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Abstract: An agricultural drought disaster was analyzed with the new insight of rescaled statistics
(R/S) and wavelet analysis in this study. The results showed that: (1) the Hurst index of the
agricultural disaster area, the inundated area of agricultural drought disaster, and the grain loss was
0.821, 0.874, and 0.953, respectively, indicating that the process of the agricultural drought disaster
had stronger positive continuity during the study period; (2) based on the Morlet analysis of the
agricultural disaster area, the inundated area of the agricultural drought disaster, and the grain
loss of China from 1950 to 2016, the time series of the agricultural drought had multiple time scale
features with the periodic variation on a large scale containing the periodic variation on a small scale;
and (3) in the last 67 years, the strong wavelet energy spectrum of the agricultural disaster area,
the inundated area of the agricultural drought disaster, and the grain loss was at the time scale of
≈22–32 years, ≈24–32 years, and ≈25–32 years, respectively. In addition, the first major period in the
agricultural drought disaster area, the inundated area of agricultural drought disaster, and the grain
loss had average periods of approximately 16 years, 16 years, and 18 years, respectively.

Keywords: R/S; Morlet analysis; agricultural drought disaster; periodic oscillation

1. Introduction

Drought is one of the most serious meteorological disasters because of its high frequency, long
duration, and wide range of effects [1]. Generally, there are four types of drought: meteorological,
agricultural, hydrological, and socio-economic drought [2,3]. According to the World Meteorological
Organization, as many as 55 drought indices are in common use to monitor and evaluate the different
types of droughts [4]. For example, the standardized precipitation evapotranspiration index (SPEI),
soil moisture anomaly percentage index (SMAPI), and standardized runoff index (SRI) are used to
describe meteorological, agricultural, and hydrological droughts, respectively [5]. Recent studies
indicate that severe drought with more frequency and persistent duration may be somewhat due to the
increasing intensity of global warming [6]. Drought disaster as a recurring extreme climate event plays
an important part for agriculture and causes huge grain loss all over the world [7]. In addition, drought
disaster also has caused a serious effect on the food security, water resource, and energy recycles.

Therefore, much focus has been put into drought scenarios in recent years. Some scholars study the
relationships between drought and precipitation, climate, and other factors, suggesting the mechanism
of drought, and others analyzed the spatial and temporal characteristics of droughts using the drought
index, indicating the drought distribution and the severity level [8]. However, what will be the trend of
the agricultural drought disaster in the future? What is the periodic oscillation of agricultural drought
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disasters? In this study, we attempt to answer these questions using the new insight of rescaled
statistics (R/S) and wavelet analysis.

Hurst’s rescaled range is to provide an assessment of how the apparent variability of a series
changes with the length of the time-period being considered [9]. Furthermore, it has been applied
to many research fields. Since it is robust with few assumptions about the underlying system, it has
broad applicability for time series analysis [10]. For droughts, which are long-lasting natural disasters
with widespread impacts, R/S is a suitable tool for forecasting the trend of droughts.

The wavelet transform is a mathematical tool that provides a time scale representation of a signal in
the time domain [11] and is usually used to identify the location of the mutation point in non-stationary
signals [12]. It has been used to assess the processes of hydrology and meteorology [13,14]. Furthermore,
droughts are caused by less precipitation and higher temperatures over time. Because drought is
typically a non-stationary process, wavelet transform (WT) is a suitable tool for managing drought data.

China as an agricultural country is a typical monsoon climate country with an agricultural
drought disaster. During the last decade, the severe drought in southwest China has resulted in
tremendous losses, including crop failure, a lack of drinking water, and ecosystem destruction [15].
Therefore, drought has become the key obstacle factor constraining China’s agriculture and sustainable
development. Numerous studies have been conducted in the field of drought risk assessment in China.
Li (2004) established the risk evaluation system of disasters related to drought and winter wheat
in northern China [16]. Zhang (2004) presented a methodology for risk analysis and assessment
of drought disasters to agricultural production in the maize-growing area of Songliao Plain of
China based on geographical information systems (GIS) [17]. Liu (2010) assessed the drought risk
of 13 major grain-producing provinces in China using information diffusion theory [18]. Liu (2013)
used a continuous wavelet transform (CWT) to evaluate and investigate spatial patterns, temporal
variations, and periodicities of dryness/wetness across Qinghai Province, Northwest China [19].
Liu (2017) examined the periodical oscillations of dryness/wetness conditions and the multi-scale
relationships between dryness/wetness conditions and both the El Niño-Southern Oscillation (ENSO)
and Arctic Oscillation (AO) in winter using wavelet analysis in Shaanxi of China [20].

In this study, we used R/S to analyze the trend of the agricultural drought disaster in China.
Then, we quality assessed the periodic oscillation of the agricultural drought disaster at different
time scales during the past 67 years from 1950 to 2016 based on the wavelet analysis. The results may
provide a scientific basis for guiding agricultural production and the agricultural drought prevention
work for China or other places in the world.

Historical agricultural drought disaster studies on time scales provide a very valuable basis
for interpreting the present agricultural drought disaster behavior and for estimating the future
tendency of the agricultural drought disaster with the climate changes. In addition, agricultural
drought forecasting is helpful for establishing agricultural drought mitigation plans and for managing
risks that often ensue in agricultural drought early warning monitoring and water resource systems.
The specific objectives were to (a) forecast the developmental tendency of the agricultural drought
disaster in the future based on the historical drought statistics by R/S, and (b) perform an analysis of
the periodic oscillation of the agricultural drought disaster in China over the study period based on
the wavelet analysis. All of the analyses were from the aspects of the agricultural drought disaster
area, the inundated area of the agricultural drought, and the grain loss.

Data and methods are briefly described in Section 2. Analysis and results are presented in Section 3,
including the trends of the agricultural drought disaster area, the inundated area of the agricultural
drought disaster, and the grain loss, and the agricultural drought periodic oscillation from the aspects
of the agricultural drought disaster area, the inundated area of the agricultural drought, and the grain
loss. Finally, some conclusions are outlined in the final section.
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2. Materials and Methods

2.1. Study Area Description

China is an agricultural country facing the natural disaster risks under the changing climate.
Owing to diverse climate conditions and complicated topography influences, drought is one of the
most frequent natural disasters in China and occurs with great variability at different scales. According
to statistics from the Ministry of Water Resources of the People’s Republic of China, there were 27
provinces (regions) that suffered an agricultural drought disaster in 2016. According to the Ministry of
Civil Affairs of the People’s Republic of China (http://www.mca.gov.cn/), the agricultural drought
damage can be divided into three levels due to the crop damage. The first level is the agricultural
drought disaster area, indicating that the crop damage area accounts for more than 10% of the total
crop area. The second level is the agricultural drought inundated area, suggesting the crop damage
area accounts for more than 30% of the total crop area. The third level is no harvest area, showing the
crop damage area accounts for more than 70% of the total crop area. According to the statistics data
from the Ministry of Water Resources of the People’s Republic of China (http://www.mwr.gov.cn/),
the total agricultural area affected by the drought was 2.02 × 107 ha for the year 2016, of which the
agricultural drought disaster area was 9.8 × 106 ha, the inundated area of agricultural drought disaster
was 6.1 × 106 ha, and no harvest area was 1.02 × 106 ha. The total crop loss was 1.9 × 1010 kg, and the
crop losses due to drought in China were 13.06 billion Yuan during 2016. With the climate change
continuing, agro-drought is a powerful natural force significantly shaping food security in China and
the global world.

2.2. Data

The agricultural drought disaster data (1950 to 2016) used in this study was obtained from the
Ministry of Water Resources of the People’s Republic of China (http://www.mwr.gov.cn/), including
the agricultural drought disaster area (ha), the agricultural drought inundated area (ha), and grain
loss (kg). The data collected by the government and those data was widely used in evaluating the
impact of the drought disaster.

The wavelet analysis was analyzed in MatlabR2015b software (Math Works, Natick, MA,
USA, 2015). The interpolation procedure for the transformed data and the plotting of graphs
were carded out using the Surfer12 plotting software (Golden Software, Golden, CO, USA, 2015).
The interpolation was done using the kriging option in Surfer12, and the linear graph was done by
OriginPro 2017 software (OriginProLab Corporation, Northampton, MA, USA, 2017).

2.3. Methods

2.3.1. R/S Method

We used Hurst’s rescaled range (R/S) analysis and the corresponding Hurst exponent to detect
the future trends of drought disasters in the study area. R/S analysis is the oldest and best-known
method to estimate the Hurst exponent [21,22]. The basic idea of the R/S analytical method can be
described as follows as given in the preview studies [23,24]: for the time series of a certain physical
quantity (τ = 1, 2, . . . , n), the average value of x(τ) is

xτ =
1
τ

τ

∑
t=1

x(t) (1)

where the τ is the number of the time series.
The cumulative deviation is

X(t, τ) =
τ

∑
t=1

(x(t)− xτ), 1 ≤ t ≤ τ (2)

http://www.mca.gov.cn/
http://www.mwr.gov.cn/
http://www.mwr.gov.cn/
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The expression of X(t, τ) is not only related to t but also related to τ. The difference between
maximum X(t) and minimum X(t) at the similar τ value is denoted as

R(t) = max
1≤t≤T

X(t, T)−minX
1≤t≤T

(t, T) (3)

The standard deviation sequence is

S(T) =

√√√√(
1
t

t

∑
t=1

(x(t)− xt)2) (4)

The non-dimensional ratio R/S is defined as

R(T)
S(T)

= (αΓ)H (5)

H is the Hurst index, which is between 0 and 1. Based on a series of studies [26? ], the following
classifications of the time series can be realized: (1) H = 0.5 means that the sequence displays Brownian
motion and the variables will not affect the future. In other words, the time series is an independent
random process, indicating that the current trend will not affect the future trend. (2) 0 < H < 0.5
indicates that the time series presents a long-term correlation, but the future overall trend is contrary
to the past; it describes an anti-persistent, or a mean reverting system. Therefore, the smaller the
H value, the stronger the anti-persistence. (3) 0.5 < H < 1 describes a dynamically persistent series,
or trend-reinforcing series, which means the greater the H value, the direction of the next value is more
likely the same as the current value. That is to say, the process is sustainable, and the shaft additional
forces variation is consistent with the previous variation, and the maintenance is stronger at higher
H values.

2.3.2. The Wavelet Transform

Wavelet analysis is one of the common techniques in signals analysis because the time series
does not need to be stationary compared to the fast Fourier transform (FFT) [27]. In addition,
the wavelet transform can provide information about both time and frequency simultaneously at
different characteristic length scales [28–30]. At present, there are a large number of wavelet transforms
available for various applications [31,32], such as the haar wavelet, the Mexican-hat wavelet, Meyer and
Daubechies, and the Morlet wavelet. The Morlet wavelet is a non-orthogonal complex function that
keeps analysis results within a continuum. Furthermore, in the Morlet wavelet function, the selection
of time scales is arbitrary [33]. In addition, providing a good balance between time and frequency
localization, the Morlet wavelet is used to characterize the frequency, intensity, position of wavelet
spectra peaks, and duration of variations of the stream flow series [34,35]. Therefore, we selected the
Morlet wavelet to analyze the multiple time scales inherent in our data series in this study.

The Morlet wavelet analysis is a complex non-orthogonal continuous wavelet, and the basis of
a Morlet wavelet (Ψ) consisting of a plane wave modulated by a Gaussian function can be defined as

Ψ(η) = π−1/4eiωη−η2/2 (6)

where ω is the dimensionless frequency and η is the dimensionless time parameter. The continuous
wavelet transform (CWT) has an ability to detect significant cycles and their occurrence time in the
observation period. The CWT is defined as

w(a, b) =
1√
a

∫
f (t)·Ψ∗( t− b

a
)dt (7)

where a and b are scale and translation parameters, respectively, and Ψ∗ is the complex conjugate of Ψ.
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The wavelet variance (W(a)) used to detect the main periods contributing to a signal can be
expressed as

W(a) =
1√
a

∫
|Wx(b, a)|

2
db (8)

Since the drought data sets used in this study are of finite length and the Morlet wavelet is not
completely localized in time, errors will occur at the beginning and at the end of the wavelet power
spectrum. In order to reduce the edge effects, we carried out a symmetry extension at both ends of the
drought time series before undertaking the wavelet transform and then removed them.

In our study, the results of the wavelet transform will be presented in the form of four graphs
as follows: the real part of wavelet coefficients, the Morlet wavelet coefficients’ modulus values, the
Morlet wavelet variance, and the major periodic oscillations at the different time scales. The graph of
the real part of wavelet coefficients can be used to reflect the change period of different time scales and
judge the changing trend on different time scales. The Morlet wavelet coefficients’ modulus values
graph can be used to analyze the oscillation energy of different periods. The wavelet variance graph
can be used to determine the relative intensity of interference at different time scales in the signal and
the main time scale. The periodic oscillation fluctuations are a reflection of the graph of the major
periodic oscillations at the different time scales.

The wavelet coefficients and the variance yield of the wavelets were calculated to study the
characteristics of abnormal variations. Furthermore, from the agricultural drought disaster oscillation
information, we could judge the trend of the agricultural drought disasters that may occur in some area.

3. Results and Analysis

3.1. Analysis of the Hurst Index Change Trend of the Agricultural Drought Disaster

A graph is plotted for log (T) vs. log(R/S) and the slope is calculated for the study’s time series,
which is the Hurst index (Figure 1). As shown in Figure 1a–c, the Hurst index of the agricultural
drought disaster area, inundated area of agricultural drought disaster, and grain loss was 0.821
(R2 = 0.99), 0.874 (R2 = 0.988), and 0.953 (R2 = 0.991), respectively. All the three Hurst indexes are
greater than 0.5, indicating that the process of the agricultural drought disaster had a stronger positive
continuity during the study period.
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Figure 1. The change trend of the Hurst index of (a) the agricultural drought disaster area, (b) the
inundated area of agricultural drought disaster, and (c) the grain loss.

As shown in Figure 2, during the study period, the annual agricultural drought disaster area
(Figure 2a), inundated area of agricultural drought disaster (Figure 2b), and grain loss (Figure 2c)
increased in a linear inclined rate at approximately 98.91 × 103 ha per year, 106.74 × 103 ha per year,
4.21 × 108 kg per year, respectively, indicating the overall trend of the agricultural drought increased
in the past. In addition, based on Figure 1, H > 0.5, which means the agricultural drought process
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is sustainable, and the shaft additional forces variation is consistent with the previous variation;
therefore, the agricultural drought will still increase in the future. In other words, the agricultural
disaster area, inundated area of agricultural drought disaster, and grain loss will still increase in the
future, respectively.Sustainability 2018, 10, x FOR PEER REVIEW  6 of 12 
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3.2. Analysis of the Agricultural Drought Disaster Area Variation Characteristics

Figure 3a shows the real part of the wavelet coefficients of the agricultural drought disaster
area from 1950 to 2016. The solid line represents the value was above the norm, indicating the
agricultural drought disaster area increased. By contrast, the dotted line indicates the value ws below
the norm, suggesting the agricultural drought disaster area declined. As shown in Figure 3a, there were
two periodic oscillations at the scale of 6–15 years and 22–32 years. Although the conversion of the
low-valued agricultural drought disaster area to high-valued agricultural drought disaster area was
frequent, the periodic oscillation of 9 cycles was gentle with an overall characteristic at the scale of
6–15 years. Compared to the scale of 6–15 years, the periodic oscillation of 2 cycles was severe at the
scale of 22–32 years with a local characteristic (before 1980). Until the year 2016, the contours of the
agricultural drought disaster area were still not closed, indicating that an agricultural drought disaster
may occur within the next few years.

The Morlet wavelet coefficients’ modulus values of the agricultural drought disaster area are
shown in Figure 3b for the study period. The Morlet wavelet coefficients’ modulus values reflect
the energy density distribution of the agricultural drought disaster area at the different time scales.
Also, the coefficient modulus value represents the periodic strength of the agricultural drought disaster
area. Since the larger the coefficient value of the agricultural drought disaster area, the stronger the
corresponding period, and conversely, the lower the coefficient value, the weaker the corresponding
period. From Figure 3b, it can be seen that the agricultural drought disaster area wavelet energy
spectrum was strong at time scale of ≈21–32 years, indicating the periodic oscillation was obviously
at that time scale, but had a localization characteristic before 1980. Furthermore, the wavelet energy
spectrum of the agricultural drought disaster area was weaker at time scale of ≈7–9 years, but a more
obvious cycle distribution occupied the entire study time domain (1950–2016).

As seen from the Figure 3c, the wavelet variance of the agricultural drought disaster area had
four peaks, corresponding to time scales of 25 years, 15 years, 10 years, and 4 years. Figure 3d shows
the two major periodic oscillations on the time scales of 10 years and 25 years. The largest peak,
corresponding to the time scale of 25 years, had an average period of approximately 16 years with
4 cycles converted, indicating that the period oscillation at the time scale of 25 years fluctuated the
most. Also, the second peak had approximately 8 years with 9 cycles converted at the time scale of
10 years. In summary, the agricultural drought disaster area had obvious wavelet transform period
characteristics, with the short time scale change nesting in a long time scale.



Sustainability 2018, 10, 3257 7 of 12

Sustainability 2018, 10, x FOR PEER REVIEW  7 of 12 

  
                   (a)                                             (b) 

    
                    (c)                                           (d) 

Figure 3. (a) The Morlet wavelet transforms of the agricultural drought disaster area, (b) the Morlet 
wavelet coefficients’ modulus values of the agricultural drought disaster area, (c) the Morlet wavelet 
variance of the agricultural drought disaster area, and (d) the major periodic oscillations at the time 
scales of 10 years and 25 years. 

3.3. Analysis of the Inundated Area of the Agricultural Drought Disaster Variation Characteristics 

The real part of wavelet coefficients of the inundated area of the agricultural drought disaster 
from 1950 to 2016 is depicted in Figure 4a. The solid line represents the value was above the norm, 
indicating the inundated area of the agricultural drought disaster increased. In contrast, the dotted 
line indicates the value was below norm, suggesting the inundated area of the agricultural drought 
disaster declined. As shown in Figure 4a, there were two periodic oscillations at the scale of 10–18 
years and 22–32 years. During the study period, the conversion of the low-valued inundated area of 
the agricultural drought disaster to the high-valued inundated area of the agricultural drought 
disaster was frequent but gentle, and it can be seen that the periodic oscillation had 7 cycles at the 
time scale of 10–18 years. However, at the time scale of 22–32 years, the conversion of the low-valued 
inundated area of the agricultural drought disaster to the high-valued inundated area of the 
agricultural drought disaster occurred with an overall characteristic. Meanwhile, it revealed that the 
next periodic oscillation will increase, according to the dotted contours of the inundated area of the 
agricultural drought disaster closed by 2016. 

Figure 4b shows the Morlet wavelet coefficients’ modulus values of the inundated area of the 
agricultural drought disaster during the study period. The Morlet wavelet coefficients’ modulus 
values reflect the energy density distribution of the inundated area of the agricultural drought 
disaster at the different time scales. In addition, the coefficient modulus value represents the 
periodic strength of the inundated area of the agricultural drought disaster. The larger the 
coefficients value of the inundated area of the agricultural drought disaster, the stronger the 
corresponding period, and conversely, the smaller the coefficient value, the weaker the 
corresponding period. From Figure 4b, it can be seen that the inundated area of the agricultural 
drought disaster wavelet energy spectrum was significant at time scale of ≈24–32 years, indicating 
the periodic oscillation was strong at that time scale, and yet it had a localization characteristic 
before 1980. The wavelet energy spectrum of the inundated area of agricultural drought disaster was 

Figure 3. (a) The Morlet wavelet transforms of the agricultural drought disaster area, (b) the Morlet
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scales of 10 years and 25 years.

3.3. Analysis of the Inundated Area of the Agricultural Drought Disaster Variation Characteristics

The real part of wavelet coefficients of the inundated area of the agricultural drought disaster from
1950 to 2016 is depicted in Figure 4a. The solid line represents the value was above the norm, indicating
the inundated area of the agricultural drought disaster increased. In contrast, the dotted line indicates
the value was below norm, suggesting the inundated area of the agricultural drought disaster declined.
As shown in Figure 4a, there were two periodic oscillations at the scale of 10–18 years and 22–32 years.
During the study period, the conversion of the low-valued inundated area of the agricultural drought
disaster to the high-valued inundated area of the agricultural drought disaster was frequent but
gentle, and it can be seen that the periodic oscillation had 7 cycles at the time scale of 10–18 years.
However, at the time scale of 22–32 years, the conversion of the low-valued inundated area of the
agricultural drought disaster to the high-valued inundated area of the agricultural drought disaster
occurred with an overall characteristic. Meanwhile, it revealed that the next periodic oscillation will
increase, according to the dotted contours of the inundated area of the agricultural drought disaster
closed by 2016.

Figure 4b shows the Morlet wavelet coefficients’ modulus values of the inundated area of the
agricultural drought disaster during the study period. The Morlet wavelet coefficients’ modulus values
reflect the energy density distribution of the inundated area of the agricultural drought disaster at the
different time scales. In addition, the coefficient modulus value represents the periodic strength of the
inundated area of the agricultural drought disaster. The larger the coefficients value of the inundated
area of the agricultural drought disaster, the stronger the corresponding period, and conversely,
the smaller the coefficient value, the weaker the corresponding period. From Figure 4b, it can be seen
that the inundated area of the agricultural drought disaster wavelet energy spectrum was significant
at time scale of ≈24–32 years, indicating the periodic oscillation was strong at that time scale, and yet
it had a localization characteristic before 1980. The wavelet energy spectrum of the inundated area
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of agricultural drought disaster was weaker at time scale of ≈4–13 years, but a more obvious cycle
distribution occupied the entire study time domain (1950–2016), which was similar with the agricultural
drought disaster area.
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oscillations at the time scales of 15 years and 31 years.

We have noticed that there were still four peaks corresponding to the time scales of 31 years,
15 years, 11 years, and 5 years in Figure 4c. The largest peak corresponds to the time scale of 31 years,
indicating that the period oscillation of 31 years fluctuated most; it could be considered as the first
major period in the inundated area of the agricultural drought disaster change. Then, the 15-year time
scale was the second major period oscillation. Figure 4d shows that the largest peak corresponding to
the time scale of 31 years had the average period of approximately 20 years with 3 cycles converted,
indicating that the period oscillation at the time scale of 25 years fluctuated the most. Also, the second
peak had approximately 10 years with 6 cycles converted at the time scale of 15 years. In summary,
the inundated area of the agricultural drought disaster also had clear wavelet transform period
characteristics, with the short time scale change nesting in a long time scale.

3.4. Analysis of the Grain Loss Variation Characteristics

Figure 5a shows the real part of the wavelet coefficients of the grain loss changes from 1950 to
2016. The solid line represents the value was above the norm, indicating the grain loss increased.
In contrast, the dotted line indicates the value was below the norm, suggesting the grain loss declined.
As shown in Figure 5a, there were two periodic oscillations at the scale of 15–22 years and 25–32 years.
During the study period, the conversion of the low-valued grain loss to the high-valued grain loss was
gentle after 1985, and before 1970, there was no periodic oscillation at the time scale of 15–22 years.
Furthermore, the solid contours of the grain loss closed by 2016, indicating that the next periodic
oscillation will decrease at the time scale of 15–22 years. It can be seen that the periodic oscillation with
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an overall characteristic had 3 cycles at the time scale of 22–32 years according to the dotted contours
of the inundated area of drought disaster closing by 2016, suggesting that the next periodic oscillation
will increase.
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Figure 5. (a) The Morlet wavelet transforms of the grain loss, (b) the Morlet wavelet coefficients’
modulus values of the grain loss, (c) the Morlet wavelet variance of the grain loss, and (d) the major
periodic oscillations at the time scales of 18 years and 31 years.

The Morlet wavelet coefficients’ modulus values of the grain loss are shown in Figure 5b for the
study period. The Morlet wavelet coefficients’ modulus values reflect the energy density distribution
of the grain loss at the different time scales. Also, the coefficient modulus value represents the
periodic strength of the grain loss. The larger the coefficients value of the grain loss, the stronger the
corresponding period, and conversely, the smaller the coefficient value, the weaker the corresponding
period. From Figure 5b, it can be seen that the grain loss wavelet energy spectrum was strong at time
scale of ≈25–32 years, indicating the periodic oscillation was at that time scale, but had a localization
characteristic (after 1975).

As seen from Figure 5c, the wavelet variance of the grain loss had four peaks, corresponding
to time scales of 31 years, 18 years, 10 years, and 4 years. Figure 5d shows the two major periodic
oscillations on the time scales of 18 years and 31 years. The largest peak corresponding to the time scale
of 31 years had an average period of approximately 18 years with 3 cycles converted, indicating that the
period oscillation at time scale 31 years fluctuated the most. Also, the second peak had approximately
9 years with 5 cycles converted at the time scale of 18 years. In summary, the grain loss had clear
wavelet transform period characteristics, with the short time scale change nesting in a long time scale.

4. Conclusions

In this study, we first predicted the future trend of the agricultural drought disaster area,
the inundated area of agricultural drought disaster, and the grain loss, respectively, by R/S analysis.
Then, we analyzed the characteristics of the period variation of the agricultural drought disaster area,
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the inundated area of agricultural drought disaster, and the grain loss, respectively, based on the
Morlet wavelet method. Some of the important conclusions derived are given below:

(1) During the study period (1950–2016), the Hurst index of the agricultural disaster area,
the inundated area of agricultural drought disaster and the grain loss was 0.821, 0.874, and 0.953,
respectively, indicating the agricultural drought disaster had a long-enduring characteristic in
China. Since the overall trend of the agricultural drought increased in the past, it will still increase
in the future.

(2) According to the results of the Morlet analysis of the agricultural disaster area and the inundated
area of agricultural drought disaster, we noticed that the time series of the agricultural drought
had multiple time scale features. That is to say, the periodic variation on a large scale contained
periodic variation on a small scale.

(3) In the last 67 years, the strong wavelet energy spectrum of the agricultural disaster area,
the inundated area of agricultural drought disaster, and the grain loss had an average period
of approximately 16 years, 16 years, and 18 years, respectively. Furthermore, the cycle changes
of the agricultural drought disaster area and the inundated area of the agricultural drought
disaster had a localization characteristic before 1980, while the cycle changes of the grain loss had
a localization characteristic after 1975.

(4) According to the results, it was concluded that wavelet analysis can be a useful method to
analyze detailed temporal patterns of agricultural drought disaster over different temporal scales.
Furthermore, in our study, we only forecasted the trend of the agricultural drought disaster,
and as a future work, we will use the model for forecasting the level of drought disaster in
subsequent years. In addition, in this study we took the whole of China as an example; however,
China has a complex climate and different plants, and as such, in a future study we will study
the agricultural drought disaster at the provincial scale.
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