed wireless
charging, which can not only reduce the charging time, but can also break the mileage limit of electric
vehicles [1,12]. Hence, there is still a very high development potential and research value [13,14].
However, wireless charging still exists at the theoretical level and is temporarily unavailable. The BEV
is still charged by the charging station, so our research is based on charging stations to study the
location problem.

Many previous studies have made great contributions to the location of electric vehicle charging
stations [15–17]. Most researchers define the location problem of charging stations as a flow-capturing
location model, maximal covering location problem, flow-refueling location model, or deviation-flow
refueling model, and so on [18,19]. Consideration of location in this direction does not take the traveler’s
path selection behavior into account. For example, the flow-refueling location model divides a road into
different segments, BEVs do not need to charge at each segment, then charging stations are established
in the joint of each segment to optimize the location of charging stations. In this process, the traveler’s
path selection is not considered. Nevertheless, only several papers study transportation network
equilibrium in the location problem. He et al. [2] considered the network equilibrium properties of
BEVs and explored the optimal location of the public charging stations. While considering the State of
Charge (SOC) and traveling behavior of the BEVs, Lee et al. [20] developed location model for fast
charging stations. Nie et al. [21] proposed a mathematical framework for optimizing the incentive
policy of public funds for the adoption of plug-in electric vehicles. Liu et al. [19] study the location
problem of multiple types of BEV charging facilities, including different levels of plug-in charging
stations, static and dynamic wireless charging facilities. But to the extent of our knowledge, there are
no researchers studied the location problem based user equilibrium model which considers multiple
sizes and multiple types of the charging stations [22]. So in this paper, we try to fill in the research gap.

1.2. Objectives and Contributions

It is important to note that it is not as easy to recharge BEVs as it is to refuel traditional GVs.
Marra et al. [23] stated that the charging time increases for the last 10–20% of the battery capacity
during recharging. Therefore, it is worth paying attention to the recharging time to understand the
transportation system with BEVs. In pursuit of a reasonable level of service, Nie and Ghamami [24]
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investigated the charging infrastructure location problem with a faster charging rate. However,
fast-charging devices are much more expensive than ones with a slow charging rate. Furthermore,
devices with fast charging rates usually need higher voltages. These reasons may limit the installation
of fast-charging devices. Wang and Lin [22] considered multiple types of charging stations with
different charging rates. However, the differences in the charging times for charging stations of
different sizes are not reflected in their research. In reality, charging stations of different sizes may
have different amounts of chargers, so the efficiency in providing charging services will also greatly
differ at the same time. Therefore, in this article, we study the size of the charging station to establish
the optimal combination of charging station size with different charger numbers under a given total
budget. In this paper, we divide the BEV charging time into three parts where the first part is the
queue time, the second part is the fixed charging activity preparation time, and the third is the variable
charging time related to the amount recharged and type of charger. The queue times become shorter
with increasing numbers of chargers.

Specifically, this paper attempts to study the location of BEV charging stations of multiple size
and multiple type by considering the BEV users’ routing choice behaviors. This study aims to assist
government planners for locating various types of BEV charging stations within a certain budget to
minimize public social costs. Furthermore, travel time, charging time, and queuing time for travelers
are all considered for network users. On the one hand, the establishment of the proposed optimization
model can meet the different charging demands of BEV users and improve the service level. In addition,
providing different sizes and types of charging facilities could reduce unnecessary public facilities
investment costs and facilitate government decision-making. It is also of practical significance to the
study of traffic network equilibrium to consider the driving behavior of BEVs and traffic planning and
traffic management in the future, which also has certain value.

The remainder of this paper is organized as follows. Section 2 presents some basic assumptions for
the proposed models. In Section 3, Model formulation is listed to solve the LP-MST problem. And we
also propose solutions to the cross multiplication term. In Section 4, we apply the proposed model
to two common networks including Nguyen-Dupius network and Sioux Falls network, and conduct
sensitivity analysis to the Nguyen-Dupius network to demonstrate the model. Finally, conclusions and
discussions are presented in Section 5.

2. The Location Problem for BEVs with Multiple Size and Multiple Type

2.1. Notation

Table 1 lists all of the indices, parameters, and variables in optimization models appearing in
this paper.

Table 1. Indices, sets, parameters, and variables.

Indices Definition

i, j Index of nodes, i, j ∈ N

(i, j) Index of physical link between two adjacent nodes, (i, j) ∈ L

a Index of agents, a ∈ A, defined based on each O–D pair

w Index of O–D pair, w ∈W

ϕ the type of chargers, ϕ ∈ Φ

o(a) Index of origin node of agent a

d(a) Index of destination node of agent a
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Table 1. Cont.

Indices Definition

Sets

N Set of nodes in the physical transportation network

L Set of links

W Set of origin–destination (O–D) pairs

Φ Set of types of chargers

Parameters

dij Distance of link (i, j) ∈ L

tij Travel time of link (i, j) ∈ L

Capij Capacity of link (i, j) ∈ L

c1 The fixed time for the recharging activity

c2 The recharging rate, which depends on the type of chargers

M An assumed large value as an auxiliary parameter

εϕ The rate of charger ϕ

c f f
ϕ The fixed cost of a charger ϕ station

c f v
ϕ The cost of a charger ϕ

B Total financial budget

Ai An assumed large value as an auxiliary parameter

ma The comfortable electricity range for agent a

w Energy consumption rate of BEVs

zϕ
max Maximum charger capacity

zϕ
min Minimum number of chargers

Lmax The battery size

L0 The initial state of charge

Variables

xa
i,j = 1 if agent a is assigned on link (i, j) ∈ L; = 0 otherwise

sϕ
i = 1 if node i builds charger ϕ; otherwise = 0

ra
i = 1 if agent a recharge at node i ∈ N; = 0 otherwise

Fa
i The recharge amount of electricity at node i ∈ N for agent a

ga,ϕ
i

is equal to the gap between zϕ
i and zϕ

max when agent a recharges in the charger ϕ at node i,
otherwise, ga,ϕ

i equaling to zero.

zϕ
i The number of charger ϕ ∈ Φ at node i ∈ N

La
i The state of charge at node i after recharging for agent a

ρa
ij = 0 if link (i, j) is utilized; unrestricted otherwise for agent a

Ka
i Charging time about agent a at node i ∈ N

Da,ϕ
i Waiting time when charging at charging ϕ ∈ Φ

2.2. Basic Assumptions

First of all, we assume that the travelers using BEVs always choose the path with the lowest travel
cost. The travel cost of BEVs includes the cost of electricity and charging time, but the cost of electricity
is far less than charging time cost. For example, the electricity cost is 12 cents per kilowatt-hour, and the
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hourly charge is 20 dollars per hour in many countries. When a 50-mile trip is completed, the cost of a
daily transit is only 8.7% of the travel time, so only the time cost is considered in the research.

Secondly, we assume that there is at least one path with the lowest cost between an O–D pair.
To make the problem less complicated, it is assumed that power consumption is not related to traffic
congestion, but only to the distance traveled.

Moreover, in the whole network, we assume that only one type of charger can be built in a
specific charging station, and that the type of charger could determine the type of charging station.
Through a charging station, we have the number of chargers as a measure of response charging station
size. The more chargers installed, the larger the size of the charging station that should be built,
and vice versa.

For the objective function, we propose that the total travel time is composed of three parts,
which are the travel time on the road, the charging time, and queue time. Charging time consists of
fixed charging time and charging time related to the type of charging station. The faster the charging
station is used, the shorter the charging time of this part will be. The third part is the queue time,
here we did simplify the processing. The waiting time of users in a charging station is related to the
size of the charging station. When the size of the charging station is large and the number of chargers
is large, the queue time is shorter, therefore we set up a variable to represent the difference between the
highest number of chargers that can be built in a charging station and the actual number constructed.
We consider that when the difference is larger, the waiting time is longer. The smaller the difference is,
the shorter the waiting time will be. This is not a completely reasonable approach, but considering
the complexity of the model, we can simply consider this problem, which can be further studied in
future research.

3. Model Formulation

What we consider is a metropolitan road network, we denote N as the set of nodes and L as the
set of links. o(a) and d(a) represent the origin and destination of each agent a respectively, ma is the
comfortable electricity range for each agent a. tij, dij and Capij correspond to the travel time, distance,
and capacity of each link (i, j). B denotes a total financial budget, and the fixed construction cost of the
class ϕ charging station and the class ϕ charger cost is written as c f f

ϕ and c f v
ϕ. Moreover, w is the rate

of energy consumption. M and Ai both are sufficiently large constants. Let Fa
i and La

i be the recharging
amount of electricity at node i and the state of charge at node i after recharging. Lmax and L0 represent
the battery size and initial state of charge.

As for variables, there are three binary variables. sϕ
i indicates whether the type of charger ϕ is

built at node i, which equals 1 if node i builds charger ϕ and 0 otherwise. In the same way, xa
ij equals 1

if link (i, j) is utilized and 0 otherwise. ra
i equals 1 if agent a recharge at node i and 0 otherwise. ρa

ij
equals 0 if link (i, j) is utilized and is unrestricted otherwise. zi is a non-negative integer variable,
which represents the number of chargers built between the upper and the lower which are represented
by zϕ

min and zϕ
min. ga,ϕ

i equals the difference between zϕ
i and zϕ

max when agent a recharges in the charger
ϕ at node i, otherwise, ga,ϕ

i equals to 0.
ARMSTLP-CN:
Subject to: Flow balance:

∑
i:(i,j)∈L

xa
ij − ∑

i:(j,i)∈L
xa

ji =


−1, j = o(a)

1, j = d(a)

0, otherwise

, ∀a (1)

Budget constraint:

∑
i∈N

∑
ϕ∈Φ

(
c f f

ϕsϕ
i + c f v

ϕzϕ
i

)
≤ B (2)
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Capacity of any station constraint:

zϕ
i ≤ zϕ

maxsϕ
i , ∀i ∈ N, ∀ϕ ∈ Φ (3)

zϕ
i ≥ zϕ

minsϕ
i , ∀i ∈ N, ∀ϕ ∈ Φ (4)

Capacity of any link constraint:

∑
a

xa
ij ≤ Capij, ∀(i, j) ∈ L (5)

Electricity constraint:

La
j − La

i + dijw− Fa
j = ρa

ij, ∀(i, j) ∈ L, ∀a (6)

La
i − dijw ≥ −M

(
1− xa

ij

)
+ ma, ∀(i, j) ∈ L, ∀a (7)

−M
(

1− xa
ij

)
≤ ρa

ij ≤ M
(

1− xa
ij

)
, ∀(i, j) ∈ L, ∀a (8)

0 ≤ Fa
i ≤ M

(
∑

ϕ∈Φ

sϕ
i

)
, ∀i ∈ N, ∀a (9)

0 ≤ La
i ≤ Lmax, ∀i ∈ N, ∀a (10)

La
o = L0 (11)

ra
i ≥

Fa
i

M
, ∀i ∈ N, ∀a (12)

Charger number constraint:

∑
ϕ∈Φ

sϕ
i = 1, ∀i ∈ N (13)

Charging time:
Ka

i = c1ra
i + ∑

ϕ∈Φ

Fa
i sϕ

i εϕ, ∀i ∈ N, ∀a (14)

Charging delay constraint:

Da,ϕ
i = c2ga,ϕ

i , ∀i ∈ N, ∀a, ∀ϕ ∈ Φ (15)

ga,ϕ
i + zϕ

i − ra
i sϕ

i zϕ
max ≥ 0, ∀i ∈ N, ∀a, ∀ϕ ∈ Φ (16)

Variables constraint:
xa

ij ∈ {0, 1}, ∀(i, j) ∈ L, ∀a (17)

sϕ
i ∈ {0, 1}, ∀i ∈ N, ∀ϕ ∈ Φ (18)

ra
i ∈ {0, 1}, ∀i ∈ N, ∀a (19)

zϕ
i ∈ N, ∀i ∈ N, ∀ϕ ∈ Φ (20)

ga,ϕ
i ≥ 0, ∀i ∈ N, ∀a, ∀ϕ ∈ Φ (21)

ρa
ij ∈ R, ∀(i, j) ∈ L, ∀a (22)

In the above, the objective function is to minimize the total trip time of all agents that includes the
travel time ∑a ∑(i,j) tijxa

ij, the charging time ∑a ∑i Ka
i , and the queue time ∑a ∑i ∑ϕ∈Φ Da,ϕ

i . Equation (1)
ensures flow balance. Equation (2) is the budget constraint where the total budget consists of the fixed
cost of a class ϕ station and the variable cost which is equal to the number of chargers multiplied by the
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cost of the charger ϕ. Equations (3) and (4) dictate the capacity of any station constraint. They represent
the maximum capacity and the minimum capacity respectively. Equation (5) suggests the capacity of
any links constraint. Equations (6) and (8) set the electricity constraint, which suggests the relation
between the states of charge of BEV battery at the starting and the ending nodes of any utilized link.
Equation (7) ensures that BEVs do not run out of charge less than the comfortable range on any utilized
link. Equation (9) suggests that if there is no charger at node i, the amount of charging for the BEV
is zero, otherwise the amount of charging is unlimited. Equation (10) specify the maximum and
minimum bounds of the states of charge of the BEV battery. Equation (11) ensures the initial state of
charge. Equation (12) sets whether agent a chooses to recharge at node i or not. Equation (13) ensures
the types of chargers in one node only equal one. Equations (14) and (15) represent the charging time
and the queue time. Equations (17)–(19) set xa

ij, sϕ
i , ra

i are the binary variables. Equations (20)–(22) set

variables zi, ga,ϕ
i , ρa

ij are non-negative integer, nonnegative real number, and real number respectively.
Because of the cross multiplication term, we need to deal with the problem. In order to

simplify the solution, the non-convex problem here is transformed into equivalent MILP by the
reconstruction-linearization technique (RLT). The way of processing is as follows:

As for Equation (14), we assumed that θ
a,ϕ
i = Fa

i sϕ
i , thus, Equation (14) can be rewritten as

Ka
i = c1ra

i + ∑
ϕ∈Φ

θ
a,ϕ
i εϕ, ∀i ∈ N, ∀a (23)

According to the rules of RLT, θ
a,ϕ
i = Fa

i sϕ
i is equivalent to the following linear constraints:

θ
a,ϕ
i ≥ 0, ∀i ∈ N, ∀a, ∀ϕ ∈ Φ (24)

θ
a,ϕ
i − sϕ

i Ai ≤ 0, ∀i ∈ N, ∀a, ∀ϕ ∈ Φ (25)

θ
a,ϕ
i − Fa

i ≤ 0, ∀i ∈ N, ∀a, ∀ϕ ∈ Φ (26)

θ
a,ϕ
i − Fa

i + Ai − sϕ
i Ai ≥ 0, ∀i ∈ N, ∀a, ∀ϕ ∈ Φ (27)

In order to prove the constraints above, let’s make sϕ
i equal to 1 or 0 respectively, to observe

whether the constraints are correct.
First, let sϕ

i = 1, constraints (24)–(27) can be written as

θ
a,ϕ
i ≥ 0, ∀i ∈ N, ∀a, ∀ϕ ∈ Φ (28)

θ
a,ϕ
i − Ai ≤ 0, ∀i ∈ N, ∀a, ∀ϕ ∈ Φ (29)

θ
a,ϕ
i − Fa

i ≤ 0, ∀i ∈ N, ∀a, ∀ϕ ∈ Φ (30)

θ
a,ϕ
i − Fa

i ≥ 0, ∀i ∈ N, ∀a, ∀ϕ ∈ Φ

θ
a,ϕ
i = Fa

i , ∀i ∈ N, ∀a, ∀ϕ ∈ Φ (31)

From constraints (28)–(32), it is obvious that θ
a,ϕ
i = Fa

i , which suggests when the ϕth charger level
is built in node i, θ

a,ϕ
i equals to the charging amount Fa

i . Then as sϕ
i = 0, constraints (24)–(27) can be

written as
θ

a,ϕ
i ≥ 0, ∀i ∈ N, ∀a, ∀ϕ ∈ Φ (32)

θ
a,ϕ
i ≤ 0, ∀i ∈ N, ∀a, ∀ϕ ∈ Φ (33)

θ
a,ϕ
i − Fa

i ≤ 0, ∀i ∈ N, ∀a, ∀ϕ ∈ Φ (34)

θ
a,ϕ
i − Fa

i + Ai ≥ 0, ∀i ∈ N, ∀a, ∀ϕ ∈ Φ (35)

θ
a,ϕ
i = 0, ∀i ∈ N, ∀a, ∀ϕ ∈ Φ (36)
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From the constraints (33)–(37), it is obvious that θ
ϕ
i = 0, which is able to deduce that when the

ϕth charger level is not built in node i, there is no a charging activity. From the equivalence proof,
θ

a,ϕ
i = Fa

i sϕ
i is equivalent to the linear constraints (24)–(27).

In the same way, as for

ga,ϕ
i + zϕ

i − ra
i sϕ

i zϕ
max ≥ 0, ∀i ∈ N, ∀a, ∀ϕ ∈ Φ (37)

We assumed that γ
a,ϕ
i = ra

i sϕ
i , so constraint (16) can be rewritten as

ga,ϕ
i + zϕ

i − γ
a,ϕ
i zϕ

max ≥ 0, ∀i ∈ N, ∀a, ∀ϕ ∈ Φ (38)

According to the rules of RLT, γ
a,ϕ
i = ra

i sϕ
i is equivalent to the following linear constraints:

γ
a,ϕ
i ≥ 0, ∀i ∈ N, ∀a, ∀ϕ ∈ Φ (39)

γ
a,ϕ
i − sϕ

i Ai ≤ 0, ∀i ∈ N, ∀a, ∀ϕ ∈ Φ (40)

γ
a,ϕ
i − ra

i ≤ 0, ∀i ∈ N, ∀a, ∀ϕ ∈ Φ (41)

γ
a,ϕ
i − ra

i + Ai − sϕ
i Ai ≥ 0, ∀i ∈ N, ∀a, ∀ϕ ∈ Φ (42)

In order to prove the constraints above, let’s make sϕ
i equal to 1 or 0 respectively, to observe

whether the constraints are correct.
Let sϕ

i = 1, then constraints (39)–(42) can be written as

γ
a,ϕ
i ≥ 0, ∀i ∈ N, ∀a, ∀ϕ ∈ Φ (43)

γ
a,ϕ
i − Ai ≤ 0, ∀i ∈ N, ∀a, ∀ϕ ∈ Φ (44)

γ
a,ϕ
i − ra

i ≤ 0, ∀i ∈ N, ∀a, ∀ϕ ∈ Φ (45)

γ
a,ϕ
i − ra

i ≥ 0, ∀i ∈ N, ∀a, ∀ϕ ∈ Φ (46)

From constraints (43)–(46), it is obvious that γ
a,ϕ
i = ra

i , which suggests that when the ϕth charger
level is built in node i, γ

a,ϕ
i equals to the charging amount ra

i . Then let sϕ
i = 0, constraints (39)–(42) can

be written as
γ

a,ϕ
i ≥ 0, ∀i ∈ N, ∀a, ∀ϕ ∈ Φ (47)

γ
a,ϕ
i ≤ 0, ∀i ∈ N, ∀a, ∀ϕ ∈ Φ (48)

γ
a,ϕ
i − ra

i ≤ 0, ∀i ∈ N, ∀a, ∀ϕ ∈ Φ (49)

γ
a,ϕ
i − ra

i + Ai ≥ 0, ∀i ∈ N, ∀a, ∀ϕ ∈ Φ (50)

Form constraints (47)–(50), it is obvious that γ
a,ϕ
i = 0, which is able to deduce that when the ϕth

charger level is not built in node i, there is no a charging activity. From the equivalence proof, γ
a,ϕ
i = ra

i
is equivalent to the linear constraints (39)–(42).

From what has been discussed above, a processed model is as follows:
ARMSTLP-CN: min ∑a ∑(i,j) tijxa

ij + ∑a ∑i Ka
i + ∑a ∑i ∑ϕ∈Φ Da,ϕ

i
Subject to:
(1)–(13), (17)–(22), (15), (23)–(27), (38)–(42).
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4. Numerical Examples

In this section, numerical examples are conducted to verify the validity of the proposed model.
The computing device used in this research is a personal computer with Intel(R) Core(TM) i7 6700U
3.40 GHz CPU and 16.00 GB RAM, using the Microsoft Windows 7(64 bit) OS. In numerical experiments,
GAMS, a general optimization package with solver CPLEX, is used as a modeling tool.

In order to validate the proposed model, we first solve the model [ARMSTLP-CN] in the
Nguyen–Dupius network shown in Section 4.1, showing the result of the small network. Secondly,
in Sections 4.2–4.4 the effects of different general budget, anxious range, and initial electric quantity
on the type and size of charging stations are tested several times, and the results are presented and
explained respectively. Finally, results of the larger Sioux Falls network are reported and analyzed
in Section 4.5.

4.1. A Simple Case

In this section, we present numerical examples to demonstrate the proposed models. In order
to validate the proposed model and algorithm, first we solve the model [ARMSTLP-CN] in the
Nguyen-Dupius network shown in Figure 1 [2]. This small network consists of 13 nodes, 19 links,
and four O–D pairs. Free-flow travel time, capacity, and electricity consumption of each link are
tabulated in Table 2.
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Figure 1. Nguyen-Dupius network.

Moreover, we have some assumptions. The total budget B is 38. The initial state of charge
electricity L0 for all O–D pairs is 20 kWh, while the battery capacity Lmax is 24 kWh, ma which means
the comfortable electricity range for agent a is set to 2 kWh. w is equal to 0.29 kWh/mi, which expresses
the energy consumption rate of BEVs. The maximum and minimum number of chargers, zϕ

max and
zϕ

min, are set to 5 and 2 respectively. Table 3 suggests the different O–D pairs demand. Table 4 can
show that the number of agents recharged and the amount of energy recharged of different O–D pairs.
In addition, parameters of different chargers such as c f f

ϕ , c f v
ϕ and εϕ are showed at Table 5. The location

and types of the charging station are given in Table 6.
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Table 2. Nguyen-Dupius network characteristics.

Link Capacity (veh/h) Distance (mile) Travel Time (min)

1-5 40 14.7 9.8
1-12 30 18.9 12.6
4-5 30 18.9 12.6
4-9 30 25.2 16.8
5-6 50 6.3 4.2
5-9 30 18.9 12.6
6-7 50 10.5 7.0

6-10 40 27.3 18.2
7-8 50 10.5 7.0

7-11 40 18.9 12.6
8-2 40 18.9 12.6

9-10 30 21 14.0
9-13 30 18.9 12.6

10-11 30 12.6 8.4
11-2 30 18.9 12.6
11-3 30 16.8 11.2
12-6 30 14.7 9.8
12-8 30 29.4 19.6
13-3 30 23.1 15.4

Table 3. O–D demand.

O/D 2 3

1 20 30
4 30 20

Table 4. O–D energy recharged.

O–D Pair The Number of Agents
Recharged (kWh)

The Amount of Energy
Recharged (kWh)

1-2 10 14.88
1-3 30 69.00
2-4 30 62.91
3-4 20 29.76

Total 90 176.55

Table 5. Parameter setting of different chargers.

ϕ cff
ϕ cfv

ϕ εϕ (min/kWh)

1 1 0.8 41.67
2 1.5 5 10
3 2.5 10 0.67

Table 6. Charging station construction program.

Node The Type of Chargers Chargers Number The Number of Agents Recharged

5 2 2 20
8 1 3 10
9 3 2 10
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4.2. Considering Different Total Budget

We know that different sizes and different types of charging station have a great influence on
the equilibrium. Moreover, the total budget determines the sizes and types of the charging station.
So in the next, we consider about the different total budget, and any other parameters are the same.
The different total budget considered are 27, 32, 35, 43, and 50. The initial state of charge is set to
20 kWh and the range anxieties of all agents are set to 2 kWh. The result considering different total
budget is shown in the figures below.

From Figure 2, we can see that with the budget is increasing, the total trip time is a decreasing
trend. This phenomenon is easy to understand. When the budget is increasing, more charging stations
can be built, and also we can choose the charger with faster charging rates to shorten the charging
time. This inference is confirmed in Figure 3. From Figure 3, we can see that when the budget is low,
more chargers of type 1 are built, and the number of chargers of types 2 and 3 is relatively small. As the
total budget is increasing, more chargers of types 2 and 3 are built. When we see the total number
of chargers, we may find that the trend is to decrease first and then increase. Maybe we can infer
that there is an optimal value between the budget values we set. We can also know the number and
distribution of charger station under different budget levels in Table 7. The difference of budget value
setting will result in different distribution locations and sizes of charging stations.
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Table 7. The number and distribution of charger station under different budget levels.

Node
Total Budget

27 32 35 43 50

1 0 0 0 0 0
2 0 0 0 0 0
3 0 0 0 0 0
4 0 0 0 0 0
5 5 0 0 0 4
6 0 0 2 3 0
7 0 4 0 0 0
8 0 5 0 0 0
9 3 2 2 2 2
10 0 0 0 0 0
11 0 0 0 0 0
12 5 0 0 3 5
13 0 0 0 0 0

4.3. Considering Different Levels of Range Anxiety

Due to the uncertainty of the fuel economy, drivers of BEVs may not feel comfortable fully
depleting their batteries. Instead, they likely reserve a safety margin to hedge against variations of
energy consumption, and they would not allow the remaining battery range to fall below it.

Before this study, some scholars have studied the problem of range anxiety [1,2]. As we all know,
when the range anxiety is larger, the limited driving ranges is smaller, so more charging stations should
be built. Therefore, in this section, we consider the impact of different levels of range anxiety on the
size and type of charging stations. The five different levels of range anxiety considered are 0, 1, 2, 3,
and 4, which is shown in Table 8. The results are as follows.

Figure 4 shows the amount of recharge for different levels of range anxiety. It is obvious that
when range anxiety equals zero, agents of O–D pair 12, O–D pair 13, and O–D pair 43 do not need to
recharge, only O–D pair 42 has to recharge. Moreover, as the range anxiety increases, the amount of
recharge of each O–D pair increases significantly. This phenomenon can be explained that when range
anxiety become greater, the number and the amount of recharge will increase to ensure a remaining
battery state of charge of no less than the comfortable range. The cost of different range anxieties can
be shown from Figure 5. In the same way, as the amount of recharging increases, the cost to build
charging stations will rise and the total trip time will increase. We also can find the type and quantity
distribution of chargers changed under different levels of range anxiety in Figure 6.
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Table 8. The number and distribution of chargers under different levels of range anxiety.

Node
Range Anxiety

0 1 2 3 4

1 0 0 0 0 0
2 0 0 0 0 0
3 0 0 0 0 0
4 0 0 0 0 0
5 0 0 2 0 0
6 0 0 0 3 2
7 0 0 0 0 0
8 0 5 3 2 0
9 0 0 2 2 2
10 3 0 0 0 0
11 0 5 0 0 0
12 0 0 0 0 0
13 0 5 0 0 2

4.4. Considering Different Levels of Initial Capacity

The different initial charge has a great influence on the user’s charging behavior. In this essay
we set the initial capacity to be 15, 17, 18, 20, and 22 kWh, respectively, in order to see the change of
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the cost, the amount of recharge, and the distribution of charger. The amount of recharge for different
levels of initial capacity can be seen in Figure 7. Figure 8 shows the cost of different levels of initial
capacity, and Figure 9 indicates that the type and quantity distribution of chargers under different
levels of initial capacity.

In this article, we set the battery capacity to 24 kWh. From Figure 7, we can see that the when
the initial charge is low, the amount of recharge is at a high level. As the initial charge is increasing,
the amount of recharge of each O–D pair is decreasing. And when the initial capacity is set at 22 kWh,
only O–D42 needs to recharge. It is obvious in Figure 8 that the larger the initial capacity set, the smaller
the cost is. This is a result of that when the initial capacity is higher, a little amount of recharge need
to be provided, so the total cost will be reduced. From Figure 9 we can infer that the effect of initial
charge on the distribution of different charging piles is not great. When the initial charge is set to be 17,
18, and 20 kWh, we see the distribution is not changed. As for Table 9, although the number and type
of chargers have not changed, the distribution of charging stations has changed clearly.Sustainability 2018, 10, x FOR PEER REVIEW  14 of 19 
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Table 9. The number and distribution of chargers under different levels of initial capacity.

Node
Initial Capacity (kWh)

15 17 18 20 22

1 0 0 0 0 0
2 0 0 0 0 0
3 0 0 0 0 0
4 0 0 0 0 0
5 0 3 0 2 0
6 2 0 0 0 0
7 0 2 2 0 0
8 0 0 0 3 0
9 2 2 2 2 3
10 0 0 3 0 0
11 0 0 0 0 0
12 0 0 0 0 0
13 0 0 0 0 0

4.5. A Lager Example

In order to verify the correctness and rationality of the model effectively, the larger Sioux Falls
network shown in Figure 10 is presented as an example. This network consists of 24 nodes, 76 links,
and 576 O–D pairs. The free-flow travel time, capacity, and distance of each link are reported in
Table 10. In this article, we choose eight O–D pairs to make it easier. The O–D demands are listed in
Table 11. As for parameter settings, such as total budget B and battery capacity Lmax, the comfortable
electricity range for agent a, ma, and so on. are the same as Section 4.1. The only different parameter
is the initial state of charge electricity L0, which is set to be 4 kWh. Parameter settings of different
chargers is listed in Table 12.
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Figure 10. Sioux Falls network.

GAMS is used to solve the problem. From the results, we can get that the total travel time is
5571.586 when the parameter is set to the mentioned situation above. Other results are shown in
the table below. Table 13 shows that when the network reach equilibrium, the number of agents
recharged and the amount of energy recharged in each O–D pair. We can see the number of agents
recharged in pair 1-20 is the largest, which has 40 agents recharged in this O–D pair and the amount
of energy recharged is 116.600 kWh. This phenomenon can be inferred from the Sioux Falls network.
In the network node 2 is relatively far away from node 20, so agents in this O–D pair may need
more electricity. This is more intuitive in Figure 11. The location and types of the different charging
station are given in Table 14. We can see that the number of agents recharged in charger 1 accounts for
32 percent of the total, but the amount of energy only accounts for 9 percent. We may infer that a large
number of people in a charging station does not mean a large amount of charging. In addition, we can
see that one charging station is built in the original node, which is also reasonable because when the
electric vehicle starts to drive with the low initial capacity, it might recharge in the original node.

Table 10. Sioux Falls network characteristics.

Link Capacity
(veh/h)

Distance
(mile)

Travel time
(min) Link Capacity

(veh/h)
Distance

(mile)
Travel Time

(min)

1-2 30 5.4 3.6 13-24 45 3.6 2.4
1-3 60 3.6 2.4 14-11 20 3.6 2.4
2-1 20 5.4 3.6 14-15 20 4.5 3
2-6 40 4.5 3 14-23 25 3.6 2.4
3-1 20 3.6 2.4 15-10 25 5.4 3.6
3-4 20 3.6 2.4 15-14 20 4.5 3
3-12 55 3.6 2.4 15-19 20 3.6 2.4
4-3 25 3.6 2.4 15-22 20 3.6 2.4
4-5 35 1.8 1.2 16-8 20 4.5 3
4-11 25 5.4 3.6 16-10 30 4.5 3
5-4 25 1.8 1.2 16-17 20 1.8 1.2
5-6 20 3.6 2.4 16-18 20 2.7 1.8
5-9 20 4.5 3 17-10 25 6.3 4.2
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Table 10. Cont.

Link Capacity
(veh/h)

Distance
(mile)

Travel time
(min) Link Capacity

(veh/h)
Distance

(mile)
Travel Time

(min)

6-2 25 4.5 3 17-16 25 1.8 1.2
6-5 25 3.6 2.4 17-19 30 1.8 1.2
6-8 40 1.8 1.2 18-7 20 1.8 1.2
7-8 30 2.7 1.8 18-16 30 2.7 1.8
7-18 25 1.8 1.2 18-20 20 3.6 2.4
8-6 25 1.8 1.2 19-15 20 3.6 2.4
8-7 30 2.7 1.8 19-17 20 1.8 1.2
8-9 25 3 2 19-20 30 3.6 2.4
8-16 20 4.5 3 20-18 20 3.6 2.4
9-5 20 4.5 3 20-19 20 3.6 2.4
9-8 30 3 2 20-21 25 5.4 3.6
9-10 25 2.7 1.8 20-22 20 4.5 3
10-9 30 2.7 1.8 21-20 25 5.4 3.6

10-11 20 4.5 3 21-22 20 1.8 1.2
10-15 20 5.4 3.6 21-24 30 2.7 1.8
10-16 25 4.5 3 22-15 20 3.6 2.4
10-17 20 6.3 4.2 22-20 20 4.5 3
11-4 20 5.4 3.6 22-21 25 1.8 1.2

11-10 20 4.5 3 22-23 20 3.6 2.4
11-12 30 5.4 3.6 23-14 30 3.6 2.4
11-14 30 3.6 2.4 23-22 20 3.6 2.4
12-3 30 3.6 2.4 23-24 30 1.8 1.2

12-11 20 5.4 3.6 24-13 20 3.6 2.4
12-13 60 2.7 1.8 24-21 30 2.7 1.8
13-12 35 2.7 1.8 24-23 25 1.8 1.2

Table 11. O–D demand.

O/D 13 24 21 20

1 10 12 10 15
2 10 15 10 10

Table 12. Parameter settings of different chargers.

ϕ cff
ϕ cfv

ϕ εϕ(min/kWh)

1 1 0.5 41.67
2 1.5 4 10
3 2.5 8 0.67

Table 13. O–D energy recharged.

O–D pair The Number of Agents Recharged The Amount of Energy Recharged (kWh)

1-13 20 17.420
1-24 15 28.725
1-21 20 53.960
1-20 15 63.960
2-13 30 36.550
2-24 30 52.215
2-21 20 42.640
2-20 40 116.600
Total 190 412.070
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Figure 11. The number of agents recharged in different O–D pairs.

Table 14. Charging station construction program.

Node The Type of Chargers Chargers Number The Number of Agents Recharged The Amount of Energy Recharged

Number Percentage (%) Number Percentage (%)

1 1 5 60 32 36.60 9
3 3 4 130 68 375.47 91

5. Conclusions and Future Research

In this paper, the location distribution of different size and types of charging stations is considered.
By considering the different types of charging stations, different charging demands of different users
can be satisfied. The difference in the size of the charging stations reduces the overall government
budget for the construction of the stations, while meeting the minimum travel time for travelers.
This paper also considers the user’s anxious mileage and other factors comprehensively, making our
problem more practical. In addition, we verify the validity of the model through two networks. In the
Nguyen-Dupius network, we observe the final charging station location and the size and type of
charging station by changing the total budget of the establishment of charging station, the initial
electric quantity, and the anxious range of agents. The final result is practical, indicating that the model
is reasonable and feasible. To make the result more convincing, we applied the model to the Sioux
Falls network which has more nodes, more sections, and is more complex. In conclusion, the results
show that our study is meaningful and practical.

Finally, the objective of our study is only BEVs, which are relatively simple compared to
those mixed BEV and gasoline vehicles. We need to consider both requirements in a hybrid
network. However, the methods mentioned in our paper can be used for reference in future studies.
Especially regarding the size and type of charging station, it is of great reference significance for future
consideration of the location of battery exchange station or wireless charging station. Last but not least,
the dynamic model considering travel time and actual travel distance is more realistic than the static
model in this paper.

Furthermore, several ways can be extended in this model. An effective solution algorithm should
be designed in the future. In the real world, the scale of the network is much higher than the network
proposed in the paper, so the solution rate of the commercial solver may be greatly limited, and we
cannot find the optimal solution within a certain calculation time. Therefore, more efficient algorithms
can be expected in future work. Furthermore, the maximum travel distance can vary according to
environmental factors, including weather, temperature, and so on. These factors will exist in reality
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and will greatly affect the operation of the vehicle, especially electric vehicles. Therefore, these various
factors should be reflected in future studies.
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