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Abstract: Precipitation provides the most crucial input for hydrological modeling. However, rain gauge
networks, the most common precipitation measurement mechanisms, are sometimes sparse and
inadequately distributed in practice, resulting in an imperfect representation of rainfall spatial variability.
The objective of this study is to analyze the sensitivity of different model structures to the different
density and distribution of rain gauges and evaluate their reliability and robustness. Based on a rain
gauge network of 20 gauges in the Jinjiang River Basin, south-eastern China, this study compared the
performance of two conceptual models (the hydrologic model (HYMOD) and Xinanjiang) and
one process-based distributed model (the water and energy transfer between soil, plants and
atmosphere model (WetSpa)) with different rain gauge distributions. The results show that the
average accuracy for the three models is generally stable as the number of rain gauges decreases but
is sensitive to changes in the network distribution. HYMOD has the highest calibration uncertainty,
followed by Xinanjiang and WetSpa. Differing model responses are consistent with changes in
network distribution, while calibration uncertainties are more related to model structures.

Keywords: rainfall-runoff modeling; rainfall; rain gauge network; sensitivity analysis

1. Introduction

Precipitation is one of the most crucial inputs in catchment runoff modeling and measuring rainfall
is essential for determining hydrological catchment response [1,2]. However, because precipitation
is generated by extremely complicated, non-linear, and sensitive atmospheric physical process [3],
it shows highly spatial and temporal variability at the basin scale [4–7].

Due to the importance of precipitation in modeling, prior work has evaluated the effect
of uncertainty in precipitation on the response of simulated streams in hydrological models.
Wilson et al. [8] found that peak runoff, total runoff volume, and peak timing are considerably
influenced by the spatial distribution and precision of rainfall measurements. Singh [9] provided
a detailed literature review on the influence of spatial–temporal variability in hydrological factors on
rainfall runoff modeling. Sun et al. [10] found that runoff prediction errors at the catchment scale were
significantly related to the representation of rainfall data spatial variability. Shen et al. [11] showed
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that noticeable uncertainty in stream flow and non-point source pollution modeling was caused by
spatial rainfall uncertainty obtained from different precipitation interpolation methods.

Traditionally, there are three mechanisms for measuring or observing precipitation: rain gauges,
weather radar, and satellite-based sensors [12–14]. Rain gauge networks remain the most common
method for measuring precipitation [15–17] due to their higher accuracy in representing rainfall at
their respective locations [18,19] and longer recording period for investigating long-term rainfall runoff
processes [20]. Because a rain gauge is a point measurement for precipitation, representing rainfall
spatial variability must be affected by the density and distribution of rain gauge networks. To address
this relationship, Pardo-Igúzquiza [21] tried to optimize the rain gauge distribution and quantity in
a given catchment. Chen et al. [22] proved that more pluviometers distributed in a catchment resulted
in higher precision in areal precipitation calculation. Xu et al. [23] and Girons Lopez et al. [24] found
there is a threshold value of rain gauge density, before which the presentation of rainfall improves
significantly with increasing rain gauge numbers.

Significant early research focused on the effect of density and distribution of rain gauge networks
on catchment modeling. However, most were only concerned with the impact of density. Michaud and
Sorooshian [25] showed that poor rain gauge densities caused an inadequate simulation of flood peak
in a midsized semi-arid catchment. Chaplot et al. [26] selected rain gauges with a certain empirical
distribution. Andreassian et al. [27], Anctil et al. [28], and Xu et al. [23] randomly selected several
subsets of different numbers of gauges to achieve the same level of rain gauge density and evaluated
the relationship between density and modeling results. Similarly, Drogue and Khediri [29] employed
approximately 100 subsets with the same number of rain gauges and used the mean average of rainfall
data for their evaluated.

In the study of Bardossy and Das [30], distributions of rain gauges with different densities were
obtained from an optimization algorithm. Some studies have considered pluviometer density and
distribution at the same time [31], while other researchers have investigated the effect of udometer
distribution on conceptual models [27,29,32]. These studies have evaluated the individual responses of
different process-based models [26,31], compared a couple of models [33], and even applied a neural
network to rainfall-runoff modeling [28]. However, a comprehensive comparison of the performances
of different models impacted by different rain gauge network distributions, especially networks with
varying numbers of gauges, has yet to be presented.

Identifying the effect of different rain gauges’ distribution on the hydrological response of
conceptual and process-based models will be helpful in (1) optimizing rain gauge networks and
(2) selecting hydrological models for a given basin. Therefore, this study aims to advance the discipline
by comparing the impact of rain gauge distribution on typical conceptual and process-based distributed
models. Furthermore, the potential influence of uncertainty in model calibrations is investigated.
The paper is organized as follows: Section 2 introduces the study area, datasets, applied models and
design scenarios. Section 3 provides the simulation results in two parts: for the whole validation
period and a typical month within the validation period. Section 4 discusses the results and compares
them with previous research. Section 5 provides the study conclusions.

2. Materials and Methods

2.1. Study Area

The Jinjiang River Basin is located in the north-west Ganjiang River Basin, China, with a drainage
area of 6215 km2 above the Gaoan hydrological station (Figure 1). The elevation of the catchment is
higher in the north-west, where most tributaries of the Jinjiang River originate, ranging from 18 to
1096 m above sea level. The Jinjiang River Basin is located in the subtropical region with a warm
and humid climate and receives approximately 1300–2100 mm of precipitation per year, with average
runoff reaching about 184 m3/s at Gaoan station based on measured data. As the second largest
tributary of the Ganjiang River, the Jinjiang River flows into the Ganjiang River about 30 km above
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Nanchang City, the capital city of Jiangxi Province, China. No controlled reservoirs have been built on
the main stream of the Jinjiang River, resulting in a direct threat to Nanchang City during flood periods.
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Figure 1. Map of the study area showing the locations of streams, stream gauges, and rainfall gauges
overlain on a digital elevation model (DEM) of the Jinjiang River Basin.

2.2. Datasets

Daily precipitation data from 20 rain gauges and observed streamflow data from the Gaoan
hydrological station for 2008–2013 were provided by the Jiangxi Hydrological Bureau. The distribution
of the pluviometers with their names and location of the Gaoan hydrological station are shown in
Figure 1. The Thiessen polygon method [34] was used to interpolate the recorded rain data in the
sub-basin areas.

Other meteorological data, including temperature, wind speed, relative humidity, and solar
radiation, was obtained from the China Meteorological Assimilation Driving Datasets for the SWAT
(Soil and Water Assessment Tool) model (CMADS) version 1.1 [35,36]. The CMADS datasets were
developed based on the China Meteorological Assimilation Land Data Assimilation System (CLADS)
with a temporal resolution of 1 day and spatial resolution of 0.25◦ × 0.25◦ [37]. The datasets were
tested in the Heihe River Basin, Manas River Basin, and Hunhe River Basin [37–39], demonstrating
a reliable performance in reflecting the observed meteorological data for China.

The digital elevation map (DEM) was developed by the Data Center for Resources and
Environment Sciences, Chinese Academy of Sciences (RESDC), at a resolution of 1 km × 1 km.
Land-use data with the same resolution as the DEM for the basin in 2000 were developed by the
Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences.
The 10 km × 10 km cell soil data and related soil physical data were gathered from the Institute of Soil
Science, Chinese Academy of Sciences.

2.3. Models

In this study, three hydrological models were applied to quantify hydrologic responses.
Each model was a typical representation of a different model type, ranging from conceptual to
physically based: the hydrologic model (HYMOD) [40], Xinanjiang model (XAJ) [41], and water
and energy transfer between soil, plants and atmosphere model (WetSpa) [42]. All three models
were used as semi-distributed models with the same watershed subdivisions shown in Figure 1.
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Each model operated on every sub-watershed separately with the same parameters while the
rainfall and meteorological data were unique. The outputs from upper sub-basins were used as
the inputs to the following sub-basins. Total streamflow for the entire basin was generated through all
sub-basins according to hydraulic connections using the Muskingum method. Observed daily rainfall,
potential evapotranspiration and runoff data at the Gaoan station were used as input data for all three
models. The WetSpa model required the DEM, land use, and soil type for the study area.

2.3.1. Hydrologic Model (HYMOD)

HYMOD is a watershed-scale conceptual rainfall-runoff model based on the probability-distributed
theory introduced by Moore [40]. It has been used in several rainfall runoff modeling studies [43–46].
This model describes runoff generation using a rainfall excess model and two sets of linear tanks
(one slow flow tank and three identical tanks for quick flow) to reflect the routing process. The five
parameters used in HYMOD are provided in Table 1; schematics for its application can be found in
prior work [44,46].

2.3.2. Xinanjiang Model (XAJ)

The XAJ model, developed by Zhao et al. [41,47], has been widely applied in rainfall runoff
simulation, hydrologic forecasting, and other applications [48,49]. This model is more parameterized in
describing the details of hydrological responses than HYMOD because it has three modules: three-layer
evapotranspiration, runoff generation, and runoff routing [47,50]. XAJ describes the underlying
surface of the study area as three vertical layers, uper, lower, and deep. Runoff generation, routing,
and evaporation are separately performed in the three layers. Descriptions of the 15 parameters,
and their ranges, are provided in Table 1; the calculation process is summarized in Li et al. [50].

2.3.3. Water and Energy Transfer Between Soil, Plants and Atmosphere Model (WetSpa)

WetSpa is a typical physically based distributed model initially proposed by Wang et al. [42] and
further perfected and applied to simulating hydrological processes by many researchers [51–54]. In this
model, hydrological processes include precipitation, evapotranspiration, interception, infiltration,
surface runoff, depression storage, percolation, ground water drainage, and interflow. Water and
energy balances are considered within horizontal grid cells and in four vertical layers, the canopy,
root layer, transmission layer, and saturated zone. Therefore, the model accounts for the highly spatial
variance in meteorological data, terrain, land cover, and soil across a catchment. Values of some
parameters, such as permeability and evapotranspiration rate, in a single grid cell can be determined
from a priori knowledge from land use and soil types. Global parameters still need to be calibrated;
some are presented in Table 1.

2.3.4. Model Calibration and Validation

Calibration is a necessary procedure for all hydrological models before simulating catchment
rainfall runoff. The three described models are calibrated against 2009–2011 observed daily streamflow
data with a 1-year period (2008) for spin-up. The dynamically dimensioned search algorithm (DDS) [55]
is used to optimize parameters for each model. The DDS algorithm is a heuristic global random
search algorithm, in which the search is performed in all dimensions of the decision space and
the number of dimensions is reduced as the search continues. This process makes the DDS a very
efficient optimization algorithm, which has been successfully applied to simulating rainfall runoff and
predicting hydrology [56,57]. With a total 1000 search iterations, the model parameters are optimized
by maximizing the objective function, the Nash–Sutcliffe efficiency (NSE) [58], given by:

NSE = 1− ∑N
i=1 (obsi − simi)

2

∑N
i=1

(
obsi − obs

)2 , (1)
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in which obs and sim are the observed and simulated daily runoff, respectively, obs is the mean value
of observed runoff, i is the ith day, and N is the number of days. A value of 1 for NSE represents
a perfect fit. Considering the equifinality in model calibration [59], each model is calibrated for 30 trials
to achieve a better statistical representativeness of the results in the validation period.

Table 1. Hydrologic model (HYMOD), Xinanjiang model (XAJ), and water and energy transfer between
soil, plants and atmosphere model (WetSpa) parameters.

Model Parameter Description Range

HYMOD
*

Alpha Partitioning factor between quick and slow flow 0.60~0.99
bexp Degree of spatial variability of soil moisture capacity in the catchment 0.00~2.00
Cmax (mm) Maximum soil moisture capacity in the catchment 0.00~1000
Rq (day) Residence time of the linear quick flow tanks 0.00~0.99
Rs (day) Residence time of the linear slow flow tank 0.001~0.10

XAJ *

UM (mm) Averaged soil moisture storage capacity of the upper layer 5~100
LM (mm) Averaged soil moisture storage capacity of the lower layer 50~300
DM (mm) Averaged soil moisture storage capacity of the deep layer 5~100
B Exponential of the distribution to tension water capacity 0~1
Im (%) Percentage of impervious and saturated areas in the catchment 0~0.1
C Coefficient of the deep layer 0.15
Sm (mm) Areal mean free water capacity of the surface soil layer 5~100

Ex
Exponent of the free water capacity curve influencing the development
of the saturated area 1.0~1.5

Kg
Outflow coefficients of the free water storage to groundwater
relationships 0.05~0.70

Ki Outflow coefficients of the free water storage to interflow relationships Kg + Ki = 0.7~0.8
Cg Recession constants for groundwater storage 0.9~0.999
Ci Recession constants for lower interflow storage 0.05~0.95

Cs
Recession constant in the lag and route method for routing through the
channel system within each sub-basin 0.001~0.8

L (day) Lag in time empirical value 0~3

WetSpa *

Ki Interflow scaling factor 0~10
Kg (day−1) Groundwater recession coefficient 0~0.05
Ks Initial soil moisture factor 0~2
Ke Correction factor for potential evapotranspiration 0~2
Kgi (mm) Initial groundwater storage 0~500
Kgm (mm) Groundwater storage scaling factor 0~2000
Kt (◦C) Base temperature for snowmelt −1~1
Ktd (mm ◦C−1 day−1) Temperature degree-day coefficient 0~10
Krd (◦C−1 day−1) Rainfall degree-day coefficient 0~0.05
Km Surface runoff coefficient 0~5
Kp (mm) Rainfall scaling factor 0~500

* Parameter ranges for HYMOD from Moradkhani et al. [45]. Parameter ranges for XAJ from Li et al. [50] and
Lü et al. [60]. The selection and range in parameters for WetSpa from Shafii et al. [61].

The optimized parameter values from the calibration are used to model runoff for 2012–2013.
The statistical criteria used to quantitatively evaluate model performance are relative bias (BIAS),
reflecting the ability of recreating the water balance; the Pearson correlation coefficient (CC),
which manifests the agreement between the simulated and the observed runoff; and NSE, as described
above, which evaluates the goodness of the model results. The first two indexes are given by the
following expressions:

BIAS =
∑N

i=1(simi − obsi)

∑N
i=1 obsi

× 100%, (2)

CC =

1
N ∑N

i=1
(
simi − sim

)(
obsi − obs

)
σsimσobs

, (3)
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where, σsim and σobs are standard deviations of simulated and observed runoff series, sim is the average
value of assumed runoff, and the other symbols are the same as defined for Equation (1). The perfect
value for BIAS is 0; for CC it is 1. The standard deviation σ is calculated as follows:

σ =

√√√√ 1
N

N

∑
i=1

(xi − x)2, (4)

where, xi is the ith value of observed or simulated daily runoff, x is the arithmetic average value of
observed or simulated daily runoff, and the remaining symbols are the same as defined previously.

2.3.5. Scenario Settings

The correlations between rain data for a single gauge and streamflow data for Gaoan station
are provided in Table 2. Notably, all rain gauges have higher relevance with runoff data with 1 day
or 2 days delay, even for LZH, which is the nearest udometer to Gaoan station. However, not a
single gauge is significantly related to the streamflow data, and the reverse is the same. To estimate
the model uncertainties resulting from the accuracy of precipitation measurements, a total of 16
scenarios with varying rain gauge numbers and distributions are evaluated in this study. As presented
in Table 2, rain gauge partition is described in terms of the direction that the barycenter selected
udometer sets. Most rain gauges are distributed in one direction, while at least one rain gauge is
set to the opposite direction to provide necessary rainfall spatial variety. According to the shape of
Jinjiang River Basin, the directions are classified as central, north-east, north-west, south-east, and
south-west. Given the five rain gauge distributions and four selected rain gauge quantities, i.e., 5, 10,
15, and 20, different pluviometer densities are defined in the study area. For each direction, rain gauges
in scenarios with lower quantity are selected from those with higher quantity, i.e., 10 rain gauges
in scenario 10_C are selected from those in scenario 15_C, while udometers in 10_SE are selected
from those from 15_SE. Therefore, higher quantity scenarios contain all rain gauges in lower quantity
scenarios in the same direction.
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Table 2. Correlation between rain and streamflow data and gauge selection for different scenarios.

Gauge Name CC_0 * CC_1 CC_2 CC_3 20_C ** 15_C 10_C 5_C 15_SW 15_SE 15_NW 15_NE 10_SW 10_SE 10_NW 10_NE 5_SW 5_SE 5_NW 5_NE

BSH 0.142 0.492 0.581 0.360
√

***
√ √ √ √ √ √

CSH 0.131 0.496 0.532 0.328
√ √ √ √ √ √ √ √

CHP 0.139 0.548 0.575 0.363
√ √ √ √ √ √ √ √ √ √

CH 0.145 0.459 0.538 0.356
√ √ √ √ √ √ √ √ √ √ √ √ √

FCH 0.158 0.564 0.589 0.378
√ √ √ √ √ √ √ √ √

FP 0.140 0.538 0.574 0.403
√ √ √ √ √ √ √ √

HSH 0.143 0.478 0.568 0.365
√ √ √ √ √ √ √ √

LSH 0.151 0.512 0.589 0.376
√ √ √ √ √ √ √ √

LX 0.147 0.512 0.569 0.361
√ √ √ √ √ √ √ √ √

LZH 0.143 0.534 0.537 0.337
√ √ √ √ √ √ √ √ √ √ √ √ √

LC 0.143 0.562 0.584 0.355
√ √ √ √ √ √ √ √ √ √ √ √

NG 0.128 0.513 0.547 0.337
√ √ √ √ √ √ √ √ √

SNHW 0.136 0.523 0.547 0.346
√ √ √ √ √ √

XG 0.148 0.510 0.548 0.357
√ √ √ √ √ √ √ √ √

XY 0.151 0.497 0.592 0.386
√ √ √ √ √ √ √ √

XF 0.155 0.568 0.569 0.361
√ √ √ √ √ √ √

XJ 0.140 0.539 0.593 0.373
√ √ √ √ √

YGL 0.161 0.548 0.552 0.355
√ √ √ √ √

YQ 0.145 0.478 0.569 0.383
√ √ √ √ √ √ √ √ √ √ √

ZHSH 0.142 0.492 0.581 0.360
√ √ √ √ √ √ √

* CC_0, CC_1, CC_2, and CC_3 refer to the correlation between rain and streamflow data on the same day and after 1 day, 2 days, and 3 days delay; ** The number in front of the underline
is the number of rain gauges used in the scenario and the letters followed by the underline refer to the direction of most rain gauges: C is central and SW, SE, NW, NE indicate south-west,
south-east, north-west, and north-east, respectively; *** The ticks refer to the rain gauges selected in the named scenario.



Sustainability 2018, 10, 3209 8 of 22

3. Results

Daily streamflow reproduction performance of the three models for 16 rain gauge scenarios
during the validation period is investigated in two parts. In part I, general model performance during
the entire validation period (1 January 2012 to 31 December 2013) is assessed using the statistical results
from the evaluating indicators described in Section 2.3.4. In part II, model performance is discussed
for a single month (June 2012) with a detailed daily flow hydrograph comparison.

3.1. Model Performance in the Calibration and Validation Period

To compare model performance between HYMOD, XAJ, and WetSpa for the 16 rain gauge
scenarios, the statistical criteria in the calibration and validation period are provided in Tables 3–5.
Boxplots for the validation period are shown in Figure 2.

Table 3 indicates stable NSE and CC values between the calibration and validation periods
for HYMOD in all 16 scenarios. However, there is an clear improvement in the BIAS value from
the calibration to validation period. XAJ shows similar behavior (Table 4). WetSpa shows a slight
improvement in NSE and CC values in most scenarios (Table 5).

Figure 2a–c illustrates the accuracy of the streamflow simulations, as indicated by NSE. Generally,
metrics for the validation period are acceptable for all three models despite different pluviometer
selection scenarios; average NSE values are greater than 0.6. In more detail, results for XAJ are
better than those for HYMOD and WetSpa, and the latter two are comparable in most scenarios.
Notably, there are discrepancies between the NSE values for the three models. Interquartile ranges
for HYMOD are significantly larger than those for XAJ, followed by those for WetSpa, which has the
narrowest interquartile NSE range. WetSpa shows the best stability in model performance in every
calibration trial, while HYMOD has the largest uncertainty.

When rain gauge selections are taken into consideration, results for all three models perform
consistently. With the reduction in rain gauge numbers (scenario 20_C, 15_C, 10_C and 5_C), the mean
NSE values for all models show lower variability. The NSE amplitudes for HYMOD and XAJ are rather
small, showing robustness for a simple decline in the quantity of udometers. In contrast, the values for
WetSpa show greater sensitivity toward changes in rain gauge quantity.

The impacts of the spatial distribution of rain gauges show similar trends in terms of NSE metrics
for all models. With the same number of rain gauges (15), all models in scenario 15_SE and 15_NW
perform comparably with those in 15_C. However, the accuracy of the results in scenario 15_SW is
generally lower. Unexpectedly, model performances for 10_SE and 5_SE are poorest among scenarios
with the same number of rain gauges. Similarly, model performance worsens with a decrease in rain
gauges from 15 to 5 when the rain gauges are concentrated in the north-west part of the basin (scenarios
15_NW, 10_NW, and 5_NW). Furthermore, variations in the number of rain gauges concentrated in the
south-west and north-east has few impacts on streamflow simulations, except for WetSpa in scenario
5_NE, which shows a dramatic reduction in both average and variation in NSE values. Similar results
are found for the CC values, as illustrated in Figure 2d–f.

Figure 2g–h shows the ability of the three models to recreate the water balance for the 16 rain
gauge scenarios. Generally, HYMOD and XAJ exhibit better performance in water balance simulations;
HYMOD overestimates and XAJ underestimates the average within about 5%. WetSpa poorly estimates
water balance with a BIAS of approximately 20%. Interquartile ranges for BIAS indicate that WetSpa
has most stable model performance, while HYMOD has the lowest under multiple calibrations,
as indicated previously.
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Table 3. HYMOD model performance in the calibration and validation periods.

Scenarios

Calibration Validation

Nash–Sutcliffe Efficiency (NSE) CC Relative bias (BIAS) (%) NSE CC BIAS (%)

Mean * Q1 ** Q3 *** Mean Q1 Q3 Mean Q1 Q3 Mean Q1 Q3 Mean Q1 Q3 Mean Q1 Q3

20_C ** 0.773 0.739 0.835 0.888 0.868 0.919 19.003 8.889 26.535 0.768 0.732 0.823 0.883 0.862 0.909 4.020 −4.890 12.174
15_C 0.735 0.674 0.815 0.870 0.856 0.915 22.206 12.316 33.722 0.735 0.676 0.815 0.871 0.855 0.916 9.154 −1.015 17.154
10_C 0.748 0.681 0.818 0.876 0.842 0.914 17.914 8.661 27.312 0.748 0.691 0.818 0.871 0.837 0.907 3.471 −6.971 11.868
5_C 0.751 0.695 0.823 0.876 0.852 0.917 20.961 9.556 32.543 0.732 0.677 0.799 0.864 0.845 0.901 8.857 −0.621 18.546

15_SW 0.734 0.666 0.797 0.869 0.836 0.901 17.086 5.113 27.538 0.723 0.670 0.775 0.861 0.834 0.888 4.292 −5.733 13.162
15_SE 0.739 0.685 0.828 0.870 0.833 0.918 25.110 14.905 32.557 0.738 0.675 0.829 0.871 0.835 0.914 10.662 2.633 18.726

15_NW 0.763 0.721 0.830 0.881 0.860 0.915 19.716 9.529 28.525 0.758 0.719 0.817 0.877 0.850 0.909 3.906 −2.408 12.315
15_NE 0.745 0.721 0.810 0.868 0.855 0.905 17.639 7.819 23.752 0.730 0.703 0.796 0.857 0.842 0.892 3.095 −7.043 11.833
10_SW 0.770 0.743 0.829 0.887 0.870 0.917 18.232 10.583 26.310 0.743 0.715 0.801 0.871 0.852 0.901 6.524 0.183 13.724
10_SE 0.742 0.689 0.814 0.871 0.851 0.907 24.799 13.924 34.437 0.698 0.634 0.751 0.858 0.834 0.888 10.390 1.893 19.676

10_NW 0.725 0.657 0.797 0.861 0.829 0.900 28.033 19.387 38.300 0.737 0.672 0.792 0.863 0.830 0.896 6.797 −2.554 15.573
10_NE 0.759 0.702 0.824 0.881 0.847 0.920 22.330 12.071 34.628 0.742 0.684 0.810 0.871 0.836 0.907 8.496 −2.363 20.696
5_SW 0.730 0.684 0.789 0.861 0.837 0.892 12.749 5.435 19.056 0.734 0.688 0.789 0.864 0.839 0.899 1.092 −7.768 7.817
5_SE 0.718 0.690 0.795 0.857 0.843 0.903 27.811 14.713 37.411 0.647 0.603 0.707 0.829 0.817 0.865 10.722 −0.366 18.679

5_NW 0.685 0.635 0.764 0.843 0.817 0.890 33.136 22.002 42.193 0.693 0.627 0.760 0.842 0.807 0.879 11.204 1.114 19.273
5_NE 0.747 0.716 0.817 0.872 0.855 0.911 20.740 8.448 29.119 0.729 0.683 0.802 0.866 0.836 0.897 6.427 −5.730 14.650

* Mean refers to the arithmetic average value; ** Q1 refers to the 1st quartile value; *** Q3 refers to the 3rd quartile value.
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Table 4. XAJ model performance in the calibration and validation periods.

Scenarios
Calibration Validation

NSE CC BIAS (%) NSE CC BIAS (%)

Mean Q1 Q3 Mean Q1 Q3 Mean Q1 Q3 Mean Q1 Q3 Mean Q1 Q3 Mean Q1 Q3

20_C 0.805 0.796 0.832 0.899 0.893 0.913 14.042 8.603 14.491 0.821 0.809 0.842 0.914 0.910 0.926 −1.604 −5.024 −2.210
15_C 0.811 0.806 0.830 0.903 0.899 0.912 11.314 7.758 12.817 0.829 0.822 0.843 0.919 0.915 0.927 −2.446 −4.804 −1.964
10_C 0.812 0.811 0.831 0.905 0.903 0.914 12.109 8.325 12.440 0.823 0.816 0.840 0.917 0.915 0.927 −1.447 −4.769 −1.340
5_C 0.782 0.772 0.806 0.886 0.879 0.898 11.608 9.602 13.865 0.800 0.788 0.818 0.900 0.895 0.909 −0.904 −2.673 0.318

15_SW 0.791 0.787 0.818 0.893 0.887 0.906 15.946 11.028 14.928 0.787 0.773 0.812 0.900 0.898 0.915 2.202 −2.183 1.754
15_SE 0.827 0.821 0.843 0.911 0.907 0.919 10.877 8.629 11.750 0.848 0.843 0.861 0.926 0.924 0.934 −2.908 −4.482 −2.859

15_NW 0.801 0.791 0.821 0.897 0.889 0.907 12.844 8.187 14.691 0.827 0.822 0.837 0.915 0.914 0.922 −1.877 −4.747 −1.036
15_NE 0.804 0.800 0.824 0.899 0.895 0.908 14.371 9.922 13.640 0.815 0.813 0.831 0.908 0.907 0.917 0.270 −4.015 −2.031
10_SW 0.783 0.768 0.803 0.887 0.879 0.898 9.549 7.081 10.841 0.795 0.774 0.823 0.900 0.890 0.916 −2.834 −4.469 −2.588
10_SE 0.804 0.787 0.824 0.898 0.889 0.910 15.185 11.525 17.249 0.731 0.712 0.755 0.872 0.858 0.887 0.933 −0.783 1.984

10_NW 0.795 0.789 0.814 0.893 0.889 0.903 15.176 10.870 16.050 0.810 0.806 0.821 0.913 0.913 0.919 −2.662 −5.331 −2.555
10_NE 0.809 0.806 0.833 0.901 0.899 0.915 14.417 10.269 14.019 0.810 0.806 0.825 0.904 0.902 0.913 1.236 −3.459 0.220
5_SW 0.700 0.681 0.722 0.838 0.826 0.850 15.713 11.123 17.517 0.764 0.740 0.783 0.883 0.875 0.893 0.763 −2.717 1.300
5_SE 0.818 0.809 0.838 0.906 0.900 0.917 17.197 14.761 18.063 0.692 0.675 0.710 0.853 0.840 0.869 2.038 0.162 1.821

5_NW 0.765 0.765 0.794 0.880 0.875 0.893 22.487 18.422 20.941 0.715 0.705 0.728 0.876 0.866 0.887 2.164 −1.466 1.757
5_NE 0.767 0.752 0.786 0.876 0.867 0.887 13.463 11.373 14.930 0.769 0.761 0.778 0.881 0.876 0.885 −1.531 −2.978 −0.898
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Table 5. WetSpa model performance in the calibration and validation periods.

Scenarios
Calibration Validation

NSE CC BIAS (%) NSE CC BIAS (%)

Mean Q1 Q3 Mean Q1 Q3 Mean Q1 Q3 Mean Q1 Q3 Mean Q1 Q3 Mean Q1 Q3

20_C 0.736 0.726 0.738 0.873 0.867 0.877 37.173 37.888 41.076 0.773 0.761 0.781 0.883 0.877 0.886 17.625 17.879 20.637
15_C 0.739 0.723 0.737 0.874 0.867 0.873 32.699 35.497 37.932 0.787 0.773 0.789 0.890 0.883 0.890 15.920 16.891 20.185
10_C 0.722 0.707 0.724 0.870 0.862 0.870 38.330 39.602 42.736 0.751 0.733 0.756 0.870 0.860 0.872 18.092 18.701 21.349
5_C 0.661 0.645 0.664 0.839 0.831 0.843 38.849 38.624 41.266 0.716 0.709 0.722 0.850 0.845 0.854 24.333 24.460 26.359

15_SW 0.702 0.678 0.709 0.860 0.854 0.863 35.191 35.874 38.798 0.726 0.713 0.734 0.856 0.847 0.860 18.333 18.784 21.025
15_SE 0.726 0.722 0.733 0.869 0.866 0.874 36.658 36.733 39.689 0.772 0.765 0.778 0.882 0.878 0.885 18.837 18.737 21.060

15_NW 0.703 0.701 0.714 0.860 0.860 0.866 39.389 38.772 41.964 0.767 0.767 0.775 0.880 0.880 0.885 19.420 18.159 21.041
15_NE 0.734 0.726 0.737 0.874 0.869 0.877 39.874 40.299 42.661 0.756 0.747 0.761 0.874 0.867 0.877 22.542 22.429 25.017
10_SW 0.727 0.713 0.731 0.865 0.860 0.869 34.026 34.220 37.596 0.723 0.710 0.726 0.853 0.846 0.855 17.859 17.903 20.967
10_SE 0.706 0.696 0.715 0.864 0.859 0.867 38.548 37.182 40.586 0.687 0.676 0.702 0.831 0.824 0.839 17.035 15.835 19.296

10_NW 0.692 0.675 0.696 0.855 0.848 0.859 43.935 45.957 47.672 0.763 0.757 0.770 0.879 0.874 0.882 19.956 21.523 22.941
10_NE 0.726 0.710 0.726 0.869 0.862 0.870 36.227 38.853 41.945 0.754 0.744 0.755 0.874 0.868 0.876 21.285 23.789 25.982
5_SW 0.647 0.650 0.655 0.814 0.817 0.819 31.600 31.541 33.406 0.733 0.730 0.737 0.858 0.856 0.860 14.480 13.847 16.308
5_SE 0.718 0.704 0.722 0.872 0.866 0.875 40.607 40.459 42.972 0.673 0.663 0.679 0.823 0.816 0.826 18.699 18.012 21.161

5_NW 0.651 0.635 0.654 0.837 0.829 0.840 46.650 47.065 50.304 0.720 0.714 0.729 0.854 0.848 0.857 19.128 18.735 21.488
5_NE 0.615 0.617 0.666 0.799 0.811 0.831 36.948 36.992 43.946 0.624 0.564 0.746 0.827 0.834 0.868 19.305 21.478 24.260
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3.2. Monthly Analysis for 2012

Monthly performance is another important mechanism for comparing models’ responses due to
different rain gauge distributions. Figure 3 illustrates the monthly average runoff and precipitation
in the Jinjiang River Basin. Clearly, the wet season in 2012 ranges from March to July, resulting in
a flood season with average flow above 200 m3/s. However, dry seasons are not particularly dry;
most months, except for August and October, have average precipitation over 100 mm per month.
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Monthly comparisons for HYMOD, XAJ, and WetSpa are shown in Figure 4. As shown in
Figure 4a–c, all three models tend to simulate streamflow in the flood season better, but poorly
reproduce runoff in the dry season, especially in August and October. Specifically, HYMOD
shows better adaptability than XAJ and WetSpa, achieving acceptable NSE values in more months,
especially in January and September. However, WetSpa performs worse than the other models in
March, May, July, and November. In addition, HYMOD monthly performances show no distinct trends
indicating an impact of rain gauge distributions. XAJ demonstrates higher usability in the flood season.
However, it is more likely to be affected by the distribution of rain gauges. June, for example, has the
highest NSE value (0.50) in scenario 15_SE, but the lowest NSE value (0) in 5_NW. Finally, WetSpa only
achieves acceptable results in the flood season. NSE values in the dry season are no higher than 0.1,
except for December, in which NSE values are about 0.3.

The overall deviations for all three models vary significantly from month to month (Figure 4d–f).
Of the three models, HYMOD generates relatively accurate overall estimates in most months. However,
it overestimates total flood volume in August and underestimates total flood volume in January,
November, and December. XAJ produces results that vary between overestimates and underestimates.
The WetSpa model achieves the best performance in March, but produces more than 30% overestimates
from July to October, which confirms the results in Figure 4c.
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3.3. Model Performance in June 2012

To investigate the performance of three models based on data precision for different precipitation
values, daily time series of the simulated and observed hydrographs in a typical wet season month in
the Jinjiang River basin (June 2012) are compared. June 2012 has two complete flood peaks, and the
two peak flows are neither too high nor too low. Therefore, analyzing model performance in June 2012
is appropriate.

As presented in Figure 5, the accumulative precipitation in June 2012 ranges from 187.1 mm
to 355.3 mm. The rain center is located in the central area of the basin captured by rain gauge LC.
Therefore, three scenarios, 20_C as a benchmark, 10_SE absent LC, and 5_NE with LC (see Table 2),
are investigated as LC presence could be a critical factor affecting runoff modeling.
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Figure 5. Interpolated mean rainfall distribution in June 2012 over the Jinjiang River Basin using
20 rain gauges.

Figure 6a indicates that in scenario 20_C, HYMOD results generally agree with daily observed
streamflow in June 2012. However, hydrographs in every trial range widely compared with XAJ
(Figure 6b) and WetSpa (Figure 6c). XAJ and WetSpa misrepresent the first peak flow in June,
while capturing the second. XAJ underestimates the lower streamflow, while WetSpa slightly
overestimates them.

Absent the key rain gauge LC in scenario 10_SE (Figure 6d–f), the standard deviations in measured
rain data on 25 June 2012 are clearly smaller than in 20_C. The remaining rain gauges do not correctly
reflect the spatial variability in actual precipitation for the entire basin. All three models underestimate
the second peak flow that they precisely captured in 20_C. For 5_NE, all models overestimate the
second peak flow as the rainfall data from LC are assumed to represent the areal rainfall input from
most sub-watersheds (Figure 6g–i).

Meanwhile, variations in simulated second peak flow for WetSpa increase notably and the
simulated runoff time series can be divided into three groups. Most hydrographs in one group tend
to appreciably overestimate the second peak flow. While those in another group tend to significantly
overestimate the second peak flow, e.g., XAJ. The remainder in the third group tend to miss the second
peak flow.
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4. Discussion

The sensitivity of HYMOD, XAJ, and WetSpa models is compared to characterize the spatial
distribution of rainfall in a medium scale semi-humid watershed in southeast China. The NSE, CC,
and BIAS values for 16 rain gauge distribution scenarios are used to assess the performance of
hydrological models with varying rain gauge deployment locations. The HYMOD and XAJ models
can be regarded as representative conceptual models with different complexity, while the WetSpa
model is considered a typical process-based distributed model.

4.1. Influence of Rain Gauge Distribution

For all three models, runoff varied slightly with a decreasing number of rain gauges (from 20 to 5).
This result differs from the previous studies of Andreassian et al. [27] and Xu et al. [23], which showed
that model efficiency declines with loss of rainfall spatial knowledge. However, it agrees with Chaplot
et al. [26], who found that model performance remains stable despite decreasing gauge concentration.
One explanation is that former studies used lumped hydrological models that applied average surface
rainfall as input while the SWAT used in Chaplot et al. [26] is a distributed model that takes advantage
of rainfall data interpolated into each sub-catchment. In this study, all three models are applied as
semi-distributed models, and thus rainfall spatial variety is captured with a limited number of rain
gauges. While all models are able to cope with a restricted number of rain gauges, their distribution is
more likely to result in uncertainty in simulated streamflow. These results suggest that appropriate
rain gauge configuration is of higher importance than the number or density of rain gauges in
a certain catchment.

4.2. Comparing Different Model Structures

Because all three models are regarded as semi-distributed models that operate on sub-basins with
distributed rainfall data, differences in simulated runoff between them is likely derived from model
complexity and the rationality of parameterization. The general model precision and uncertainty
performance in scenario 20_C is consistent with multiple studies [52,61–64].

The factor leading to larger uncertainty in model calibration for HYMOD and smaller uncertainty
for WetSpa can be attributed to model structure complexity. In the model calibration process,
optimization algorithms are supposed to reach optimal values. However, reaching the global optimal
value requires significant computing resources and time. Therefore, most trials in the calibration
period just reach local optimal values. It is possible that a higher complexity model structure could
result in local optimal values closer to global optimal values according to the concept of equifinality
introduced by Beven [59]. However, HYMOD has a simpler structure than XAJ and WetSpa with
fewer parameters, leading to a parameter space consisting of fewer dimensions and fewer parameter
combinations that can reach the ‘best’ performance, i.e., the global optimal value, during calibration.
Most local optimal values are worse than the global optimal values, but the corresponding parameter
sets are possibly reached during calibration. Therefore, HYMOD performance varies widely for each
calibration trial.

Different performances in the water balance simulations are a more complex problem.
As illustrated in Figure 2h, XAJ tends to underestimate total water volume in general. Sun et al. [65]
reported similar results and concluded that underestimates of free water storage lead to underestimates
of total water volume. In addition, WetSpa systematically overestimates total runoff volume.
This behavior may be due to a consistent overestimate of low flows and an underestimate of high
flows, where the total volume of low flows is higher than that of high flows (see Figure 4c,f,g).

4.3. Detailed Discussion on Model Performance

Finally, it is important to examine the inconsistent simulation of the two floods in June 2012.
As illustrated in Figure 6, it is clear that observed streamflow is sensitive to rainfall; for example,
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small flood peaks on 8 and 18 June were obtained after relatively small rainfall events, showing that
basin storage (including soil and groundwater) is rather limited and thus surface flow can be generated
directly. When verifying the simulated flow from XAJ and WetSpa, however, responses to small
rainfall events are systematically underestimated. While in the two major floods, the simulated
streamflow increases and reaches the flood peaks with a one-day delay compared with the observed
data, but decreases back to normal at the same day, or even earlier. Similar behavior appears in
other flood simulations, as presented in Table 6. These deviations are likely due to overestimating
the water storage capacity of the basin. Hence, in the first flood period with rainfall concentrated
in a single day, more precipitation turns into storage and generates streamflows with a longer delay,
resulting in an average underestimation of −32.1%, −37.4%, and −36.3% in peak flow and −21.1%,
−33.3%, and −21.3% in total volume for HYMOD, XAJ, and WetSpa, respectively (see Table 6). In the
second flood period, with rainfall scattered over two days, precipitation in the first day fulfills the
water storage and thus precipitation on the following day generates surface flow directly, resulting in
a better reproduction of the second peak flow. The underestimation drops remarkably to −12.2%,
−2.7%, and −7.0% in peak flow and −4.1%, −14.7%, and −4.9% in total volume (shown in Table 6).
Such uncertainty derived from the model structure or model parameters needs to be addressed in
further studies.

5. Conclusions

This study compared the performance and uncertainties of the HYMOD, XAJ, and WetSpa
conceptual and process-based models with varying rain gauge numbers and distributions in the
Jinjiang River Basin, China. Long time series, monthly, and daily performance was analyzed using
several statistical indicators.

The results for all three models showed that a reduction in the number of rain gauges only
resulted in worse performance when the rain gauge distribution was inhomogeneous. This observation
demonstrates that appropriate rain gauge configuration is of greater importance than their deployment
density in a certain catchment. Furthermore, the stable performance between different model
structures indicates that rainfall spatial variability does not impact model performance due to the
model mechanism.

The analyses also show that the simpler conceptual model HYMOD suffers from greater variations
during multiple calibrations, while the complex process-based model WetSpa is more stable across
different calibration trials. This behavior indicates that the uncertainty in the model calibration is more
related to model structure than rainfall spatial variability.

Notably, this study was conducted for a middle-scale semi-humid river basin, which is suitable
for rainfall runoff simulation. Future work should build on these results by extending the types of
study areas encompassing a range of climates, surface areas, and environmental conditions.
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Table 6. Detailed model performances for sample floods in scenario 20_C.

Selected Flood
Total Average
Rainfall (mm)

HYMOD XAJ WetSpa

Start Date End Date Actual Peak
Flow (m3/s)

Delay 1

(day)
BIASp

2

(%)
BIASv

3

(%)
Delay
(day)

BIASp
(%)

BIASv
(%)

Delay
(day)

BIASp
(%)

BIASv
(%)

29 February 2012 13 March 2012 842 148.3 0 −4.9 −9.8 0 −6.5 −12.7 0 −2.5 −8.3
9 June 2012 14 June 2012 1330 74.3 1 −32.1 −21.1 1 −37.4 −33.3 1 −36.3 −21.3
25 June 2012 1 July 2012 1080 83.0 1 −12.2 −4.1 1 −2.7 −14.7 1 −7.0 −4.9
4 April 2013 9 April 2013 726 62.9 0 −9.8 −10.6 0 −12.1 −11.9 0 −9.2 −6.0
14 May 2013 21 May 2013 772 96.3 0 −11.2 1.8 0 −11.5 −8.6 1 −5.9 2.8

1 Denotes the delay days that the simulated flood peak occurs in 30 trials minus the date of the observed flood peak; 2 refers to the mean BIAS calculated using the simulated flood peak
volume versus observed flood peak volume; 3 denotes the mean BIAS calculated using the simulated total flood volume versus observed total flood volume.
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