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Abstract: As a frequently occurring natural disaster, drought will cause great damage to agricultural
production and the sustainable development of a social economy, and it is vital to reasonably
evaluate the comprehensive risk level of drought for constructing regional drought-resistant strategies.
Therefore, to objectively expound the uncertainty of a drought risk system, the precondition cloud
and maximum entropy principle coupling model (PCMEP) for drought risk assessment is proposed,
which utilizes the principle of maximum entropy to estimate the probability distribution of cloud
drops, and the two-dimensional precondition cloud algorithm to determine the certainty degree of
drought risk. Moreover, the established PCMEP model is further applied in a drought risk assessment
study in Kunming city covering 1956–2011, and the results indicate that (1) the probability of drought
events for different levels exhibits a slight increasing trend among the 56 historical years; and (2) both
the integrated certainty degree and its component of drought risk are more evident, which will be
more beneficial to determine the drought risk level. In general, the proposed PCMEP model provides
a new reliable idea to evaluate the comprehensive risk level of drought from a more objective and
systematic perspective.

Keywords: drought risk; drought indicator; cloud model; principle of maximum entropy; certainty
degree; Kunming city

1. Introduction

Drought is defined as a recurring natural disaster and primarily characterized as a water deficit
that has a critical and far-reaching impact on natural habitats, ecosystems, and many social and
economic sectors [1,2]. Drought risk assessment is a fundamental research topic for building up the
drought disaster risk management framework, and its key research difficulty is how to construct an
integrated drought index so as to describe the multi-dimensional characteristics of drought, and then
reasonably recognize the drought risk level [3]. To date, much work has been done focusing on the
establishment of an intelligent assessment theoretical framework for drought risk, as indicated by
a meteorological drought index [4,5], a hydrologic drought index [6], an agricultural drought index [7],
and other integrated drought indices [8–10]. The Copula method is a widely used tool to describe the
randomness of drought risk by combining multiple drought indicators [11,12], and radial basis function
artificial neural network (RBF-ANN) [13], the variable fuzzy algorithm [5] and entropy theory [12]
have also been introduced in the drought risk assessment field.
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Additionally, the Cloud model is an effective mathematical cognitive tool, which combines
randomness with fuzziness to further describe the uncertainty throughout a system’s evolution
process, and has been extensively applied in the drought risk assessment field [14]. The application of
the Cloud model in complex system risk assessment is actually the generation process of cloud drops
based on the forward precondition cloud algorithm, and this has been demonstrated in a number
of studies; for instance, J. F. Chen et al. (2012) established a drought disaster risk assessment model
which combined the Cloud model with the entropy weight method based on the drought indices of
disaster-affected rate and disaster-damaged rate [15]; Q. W. Zhang et al. (2014) applied the Cloud model
in a reservoir-induced earthquake risk assessment study, and proposed an improved multi-hierarchy
fuzzy comprehensive risk evaluation model [16]; D. F. Liu et al. (2014) developed a risk assessment
model for urban water hazards based on an RBF artificial neural network and the Cloud model
according to the nonlinear, random, and fuzzy characteristics in water hazards [13]; D. Wang et al.
(2015) established a hybrid wavelet analysis and Cloud model coupling approach for meteorological
and hydrologic data relying on the time-frequency localization features of wavelet analysis and the
strong robustness of the Cloud model [17]; D. Wang et al. (2016) proposed a multi-dimensional
normal cloud model for water quality assessment based on the hypothesis of normally distributed
indices [18,19]; and Q. Fu et al. (2016) constructed a cloud-model-based method for sustainable
development and utilization schemes assessment for regional water resources [20].

To sum up, considerable efforts have been devoted to understanding the randomness and
fuzziness of uncertainty in drought systems. However, little work has been done to explore the
uncertainty of drought occurrence by combining probabilistic properties with fuzzy features, which is
exactly the ultimate motivation of the present study. In this paper, drought is described by the
indicators of anomaly percentages of precipitation and streamflow, and the division standard of
drought level based on the two indicators is expressed by cloud characteristics, then the comprehensive
certainty degree belonging to different drought levels is defined as the drought risk. Therefore, the
remainder of the paper is structured as follows. Firstly, the methodologies, including the cloud
model and entropy theory, are briefly introduced. Secondly, the precondition cloud and maximum
entropy principle coupling model-based approach (PCMEP) is put forward to determine the integrated
certainty degree of drought risk level. Finally, the PCMEP model is applied as an example in the
drought risk assessment study of Kunming city in Yunnan province, China, 1956–2011, to further
validate its availability and reliability.

2. Methodologies

2.1. Precondition Cloud Generator Algorithm

The Cloud model, proposed by the Chinese scholar D. Y. Li, is an effective mathematical cognitive
tool for describing the uncertain transforming mechanism between a qualitative concept and its
quantitative expression [14]. The Cloud model combines a probability feature with fuzzy properties
so as to further expound system uncertainty, and applies three numerical characteristics to depict
the uncertain concept: expectation Ex, entropy En, and hyper-entropy He, and their definition can be
expressed as follows [15,17,19]:

Let U be a universal set denoted by precise data, and C be the qualitative concept related to U,
if the distribution of random variable x (x∈U) satisfies x∈N(Ex, En′) and En′∈N(En, He), then x can
be considered as a sample of concept C, and its certainty degree µ belonging to concept C can be
determined as follows:

µ = exp[− (x− Ex)2

2(En′)2 ] (1)

Besides this, the distribution of random variable x in the universe U is defined as a one-dimension
normal cloud, and point [x, µ(x)] is defined as a cloud drop, which denotes a fuzzy realization of
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random variable x. Figure 1 shows the distribution of cloud drops belonging to concept C, in which,
Ex = 1.5, En = 0.5, and He = 0.1.Sustainability 2018, 10, x FOR PEER REVIEW  3 of 14 

 

 
Figure 1. Cloud map of qualitative concept C (1.5, 0.5, 0.1). 

As shown in Figure 1, expectation Ex is the most representative and typical sample of 
qualitative concept C. Entropy En is relevant to the uncertainty of concept C, which reflects both the 
random dispersing extent of cloud drops and the average accepted scope of concept C. 
Hyper-entropy He is the uncertainty degree of entropy En, which makes all cloud drops uniformly 
distribute on both sides of expectation curve of a normal cloud [14]. The value of Ex, En, and He can 
be obtained from the interval boundaries of concept C according to the “3En” principle; this 
principle reflects the dispersion degree and distribution range of a specific cloud concept, and 
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the two-dimensional precondition cloud algorithm can be achieved as the following steps: 

Figure 1. Cloud map of qualitative concept C (1.5, 0.5, 0.1).

As shown in Figure 1, expectation Ex is the most representative and typical sample of qualitative
concept C. Entropy En is relevant to the uncertainty of concept C, which reflects both the random
dispersing extent of cloud drops and the average accepted scope of concept C. Hyper-entropy He is the
uncertainty degree of entropy En, which makes all cloud drops uniformly distribute on both sides of
expectation curve of a normal cloud [14]. The value of Ex, En, and He can be obtained from the interval
boundaries of concept C according to the “3En” principle; this principle reflects the dispersion degree
and distribution range of a specific cloud concept, and indicates that most of the cloud drops that
contribute to the specific qualitative cloud concept will mainly fall in [Ex − 3En, Ex + 3En]. For details,
the readers can refer to [14,16].

The application of the Cloud model in drought risk assessment is actually the generation process of
cloud drops based on the precondition cloud algorithm. For example, supposing X0 = [P0, R0] denotes
a given drought sample (as shown in Figure 1), the membership degree of X0 belonging to specific
drought risk level C0 can be obtained by the certainty degree µ of multiple drought drops [14,17].
Figure 2 illustrates the calculation procedure of the certainty degree for cloud drops when employing
the anomaly percentage of precipitation P and streamflow R to describe the drought risk properties.
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As shown in Figure 2, let C0 = [CGP(ExP, EnP, HeP), CGR(ExR, EnR, HeR)] denote a specific drought
risk level cloud expressed by the anomaly percentage of precipitation P and streamflow R, and then
the two-dimensional precondition cloud algorithm can be achieved as the following steps:
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Step 1: generate two normally distributed random numbers EnP
′ and EnR

′ satisfying EnP
′∈N(EnP,

HeP) and EnR
′∈N(EnR, HeR), respectively.

Step 2: calculate the certainty degree µ0 of the given drought sample X0 = [P0, R0] belonging to specific
drought risk level cloud C0 as follows

µ0 = exp

{
−
[
(P0 − Exp)

2

2(Enp′)2 +
(R0 − ExR)

2

2(EnR′)2

]}
(2)

Step 3: repeat Step 1 and Step 2 until generating Nc cloud drops, and then the final certainty degree
can be obtained by the average of Nc cloud drops.

2.2. Principle of Maximum Entropy

Uncertainty is one of the fundamental properties of the hydrologic process. As an important
measuring index of uncertainty for a stochastic variable, the concept of entropy was first formulated by
Shannon [21,22], and so far has been extensively and effectively applied in the hydrologic uncertainty
analysis field [22].

The Shannon entropy H(x) of probability density function f (x) for a continuous variable
X = {x1, x2, . . . , xn} can be defined as

H(x) = Hn(p1, p2, . . . , pn) = −
∫ b

a
f (x) ln f (x)dx (3)

where a and b denote the lower and upper limits of X, respectively [11,22]. The entropy H(x) represents
the uncertainty of X, i.e., the larger the entropy H(x) of variable X is, the greater its uncertainty
becomes, and the more disorderly its distribution will be. Therefore, an important application of
Shannon entropy is to estimate the probability distribution of X when its accurate distribution function
cannot be attained based on the existing understanding, and this is exactly the essence of the principle
of maximum entropy (POME) [23]. According to the POME, the probability distribution function of
X with the maximum entropy in terms of given constraints is so far the most accurate and reasonable.
Generally, the POME can be accomplished by solving the following optimization model.

max H = −
∫ b

a f (x) ln f (x)dx
s.t. f (x) > 0 x ∈ [a, b]

C0 =
∫ b

a f (x)dx = 1
Cr =

∫ b
a gr(x) f (x)dx = Er(x) (r = 1, 2, . . . , n)

(4)

where constraint C0 states that the probability density function f (x) must satisfy the total probability
theorem, Cr denotes the other given constraints gr(x) of X, n represents the number of constraints,
and Er(x) denotes the expectation of constraints gr(x). The above optimization model can be solved
through the Lagrange multiplier method [11,23]) and the Accelerating Genetic Algorithm (AGA),
which is a simple and frequently applied intelligent algorithm for optimization modelling [24].

If applying the Lagrange multiplier method to calculate the optimal probability distribution f (x),
the Lagrangian function L, which is subjected to the constraints expressed in Equation (4), can be
written as [11]

L = −
∫ b

a
f (x) ln f (x)dx− (λ0 − 1)

[∫ b

a
f (x)dx− 1

]
−

n

∑
r=1

λ0

[∫ b

a
gr(x) f (x)dx− Er(x)

]
(5)

where λr denotes the Lagrange multipliers. f (x) can be attained through maximizing the function L,
and therefore one differentiates L with respect to f (x) being equal to zero.
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∂L
∂ f

= 0→ −[1 + ln f (x)]− (λ0 − 1)−
n

∑
r=1

λrgr(x) = 0 (6)

Hence, the resulting maximum-entropy-based probability distribution f (x) of X in terms of the
given constraints can be written as

f (x) = exp

[
−λ0 −

n

∑
r=1

λrgr(x)

]
(7)

The probability distribution f (x) of X in Equation (7) is expressed by the Lagrange multipliers
λr. After the determination of the Lagrange multipliers λr by inserting Equation (7) into the original
constraints in Equation (4), then we can obtain [23]

f (x) =
1

n
∑

r=1
Er(x)

exp(− x
n
∑

r=1
Er(x)

) (8)

So, it is obvious that variable X follows a negative exponential distribution pattern when satisfying
the POME, and this estimation method is only applicable when the expectation Er(x) of the constraints
is finite.

2.3. Construction of the Precondition Cloud and Maximum Entropy Principle (PCMEP) Coupling Model for
Drought Risk Assessment

The drought risk is usually described by multiple drought indicators, and the Copula-based
approach is widely used to combine multiple drought indicators to reveal the randomness of a drought
risk system [25–27]. Comparatively, the PCMEP model mainly focuses on the exploration of the
fuzziness of a drought risk system by the generation of cloud drops. Therefore, if the observed drought
sample is not enough to fit the distribution function of the drought indicators, the PCMEP model can
be applied to determine the drought risk from a fuzzy analysis perspective. Generally, the cloud drops
for a specific drought sample generated by the precondition cloud algorithm are all assumed to be
uniformly distributed, while this conclusion cannot be proved based on the existing understanding of
the Cloud model. Therefore, the POME can be introduced to estimate the probability distribution of
cloud drops belonging to different drought risk levels. Then, the PCMEP coupling model for drought
risk assessment can be established according to the following steps:

Step 1: Construction of assessment sample, indices, and standard data set for drought risk.
Considering the availability and representativeness of the drought index data series,
the anomaly percentage of precipitation P and streamflow R are employed to indicate the
drought risk, then the cloud characteristics for each drought risk level can be obtained from
the traditional interval standard, and finally the drought risk assessment sample set can be
established and denoted as X = {(Pi, Ri)|i = 1 − M}, where M represents the number of
drought samples.

Step 2: Calculation of the certainty degree belonging to each drought risk level by the precondition
cloud algorithm. If hypothesizing that uijk denotes the certainty degree of the ith drought
sample and the jth cloud drop belonging to the kth drought risk level, then the final certainty
degree matrix can be denoted as U = {uijk|i = 1 − M, j = 1 − N, k = 1 − K}, where N and
K represent the number of cloud drops and drought risk levels, respectively.

Step 3: Computation of the certainty degree component matrix V = {vik|i = 1 − M, k = 1 − K}.
Supposing vik denotes the certainty degree component of the ith drought sample belonging
to the kth drought risk level, then vik can be obtained based on the probability distribution
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of Nc cloud drops that follows a negative exponential distribution rather than a uniform
distribution, as follows

vik =
N

∑
j=1

pij · uijk (9)

where pij is determined by Equation (8) and represents the probability of the ith drought sample
and the jth cloud drop.

Step 4: Determination of the drought risk level for the drought sample set. If denoting di as the
characteristic value of drought risk level for the ith drought sample, then it becomes

di =
K

∑
k=1

k · vik (10)

So, the trend of drought risk level characteristic di can be utilized to analyze the varying of
drought risk conditions and its relationship with the drought indicators.

3. Case Study

3.1. Data and Study Area

Kunming city, the capital city of Yunnan Province, is located in the southwest of China, which has
a distinct difference between the dry season and the wet season, and the precipitation within the wet
season accounts for 88% of the total. Recently, the occurrence of drought disasters has been frequent in
Kunming city, and the frequency and extent of drought disasters have become more and more severe.
Especially, in 2010, the Yunnan Province experienced an extremely serious drought disaster loss with
the return period of 100 years [28]. Figure 3 shows the location of Kunming city and its surrounding
water system distribution.
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Figure 3. Location of the Caijiacun hydrologic station and Kunming city.

As shown in Figure 3, as the upper reaches of the Yangtse River, the Jinsha River flows along the
northern boundary of Kunming city, and the Pudu River is one of the major tributaries of the Jinsha
River, which consists of the Panlong River in the upper, the Tanglang River in the middle, and the
Pudu River in the lower Jinsha River. The Caijiacun hydrological station, located in the middle of
Pudu River, E 102◦26′ and N 25◦10′, is an important national hydrological station in the lower Jinsha
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river, which undertakes the observation task of flow from Dianchi Lake (the biggest plateau lake in the
upper Yangtse River) and Songhuaba Reservoir (the primary water-supply source of Kunming city).
Therefore, considering the availability of the drought level division standard released by the China
Meteorological Administration in 2006, the anomaly percentage of precipitation and streamflow were
selected as the drought indicators in this study, and the annual average precipitation of Kunming city
and observed streamflow data of Caijiacun station covering 1956 to 2011 were collected to describe the
drought risk features of Kunming city. Additionally, the relationship between the trend of drought
indicators and the drought risk assessment result is discussed in this study. Figure 4 illustrates the
evolutional trend of precipitation and streamflow covering 1956 to 2011, which has a good consistency
with each other, and the Kendall correlation coefficient τ is 0.5468.

Sustainability 2018, 10, x FOR PEER REVIEW  7 of 14 

 

precipitation of Kunming city and observed streamflow data of Caijiacun station covering 1956 to 
2011 were collected to describe the drought risk features of Kunming city. Additionally, the 
relationship between the trend of drought indicators and the drought risk assessment result is 
discussed in this study. Figure 4 illustrates the evolutional trend of precipitation and streamflow 
covering 1956 to 2011, which has a good consistency with each other, and the Kendall correlation 
coefficient τ is 0.5468. 

 
Figure 4. Trend of precipitation and streamflow in Kunming city, 1956–2011. 

3.2. Drought Risk Assessment of Kunming City, 1956–2011, by PCMEP 

Table 1 shows the hydrologic drought classification benchmark indicated by the anomaly 
percentage of precipitation and streamflow, where the drought risk is categorized into five levels, 
i.e., level I (normal), level II (light drought), level III (moderate drought), level IV (severe drought), 
and level V (extreme drought) [29]. Correspondingly, three cloud characteristics Ex, En, and He for 
each drought risk level can be obtained from its interval threshold based on the “3 En” principle of 
normal cloud distribution, which is listed in Table 2. 

Table 1. Division standard of drought level (%). 

Drought Index I II III IV V 
Anomaly Percentage of Precipitation (Pa) −15 < Pa −30 < Pa ≤ −15 −40 < Pa ≤ −30 −45 < Pa ≤ −40 Pa ≤ −45 
Anomaly Percentage of Streamflow (Ra) −10 < Ra −30 < Ra ≤ −10 −50 < Ra ≤ −30 −80 < Ra ≤ −50 Ra ≤ −80 

Table 2. Cloud characteristic value of drought level based on the anomaly percentage of 
precipitation and streamflow. 

Levels 
Pa Ra 

Ex En He Ex En He 
I −15.00 5.20 0.01 −10.00 6.93 0.01 
II −22.50 5.20 0.01 −20.00 6.93 0.01 
III −35.00 3.47 0.01 −40.00 6.93 0.01 
IV −42.50 1.73 0.01 −65.00 10.40 0.01 
V −45.00 1.73 0.01 −80.00 10.40 0.01 

In this study, the standard interval of drought level I and V for each drought indicator is not 
inclusive; therefore, it is hypothesized that the cloud distribution patterns of drought risk level I and 
V are all semi-cloud distribution patterns. Additionally, the entropy value En of level I and V is 
considered to be equal to that of its neighboring level II and IV. Therefore, the entire cloud 
distribution pattern of each drought risk level indicated by the anomaly percentage of precipitation 
and streamflow can be demonstrated as shown in Figure 5. 

Figure 4. Trend of precipitation and streamflow in Kunming city, 1956–2011.

3.2. Drought Risk Assessment of Kunming City, 1956–2011, by PCMEP

Table 1 shows the hydrologic drought classification benchmark indicated by the anomaly
percentage of precipitation and streamflow, where the drought risk is categorized into five levels,
i.e., level I (normal), level II (light drought), level III (moderate drought), level IV (severe drought),
and level V (extreme drought) [29]. Correspondingly, three cloud characteristics Ex, En, and He for
each drought risk level can be obtained from its interval threshold based on the “3 En” principle of
normal cloud distribution, which is listed in Table 2.

Table 1. Division standard of drought level (%).

Drought Index I II III IV V

Anomaly Percentage of
Precipitation (Pa) −15 < Pa −30 < Pa ≤ −15 −40 < Pa ≤ −30 −45 < Pa ≤ −40 Pa ≤ −45

Anomaly Percentage of
Streamflow (Ra) −10 < Ra −30 < Ra ≤ −10 −50 < Ra ≤ −30 −80 < Ra ≤ −50 Ra ≤ −80

Table 2. Cloud characteristic value of drought level based on the anomaly percentage of precipitation
and streamflow.

Levels
Pa Ra

Ex En He Ex En He

I −15.00 5.20 0.01 −10.00 6.93 0.01
II −22.50 5.20 0.01 −20.00 6.93 0.01
III −35.00 3.47 0.01 −40.00 6.93 0.01
IV −42.50 1.73 0.01 −65.00 10.40 0.01
V −45.00 1.73 0.01 −80.00 10.40 0.01

In this study, the standard interval of drought level I and V for each drought indicator is not
inclusive; therefore, it is hypothesized that the cloud distribution patterns of drought risk level I
and V are all semi-cloud distribution patterns. Additionally, the entropy value En of level I and V is
considered to be equal to that of its neighboring level II and IV. Therefore, the entire cloud distribution



Sustainability 2018, 10, 3236 8 of 14

pattern of each drought risk level indicated by the anomaly percentage of precipitation and streamflow
can be demonstrated as shown in Figure 5.Sustainability 2018, 10, x FOR PEER REVIEW  8 of 14 
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Based on the drought risk classification standard expressed by the cloud characteristics,
the drought risk level of Kunming city, 1956–2011, can be evaluated by applying the proposed PCMEP
model. In order to further verify the rationality of PCMEP, the AGA, the traditional precondition
cloud model (PCM, i.e., supposing Nc cloud drops are uniformly distributed), and the traditional
Cloud model (CM, i.e., supposing the weight of each index is equal) were also applied to calculate the
drought risk level of Kunming city, 1956–2011, and the results are listed in Table 3.

Table 3. Drought risk assessment result of Kunming city, 1956–2011.

Year
Certainty Degree Component Drought Risk Level

Characteristics di
Drought Risk Levels

I II III IV V PCMEPAGA PCM CM PCMEPAGA PCM CM

1956 0.9993 0.0007 0.0000 0.0000 0.0000 1.0007 1.0009 1.5512 1.1002 I I II I
1957 1.0000 0.0000 0.0000 0.0000 0.0000 1.0000 1.0000 1.0657 1.0000 I I I I
1958 0.9668 0.0332 0.0000 0.0000 0.0000 1.0332 1.0351 1.6086 1.1812 I I II I
1959 0.5317 0.4683 0.0000 0.0000 0.0000 1.4683 1.4534 2.1213 1.3764 I I II I
1960 0.0000 0.0001 0.4882 0.6187 0.0031 3.9500 2.2011 3.5677 3.3698 IV II IV III
1961 0.9761 0.0239 0.0000 0.0000 0.0000 1.0239 1.2897 1.8325 1.2584 I I II I
1962 0.9992 0.0008 0.0000 0.0000 0.0000 1.0008 1.0009 1.5230 1.0410 I I II I
1963 0.0002 0.1585 0.8381 0.0033 0.0000 2.8445 2.2253 2.8793 2.0469 III II III II
1964 0.9737 0.0263 0.0000 0.0000 0.0000 1.0263 1.1043 1.8198 1.2320 I I II I
1965 1.0000 0.0000 0.0000 0.0000 0.0000 1.0000 1.0000 1.1020 1.0000 I I I I
1966 1.0000 0.0000 0.0000 0.0000 0.0000 1.0000 1.0000 1.0052 1.0000 I I I I
1967 0.2746 0.7253 0.0000 0.0000 0.0000 1.7254 1.7139 2.0508 1.3546 II II II I
1968 1.0000 0.0000 0.0000 0.0000 0.0000 1.0000 1.0000 1.0244 1.0000 I I I I
1969 0.1679 0.8321 0.0001 0.0000 0.0000 1.8322 1.8196 2.0464 1.4142 II II II I
1970 1.0000 0.0000 0.0000 0.0000 0.0000 1.0000 1.0000 1.2222 1.0000 I I I I
1971 1.0000 0.0000 0.0000 0.0000 0.0000 1.0000 1.0000 1.0094 1.0000 I I I I
1972 0.9470 0.0530 0.0000 0.0000 0.0000 1.0530 1.0839 1.8381 1.2430 I I II I
1973 1.0000 0.0000 0.0000 0.0000 0.0000 1.0000 1.0000 1.1280 1.0120 I I I I
1974 1.0000 0.0000 0.0000 0.0000 0.0000 1.0000 1.0000 1.0240 1.0000 I I I I
1975 0.2274 0.7725 0.0001 0.0000 0.0000 1.7727 1.6648 2.1923 1.4541 II II II I
1976 1.0000 0.0000 0.0000 0.0000 0.0000 1.0000 1.0000 1.1717 1.0896 I I I I
1977 0.0051 0.8083 0.1866 0.0000 0.0000 2.1815 2.0901 2.4942 2.2963 II II II II
1978 1.0000 0.0000 0.0000 0.0000 0.0000 1.0000 1.0000 1.2832 1.0006 I I I I
1979 1.0000 0.0000 0.0000 0.0000 0.0000 1.0000 1.0000 1.3440 1.0032 I I I I
1980 0.0606 0.9364 0.0031 0.0000 0.0000 1.9425 1.8819 2.3590 1.5577 II II II II
1981 0.8319 0.1681 0.0000 0.0000 0.0000 1.1681 1.1536 1.9614 1.2711 I I II I
1982 0.0000 0.0032 0.9956 0.0012 0.0000 2.9980 2.5808 2.9886 2.9413 III III III III
1983 1.0000 0.0000 0.0000 0.0000 0.0000 1.0000 1.0000 1.1234 1.0057 I I I I
1984 0.0430 0.9563 0.0007 0.0000 0.0000 1.9576 1.9557 2.2080 1.8471 II II II II
1985 0.9917 0.0083 0.0000 0.0000 0.0000 1.0083 1.1852 1.7590 1.1729 I I II I
1986 1.0000 0.0000 0.0000 0.0000 0.0000 1.0000 1.0000 1.0091 1.0000 I I I I
1987 0.0000 0.0002 0.9993 0.0005 0.0000 3.0003 2.9898 3.1373 3.0560 III III III III
1988 0.0000 0.0002 0.9373 0.0572 0.0053 3.0676 2.8540 3.2212 3.0913 III III III III
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Table 3. Cont.

1989 0.0000 0.0011 0.9748 0.0233 0.0007 3.0236 2.7849 3.0502 2.9807 III III III III
1990 0.9996 0.0004 0.0000 0.0000 0.0000 1.0004 1.0003 1.4557 1.1071 I I I I
1991 1.0000 0.0000 0.0000 0.0000 0.0000 1.0000 1.0000 1.3010 1.0767 I I I I
1992 0.0000 0.0016 0.9983 0.0001 0.0000 2.9985 2.9978 3.0321 2.9583 III III III III
1993 0.0000 0.0006 0.9911 0.0077 0.0006 3.0083 2.8755 3.1627 3.0284 III III III III
1994 1.0000 0.0000 0.0000 0.0000 0.0000 1.0000 1.0000 1.0660 1.0000 I I I I
1995 1.0000 0.0000 0.0000 0.0000 0.0000 1.0000 1.0000 1.1729 1.0001 I I I I
1996 0.9620 0.0380 0.0000 0.0000 0.0000 1.0380 1.0374 1.6376 1.1760 I I II I
1997 1.0000 0.0000 0.0000 0.0000 0.0000 1.0000 1.0000 1.0093 1.0000 I I I I
1998 1.0000 0.0000 0.0000 0.0000 0.0000 1.0000 1.0000 1.0151 1.0000 I I I I
1999 1.0000 0.0000 0.0000 0.0000 0.0000 1.0000 1.0000 1.0017 1.0000 I I I I
2000 1.0000 0.0000 0.0000 0.0000 0.0000 1.0000 1.0000 1.1185 1.0401 I I I I
2001 1.0000 0.0000 0.0000 0.0000 0.0000 1.0000 1.0000 1.0790 1.0000 I I I I
2002 1.0000 0.0000 0.0000 0.0000 0.0000 1.0000 1.0000 1.2917 1.0033 I I I I
2003 0.0363 0.9606 0.0031 0.0000 0.0000 1.9668 1.9602 2.2427 2.1218 II II II II
2004 0.9884 0.0116 0.0000 0.0000 0.0000 1.0116 1.2318 1.7656 1.2164 I I II I
2005 1.0000 0.0000 0.0000 0.0000 0.0000 1.0000 1.0000 1.3727 1.0041 I I I I
2006 0.5643 0.4357 0.0000 0.0000 0.0000 1.4357 1.4073 2.1096 1.3524 I I II I
2007 0.9999 0.0001 0.0000 0.0000 0.0000 1.0001 1.0001 1.4306 1.0130 I I I I
2008 1.0000 0.0000 0.0000 0.0000 0.0000 1.0000 1.0000 1.3146 1.0008 I I I I
2009 0.0000 0.0000 0.0267 0.7417 0.2316 4.2049 3.6700 3.6456 3.6555 IV IV IV IV
2010 0.0021 0.3307 0.6673 0.0000 0.0000 2.6652 2.1227 2.8288 1.7955 III II III II
2011 0.0000 0.0000 0.9977 0.0023 0.0000 3.0023 2.9760 3.4568 3.2522 III III III III

PCMEP, precondition cloud and maximum entropy principle; AGA, Accelerating Genetic Algorithm; PCM,
precondition cloud model; CM, cloud model.

3.3. Result Analysis of Drought Risk Assessment in Kunming City, 1956–2011

As indicated in Table 3, according to the calculation result by the PCMEP method, amongst the
56 historical years of Kunming city, there are 38 years with drought level I, 7 years with drought
level II, 9 years with drought level III, and 2 years with drought level IV. The varying trend of
drought risk determined by PCMEP is generally consistent with that of CM, PCM, and AGA as
illustrated in Figure 6. Furthermore, the variance of the drought risk assessment result of Kunming
city, 1956–2011, determined by PCMEP, AGA, PCM, and CM is 0.7758, 0.6307, 0.5197, and 0.6119,
respectively. Thus, it can be concluded that the difference of drought risk characteristics calculated by
PCMEP is more evident than that of AGA, PCM, and CM, so the PCMEP model is expected to be more
beneficial to recognize an accurate drought risk level of each drought sample.

Additionally, owing to the drought risk being represented by the indicators of the anomaly
percentage of precipitation and streamflow, the calculation result of drought risk level over the
historical years should be consistent with the varying trend of drought indices. To verify this,
the correlation between drought risk characteristics and drought indices was calculated statistically as
shown in Table 4.
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Table 4. Correlation coefficient between drought level characteristics and drought indices.

Drought Index PCMEP AGA PCM CM

Anomaly Percentage of Precipitation −0.8121 −0.7512 −0.7414 −0.7572

Anomaly Percentage of Streamflow −0.8003 −0.6877 −0.6559 −0.6516

As shown in Table 4, the correlation coefficient between the drought risk characteristics of
Kunming city, 1956–2011, calculated by PCMEP and the drought indices series is −0.8121 and −0.8003,
respectively, which are higher than that of the AGA, PCM, and CM methods. Therefore, it can be
deduced that the PCMEP model can better reveal the drought risk properties described by precipitation
and streamflow and estimate the distribution of cloud drops, and the final calculation result is more
reasonable and reliable than that of the AGA, PCM, and CM methods.

3.4. Result Analysis of Drought Risk Assessment in Kunming City, 2009

As shown in Table 3, the characteristic value of drought risk of Kunming city in 2009 is the highest
(level IV) among the 56 historical years. Hence, the calculation result in 2009 is specifically selected to
further elaborate the rationality of the PCMEP model in this study. So, if hypothesizing that the number
of cloud drops is 100 and 10,000, then the probability distribution of cloud drops corresponding to
different drought risk levels when applying the PCMEP model to calculate the drought risk level in
2009 can be illustrated as in Figure 7.
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risk level: I; (b) drought risk level: II; (c) drought risk level: III; (d) drought risk level: IV; (e) drought
risk level: V.

In can be seen that: (1) as shown in Table 3, the certainty degree component for different drought
risk levels in 2009 as determined by PCMEP is 0.0000, 0.0000, 0.0267, 0.7417, and 0.2316, respectively,
and the certainty degree component for level IV is the highest. This is consistent with the certainty
degree distribution of level IV as shown in Figure 7; (2) as a result of the POME constraint, the cloud
drops for each drought risk level determined by PCMEP are negatively and exponentially distributed.
Additionally, it can be evidently testified that the greater the number of cloud drops is, the smoother
its distribution curve becomes, especially for levels IV, III, and V.

Moreover, the certainty degree of the cloud drops itself determined by PCMEP, AGA, and PCM is
essentially the same; the primary difference among the three models is that a different distribution
probability of cloud drops is applied to integrate the final certainty degree. Specifically, the certainty
degree component and distribution differences of cloud drops for each level determined by PCMEP,
AGA, and PCM are exhibited in comparison with CM as shown in Table 5 and Figure 8.
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Table 5. Statistics of the certainty degree component and Boxplot parameters.

Drought Risk Level I II III IV V

Certainty
Degree

Component

PCMEP 0.0000 0.0002 0.4182 0.6646 0.0070
AGA 0.0000 0.0002 0.3900 0.6176 0.0070
PCM 0.0000 0.0001 0.4150 0.5940 0.0062
CM 0.0000 0.0037 0.4055 0.4269 0.1245

Boxplot
Parameters

PCMEP
AGA
PCM

Maximum 0.0000 0.0120 0.9989 0.9997 0.4347
Upper quartiles 0.0000 0.0001 0.6296 0.8389 0.0071

Median 0.0000 0.0000 0.4342 0.5629 0.0035
Lower quartiles 0.0000 0.0000 0.1515 0.3625 0.0009

Minimum 0.0000 0.0000 0.0000 0.0000 0.0000

CM

Maximum 0.0012 0.0255 0.8684 0.5373 0.4364
Upper quartiles 0.0000 0.0048 0.4733 0.4659 0.2536

Median 0.0000 0.0028 0.4131 0.4009 0.1932
Lower quartiles 0.0000 0.0017 0.3712 0.3695 0.0572

Minimum 0.0000 0.0001 0.3236 0.0259 0.0001

It can be indicated from Table 5 and Figure 8 that (1) the distribution interval of cloud drops
determined by PCMEP, AGA, and PCM is comparatively more wider than that of the CM model,
but the average for levels IV and III are 0.6254 and 0.4077, respectively, which are higher than that of the
CM model. Besides this, the average of the certainty degree for level V determined by PCMEP, AGA,
and PCM is much lower than that of the CM model. Therefore, the distribution pattern of cloud drops
determined by PCMEP, AGA, and PCM can further magnify the difference in the certainty degree of
different levels, which is more advantageous to recognize an accurate drought risk level; (2) as for
the PCMEP, AGA, and PCM models, the certainty degree component especially for levels IV and III
calculated by PCMEP is higher than that of the other models. So, it is revealed that the hypothesis
of cloud drops following a negative and exponential distribution for PCMEP is more beneficial to
integrate and identify the final drought risk level.

4. Conclusions

Drought risk assessment is fundamental to natural disaster risk management. In this paper, the
cloud model and entropy theory were utilized to quantify the uncertainty of a drought risk system, and
then a precondition cloud and maximum entropy principle coupling model-based approach (PCMEP)
was proposed to evaluate the comprehensive drought risk level. The primary novelty of the study is
to recognize the drought risk level more reliably and objectively by employing the drought indices
described by cloud characteristics to quantify drought risk, and utilizing the principle of maximum
entropy to optimize the generation of cloud drops. Additionally, based on the application of PCMEP
in the drought risk assessment of Kunming city from 1956 to 2011, the major conclusions are shown
as follows:

(1) The drought risk assessment result determined by PCMEP indicates that there are 38 years with
level I, 7 years with level II, 9 years with level III, and 2 years with level IV, and the drought risk
level in 2009 is the highest from 1956 to 2011 in Kunming city.

(2) Meanwhile, the varying trend of the drought risk calculation result by PCMEP for historical years
agrees well with that of the observed precipitation and streamflow data series, which indicates
that the PCMEP coupling approach can better capture the characteristics of different drought
indices, and the assessment result is more sensitive and reliable.

(3) Furthermore, as a result of the consideration of the probability distribution for cloud drops
subjected to the principle of maximum entropy, the drought risk assessment result of PCMEP is
more beneficial and advantageous for decision-makers to recognize an accurate drought level.
All in all, although the physical mechanism of the conversion from the internal division standard
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of the drought level into cloud characteristics is not clear, the PCMEP model is still an effective
drought risk assessment approach to reveal the fuzziness of drought risk systems. It can be
further extended and applied in combination with the randomness of a drought risk system so as
to characterize the drought features from a more comprehensive and systematic perspective in
the future work.
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