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Abstract: A risk scenario is a combination of risk events that may result in system failure.
Risk scenario analysis is an important part of system risk assessment and avoidance. In engineering
activity-based systems, important risk scenarios are related to important events. Critical activities,
meanwhile, mean risk events that may result in system failure. This article proposes these definitions
of risk event and risk scenario based on the characteristics of risk in engineering activity-based
systems. Under the proposed definitions, a risk scenario framework generated based on importance
measure analysis is given, in which critical activities analysis, risk event identification, and risk
scenario generation are the three main parts. Important risk events are identified according to
activities’ uncertain importance measure and important risk scenarios are generated on the basis of
a system’s critical activities analysis. In the risk scenario generation process based on importance
analysis, the importance degrees of network activities are ranked to identify the subject of risk events,
so that risk scenarios can be combined and generated by risk events and the importance of scenarios
is analyzed. Critical activities are analyzed by Taguchi tolerance design, mathematical analysis, and
Monte Carlo simulation methods. Then the degrees of uncertain importance measure of activities are
solved by the three methods and these results are compared. The comparison results in the example
show that the proposed method of uncertain importance measure is very effective for distinguishing
the importance level of activities in systems. The calculation and simulation results also verify that
the risk events composed of critical activities can generate risk scenarios.

Keywords: risk scenario; importance measure; uncertain importance measure; Monte Carlo simulation

1. Introduction

Risk analysis and assessment are an important part of risk management, which plays an important
role in production, supply chain, energy use, and other fields related to social sustainability and
economics [1–3]. When assessing system risks, one of the primary tasks is to identify the possible
risk scenarios. The identification and generation of risk scenarios in system risk assessment are not
only important steps but the basis of risk avoidance as well [4,5]. System risk analyzers and managers
can determine the circumstances that will cause risk consequences, and figure out how to avoid
risk scenarios.

A scenario has different meanings and uses in different fields. For example, a scenario is typically
used for system requirements acquisition, system design, and evaluation or testing in the field of
computers and industrial design, described as predictable interactions between different types of
users (roles) and systems, including objectives, expectations, motivations, actions, and response
information [6,7]. In the field of reliability and risk assessment, a risk scenario is described as the
combinations of events that could lead to product failure (fault) in order to analyze the failure (fault
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or accident) mode and probability of products (or systems) [8]. One view is that a scenario is the
set of events that occurs in a certain order [9]; another view is that a scenario refers to a group of
stochastic events or some specific combination of events [10]. In the field of project management
and risk analysis, a risk scenario is considered as an idea or description of every possible future
plan or situation, resulting from rigorous reasoning [11,12]. Although the understanding of scenarios
varies between different fields, there is indeed a common feature among all definitions in set theory
terms—that is, the scenario is composed of many system trajectories. Those system trajectories, which
have some common features, are combined into a same scenario precisely because of these features.
The scenario is surely the common description of those system trajectories [8,13,14].

Advance analysis based on the definition of risk scenarios is of great importance in the reliability
and risk assessment field as well as in project management and risk analysis, where it is used for
risk scenario generation, occurrence probability, and importance degree assessment. In the field of
reliability and risk assessment, there are a lot of PRA (Probabilistic Risk Assessment) methods to
help with identifying system risk scenarios [15,16], such as MLD (Master Logic Diagram), FMEA
(Failure Modes and Effects Analysis), HAZOP (Hazard and Operations Analysis), ET (Event Tree),
ESD (Event Sequence Diagram), FT (Fault Tree), AFD (Anticipatory Failure Determination), and so
on, which can be unified into a framework called “TSS (Theory of Scenario Structuring)” [13]. In the
field of project management and risk analysis, the SA (Scenario Analysis) method has been attracting
more and more attention as an important risk identification method [17]. The SA method is presented
to conceive a variety of possible future plans according to detailed and rigorous future reasoning
on the basis of various key assumptions on economic, industrial, and technological evolution [18].
The greatest advantage is that decision-makers can predict future tendencies and avoid a common
mistake: under- or overestimating the coming change and its impacts. Some industries have gradually
adopted scenario-based analysis methods on risk prediction; for instance, Shell, the first industry to
apply the SA method to great success, has a number of large projects underway at present [19].

In the field of reliability and risk assessment, although there are already many ways to identify
and generate scenarios and these methods have been widely used (for example, in some PRA methods
quantitative probability assessment is built on the basis of system risk scenarios, problems such as
depending on personnel quality and heavy identifying works exist in risk scenario identification.
Therefore, a growing number of studies on risk scenario generation and simulation have appeared
in recent years [8,20], particularly those based on the IM (Importance Measure) method to identify
important risk scenarios. As one of the important aspects on PRA, IM analysis, filtering out less
important risk scenarios and then allowing risk analysts to assess the risk scenarios that can cause
serious consequences, has significant guiding value for improving and optimizing system design,
maintenance development, test strategy, etc. In order to determine the importance of risk scenarios,
a variety of importance indexes measuring system components have come into being in recent
studies. The most commonly used indexes are Birnbaum measure, FCI (Failure Critical Index),
the Fussell-Vesely measure, RAW (Risk Achievement Worth), RRW (Risk Reduction Worth), etc. [10].
In addition, there are derivatives of a parameter in system risk, such as the likelihood ratio gradient [21].
Moreover, research on the UIM (Uncertain Importance Measure) method of parameters combined with
the PRA method in reliability models [22–25] is a priority in the field of reliability and safety analysis.
Meanwhile, other UIM indexes are researched from different prospectives in reliability engineering,
such as time-independent, cost-based, etc. [26–30].

Similarly, many qualitative methods are proposed for system risk identification in the field of
project management and risk analysis, such as Check List, Specialists Method, Flow Chart, Analogy
Comparison, experiential learning, etc. In addition, the SA method is used more and more widely, but
how to identify the most important risks that will have a significant impact on systems, especially
important risk scenario identification, has also been a focus for researchers. Generally, events that
are produced by critical activities in system networks are critical risk events. To find the critical risk
events, many importance measure indexes are proposed to measure critical activities in recent studies,
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for example the index PCI (Path Criticality Index) and ACI (Activity Criticality Index) for computing
critical path and critical activities probability [31], the index SI (Significance Index) for computing the
significance of each activity and activities’ critical measurement [32,33], and so on. Furthermore, in
terms of engineering system risk analysis and sensitivity analysis, the number of studies on activities’
uncertain importance measure have increased for measuring the importance of critical activities and
inspecting the impact on whole-system parameter uncertainty [31,34–36].

Engineering projects have a failure or fault mode—that is, if the project quality does not meet the
user’s requirements, the project schedule is seriously overdue and the project cost is over budget [37,38].
Similarly, as an essential part of the whole system, activities of different importance have different
influence on the whole project’s system risk. Meanwhile, for maintenance and logistic systems in
the reliability and risk assessment field, the schedule and cost also need to be taken into account
when assessing the importance of activities in the system [39,40]. From this perspective, importance
measurement of activities and importance evaluation of parts in the reliability field are as important
when analyzing system risk. Dividing risk categories effectively, identifying those risks and mutual
relations, and finding critical risks are the main tasks in engineering system risk management, and
provide a scientific basis for focusing on the disposal of risks. Risk scenarios are significant for the
management and control of engineering system risk. Therefore, identifying and generating important
risk scenarios in advance has become a scenario-based critical risk analysis problem.

This article belongs to two crossover fields: the project management field and the reliability and
system risk assessment field. Based on the second view of risk scenarios [8,10], it is considered a
combination of events that could lead to system failure, which usually includes time, cost, and quality
dimensions. This article is mainly about identifying risk events from a system’s critical activities and
combining the important events to generate risk scenarios by computing the importance measure of
risk events. With reference to the UMI index in the field of reliability and risk assessment [29,39], we
proposed a set of important measurement indexes to identify and generate risk scenarios. Meanwhile,
three critical activities analysis methods, Taguchi tolerance design, mathematical analysis and Monte
Carlo simulation methods, are applied to GERT (Graphical Evaluation and Review Technique)
networks, used to model activity-based systems such as engineering project systems or maintenance
and logistic systems [40], to determine activities’ uncertain importance measure by focusing on
mathematical analysis and Monte Carlo simulation. A specific case is proposed to compare the three
methods’ advantages and disadvantages for any guide of system risk scenario analysis and risk
assessment. The results show that the importance measure analysis approach can be used to generate
risk scenarios and assess system risk.

2. Risk Scenarios Generation

2.1. Definition of a Risk Scenario

In system risk analysis, possible causes of risk are often identified and assessed, and those risk
events that may lead to system failure constitute risk scenarios. Usually the basic unit to describe a
project system is an activity. The definitions of a risk event and a risk scenario are as follows.

Definition 1. Risk Event. A risk event is an event that may cause system failure, described as the completion of
a system activity in schedule, cost or quality. This can be expressed as:

E = (Ai; eType; eContent), i = 1, 2, · · · , n. (1)

A risk event includes several attributes: event subject Ai, event type eType, and event content eContent. Ai is
the subject of the risk event, namely the system activity, eType is the type of risk event; according to system risk
classification, a risk event in an engineering system can be a schedule risk (time), a cost risk (cost), or a quality
risk (quality) [38]. eContent is the content of the risk event; the specific circumstances of stochastic risk events
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are the content of the event. For example, risk event ei = (Ai; time; ti > t0) means that the completion time ti
of activity Ai is over the threshold t0.

Definition 2. Risk Scenario. A risk scenario is a series of stochastic risk events that may cause system failure.
This can be expressed as:

S = {ei|1 ≤ i ≤ n}, (2)

where ei represents a stochastic event related to risk. Since the stochastic events in the whole system are often
uncountable, we pay more attention to those stochastic events that have happened. Hence, in this article, events
that have not happened are no longer included in scenario sets—that is, if ei appears in set S, it means that ei
has already happened in S, while if ei does not appear in set S, it means that ei does not happen. According to
Equation (2), all non-empty subsets of S are risk scenarios of n-risk events.

In this paper, we consider a risk scenario as a group of stochastic events or some specific
combination of events [8,10]. To better explain the inherent relationship of risk event E, risk scenario S,
and system failure, the notion of a “Scenario Box” is proposed as shown in Figure 1. A scenario box
represents the stochastic risk events involved in a scenario and the consequences of the risk events.
A risk scenario box consists of three dimensions, quality, time, and cost, and all stochastic risk events
included in the scenario are around the scenario box. Under the combination of these stochastic risk
events (i.e., under the effect of scenario S), when the risk of the whole system is enough beyond the
defined threshold range of the scenario box, whether in time, cost, or quality, it is considered a system
failure. This concept is considered the criterion to decide if the system fails in Monte Carlo simulation
process of risk scenario in the following.
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2.2. Risk Scenario Importance Measure

As a sensitivity analysis, IM (Importance Measure) is used to measure the importance of the
reliability and risk of a component on the whole system [23]. The significance of a risk scenario is
that its occurrence may cause system failure, so the identification of important risk scenarios is the
top priority in system risk analysis. From the definition of risk scenario in this article, important risk
scenarios and critical risk events are closely related. At the same time, risk events have event subject,
which is activity, so critical activities mean that important risk events may happen. Therefore, in
order to analyze system risk based on risk scenarios, important risk scenarios need to be identified
and critical activities need to be found from important risk events. This article proposes definitions
and formulas for activities’ uncertain importance measure, events’ importance measure and scenario
importance measure, which are needed in risk scenario generation. Analysis and simulation of risk
scenarios are based on these definitions.

(1) UIM (Uncertain Importance Measure) of Activity

Critical activities, which are necessary to meet system requirements, have a significant impact on
the system’s total duration. In a stochastic network, we can start from critical activity analysis and then
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measure the importance of activities to identify critical activities and important risk events. There are
two ways to assess activity importance: computing the activity criticality index and analyzing the
uncertain importance measure. The former is used to identify an activity’s expected time, which
will heavily influence the expected system completion time, while the latter can be used to identify
activities that are worth more attention in terms of reducing the fluctuation of the uncertainty (namely
variability) in the system completion time, T.

UIM (Uncertain Importance Measure) is generally used for sensitivity analysis of a model, in
order to find the input parameters that have the greatest impact on the uncertainty of the whole
model output [22]. In terms of system activities, we can measure the uncertain importance to identify
those activities that have the greatest impact on the uncertainty of a system’s overall parameters
(i.e., time, cost, or quality) from the uncertainty of the parameters (i.e., time, cost or quality) of a single
activity [29]. Generally, those activities that have high uncertain importance are often critical in a
system. Uncertain importance measure of activity, the basis of the entire risk scenario analysis, will
be discussed in Section 3 to identify risk events and to give importance measure results of the risk
scenario; finally, a risk scenario will be generated.

(2) ECI (Event Critical Index) of Event

In the system, when an activity has been identified as critical, it means that correlative stochastic
risk events are critical risk events that make up the risk scenarios we are interested in. A risk event
includes three attributes: event subject, event type, and event content (Equation 1). A risk event that
makes critical activity its event subject should be identified first. In addition, determining whether
an activity is critical from the time, cost, and quality dimensions is feasible. Thus, if an activity is
determined to be critical in the time dimension, the type of risk event that should successfully identify
the activity as the event subject is time. Likewise, if an activity is determined to be critical in the quality
dimension, the type of risk event that should successfully identify the activity as the event subject
cannot be time or cost.

Unlike other important measurement indexes proposed from the time or cost perspective [27,29],
the importance of events in risk scenarios should be considered in three dimensions—cost, time, and
quality. In order to measure the importance of events, an ECI (Event Critical Index) is proposed against
the importance degree of system failure by risk events in this paper. The definition is as follows.

Definition 3. Event Critical Index. An event critical index is the ratio of the number of system failures to the
occurrences of risk events, which can be expressed as follows:

ECIi =
N(F|ei)

N(ei)
. (3)

(3) SCI (Scenario Critical Index) of Scenario

In order to determine the risk scenario, risk events and their importance need to be determined.
According to the results, risk event sets that have the greatest effect on system failure are generated.
Therefore, the generation of risk scenarios and the importance ranking can provide a foundation for
follow-up risk assessment. Risk scenarios reflect the uncertainty of a system and the importance need
to be analyzed when the probability of occurrence is assessed.

For measuring scenario importance, an SCI (Scenario Critical Index) is proposed to measure the
importance degree on system failure by risk scenarios. The definition is as follows.

Definition 4. Scenario Critical Index. A scenario critical index means the ratio of the number of system failures
to the occurrences of risk scenarios, which can be expressed as follows:

SCIi =
N(F|Si)

N(Si)
=

N(F|ei1, ei2, · · · , eik)

N(ei1, ei2, · · · , eik)
. (4)
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2.3. Framework of Risk Scenario Generation

The importance of critical activities needs to be analyzed and risk events need to be identified
before the importance analysis of risk scenarios can take place. Risk event identification is a critical
step; its results not only help us determine which events constitute risk scenarios, but also show the
sorting results of risk events that have the greatest impact on system failure. The prerequisite of
risk event identification is to identify system-critical activities according to the results of an activity
importance measure analysis; events associated with critical activities are typically important risk
events. After successfully identifying the events that have the highest impact on system failure, we
need to analyze the importance of risk scenarios. The results form the basis of risk assessment and
avoidance through ranking the importance of risk scenarios that may cause system failure. Based on
the risk scenario analysis ideas above, a framework of risk scenario generation is proposed based on
importance measure (Figure 2), in which the three basic steps of risk scenario generation are critical
activity analysis, risk events identification and importance measure, and risk scenario importance
analysis and generation.
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The process of generating and analyzing system risk scenarios includes critical activity analysis,
risk event identification, risk scenario generation, and other steps in this article. Critical activity
analysis is the cornerstone of scenario generation method and can be carried out through simulation
or mathematical analysis; when all risk events of interest are identified, the correlative scenarios can be
obtained through risk events combination. In a system, some activities have a significant impact on
the total duration and are an important part of on-time system completion; these are called critical
activities. Managers tend to be more concerned about activities that can decide the entire system
process or even the success or failure of the system. Therefore, it is important for managers to determine
which activities are critical. Currently, there are two ways to assess activity importance: computing
activity criticality index and analyzing uncertain importance measure. The former is used to identify
an activity’s expected time, which will significantly influence the expected system completion time;
the latter can be used to identify activities that are worth more attention in terms of reducing the
fluctuation of the uncertainty (variability) in the system completion time. This article begins with a
critical activity uncertain importance measure index and gives a study of risk scenario generation
based on critical activity analysis.

3. Risk Scenario Generation Based on UIM of Critical Activity

3.1. The UIM Index of Critical Activity

As a general uncertainty analysis method, sensitivity analysis (SA) provides ideas for analyzing
logistic support process uncertainty. Uncertainty analysis aims to figure out the influence of input
variables on the final output uncertainty of the model throughout sensitivity analysis. The assessment
and presentation of the influence of uncertainty have been widely recognized as important parts of
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analysis for complex systems [41]. At the simplest level, such an uncertainty analysis process can be
viewed as the study of functions in the form of

Y = f [X] = f [x1, x2, . . . ], (5)

where Y is the dependent output, whose uncertainty is influenced by fluctuation of its independent
inputs; function f represents the common model or models of Y under study; and X = [x1, x2, . . . ] are
k-independent inputs. Figure 3 shows that the goal of the uncertainty analysis is to determine the
influence of input (X) uncertainty on the entire output (Y) distribution.
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In an activity-based system, the uncertainty of overall system parameters (i.e., time, cost, or
quality) caused by the uncertainty of parameters (i.e., time, cost or quality) of a single activity is
called the “uncertain importance measure.” A critical activity is a predominant influence on the entire
system, and is mainly divided into two types [31,39]: (1) Variance-Variance, the variance of entire
system parameters (i.e., whole time or whole cost) as influenced by the variance of activity parameters
(i.e., time or cost); (2) Mean-Variance, the variance of entire-system parameters (i.e., whole time or
whole cost) as influenced by the change in activity parameters’ (i.e., time or cost) means. This article
belongs to the Variance-Variance type, studying the influence of the variance of activity parameters on
the variance of the system parameters.

In CPM (Critical Path Method) and PERT (Program Evaluation and Review Technique) diagram,
the analysis method of critical path and critical activity has been common and mature [42].
Common criticality indexes include PCI (Path Critical Index), ACI (Activity Critical Index), SI
(Significance Index), CRI (Criticality Index), etc. [24,35]. When analyzing critical activities in a GERT
network, we can start with the UIM of mean and variance of activities, while variance uncertainty is
the emphasis of study in this article. As system parameters include time, cost, and quality, uncertain
importance includes time-uncertain importance, cost-uncertain importance and quality-uncertain
importance. In order to facilitate research, this article only researches time-uncertain importance,
namely activity duration uncertain importance. This article chooses the definition of PERT network
activity critical index of Cho & Yum [34] as a reference, giving the meaning of UIM of activity, that
is, UIM is the uncertainty of total system duration caused by the uncertainty of duration of a single
activity, which measures the degree of influence on the entire system by activity duration as a valid
indicator. UIM is defined in this article as follows.

Definition 5. UIM (Uncertain Importance Measure). The UIM of activities means the degree of the network
activity time fluctuation compared to the total system time T, which can be expressed as follows:
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UIM(i) =
the variability o f T caused by time variability f luctuation o f Ai

the variability o f T
. (6)

Uncertainty in the above formula means the variation of activity time and T, while Importance measure means
the influence on the degree of total time variation by the degree of a single activity’s time variation. For computing
UIM of system activities, critical activity analysis is proposed with Taguchi tolerance design, mathematical
analysis, and Monte Carlo simulation methods. These three methods have their own advantages, disadvantages,
and applicability.

3.2. UIM Calculation of Critical Activity

3.2.1. Taguchi Tolerance Design Based on PERT

Taguchi tolerance design methods can be used in UIM computing processes [8,34]. PERT networks
are classified into two types: Type A with one longer path (the critical path) than the others, and
Type B without such a path. The difference between the two types is whether the activities on the
dominantly longer path (namely critical path) have linear effects on T. Let µi and σi

2 be the mean and
the variance of activity i, respectively. If i is assumed to have a linear effect on the variability of T, it
may have two test levels, µi − σi and µi + σi, respectively, for the low and high levels. If i is assumed to

have a curvature effect on the variability of T, then three test levels, µi − σi

√
2
3 , µi and µi + σi

√
2
3 , are

included for the low, center, and high levels, respectively. To get the UIM results of network activities,
Taguchi tolerance design usually proceeds as follows.

Stage 1: make all activities a set of Ω and determine two test levels of each activity in Ω.
Assign each of the activities to the chosen suitable Taguchi orthogonal array (OA) column according
to the level. Calculate the system completion time using CPM (Critical Path Method) at each run of
the selected design and perform ANOVA on the system completion times. Calculate the contribution
ratio (the variation of T attributable to the main effect of activity i) ρi, which is taken as an estimate
of UIMAi.

Stage 2: let Ω∗ be the set of activities remaining after screening out those whose UIMAi were
negligible in magnitude (<1%, say) in Stage 1. Determine three test levels of each activity in Ω∗, which
is partitioned into two sets according to ρi in Stage 1, and select or construct an appropriate three-level
OA. Then repeat the steps of Stage 1 and calculate ρi and ρij (the variation of T attributable to t the
interaction effect of activity i and j), respectively. Estimates of UIMAi and UIMAij are given by ρi and
ρi + ρj + ρij, respectively.

The drawback of tolerance design in the UIM method is that this method only holds for general
PERT networks. For complex stochastic networks, such as GERT networks, the complexity of
computation is very high. Since the standardized GERT work has analytical results, this article
attempts to focus on mathematical analysis to replace Taguchi tolerance design for solving activity
UIM indexes in general stochastic networks.

3.2.2. Mathematical Computation Based on GERT

Based on the above definition, UIM aims to measure the activity time fluctuation so that T will
change. Variation is proposed in this article to measure the activity time fluctuation and the change of
T. Therefore, the UIM index of an activity Ai can be redefined as follows:

UIM(i) =
variance changes o f T caused by variance changes o f Ai

variance changes o f T
, (7)

where Ai and T are the activity i and the system total time. According to Equation (7), we can get the
computing definition of UIM as follows:

UIM(i) =
∆V(Ti)

V(T)
, (8)
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where ∆V(Ti) and V(T) are the variation value of variance of T caused by the time fluctuation (variance
changes) of a specific activity Ai. Based on the above definition, UIM results can be obtained under an
analyzable standard GERT network. Several important steps are usually involved, as follows.

Step 1. Analyze the type of GERT network and compute the transfer function expression;
Step 2. According to the calculation of different network structures, compute the corresponding

n-order moments about the origin (the one-order moments about the origin is the expectation value)
when the variances of Ai in a GERT network are 0 and a given value, and get E

(
Ti0
)
, E
(
Ti1
)
, E
(

T2
i0

)
and E

(
T2

i1

)
, where Ti0 and Ti1 are the different T when the variances of Ai are 0 and a given value;

Step 3. Compute the corresponding variances of T when the variances of Ai are 0 and a given
value according to Step 2, and get the values as follows:

V
(
Ti0
)
= E

(
T2

i0

)
− E2(Ti0

)
(9)

V
(
Ti1
)
= E

(
T2

i1

)
− E2(Ti1

)
. (10)

Step 4. Compute the variation of Ai, namely the variance ∆V(Ti), according to Step 3 and get the
values as follows:

∆V(Ti) =
∣∣V(Ti1

)
−V

(
Ti0
)∣∣. (11)

Step 5. Compute the variation of T, namely the total variance of GERT network V(T), similar to
in Steps 2 and 3, and get the values as follows:

V(T) = E
(

T2
)
− E2(T). (12)

Step 6. Put the results of ∆V(Ti) and V(T) into Equation (8) and compute the UIM results of Ai.
The mathematical method certainly has more general applicability than the Taguchi tolerance

design, but it is essential that stochastic networks be converted into a standard GERT network model,
which is the worst drawback. In addition, the Mason formula and moment generating function are
computed in an analytical algorithm, which is a cumbersome step. To solve these problems, the Monte
Carlo simulation method is used to analyze the critical activities in GERT networks.

3.2.3. Simulation Method Based on Monte Carlo

The simulation framework of a system GERT network is shown as Figure 4. Current completion
(including the achievement of nodes, activities completion, etc.) needs to be monitored as the program
is undergoing continuous simulation. Information on activities (activity time, probability, precedence
nodes and successor nodes, etc.) can be batch-imported to generate the corresponding GERT models.

Figure 5 shows the whole simulation process. It includes three main parts in Monte Carlo
simulation analysis of system risk scenarios.

(1) Random sample. Using the known parameter distributions (time distribution, cost distribution,
etc.) for direct sampling. Generally, the parameter distributions involved are normal triangular
distributions, so all sampling is done at once in this article, with sampling results to compute the
relevant parameters of the entire system.

(2) Determine the rate of risk scenarios and system failure according to the criteria. When judging
whether a risk scenario has happened or not, risk events must be assessed first; whether the
system fails or not depends on parameter sampling in Step 1: whether the system fails or not can
be determined after the end of each sampling.

(3) Importance measure analysis according to the statistical data of risk scenarios. This article
focuses on two types of data, the occurring numbers (N(S)) or occurring probability (P(S)) of
risk scenarios, and the failure numbers ( N(F|S) ) or failure probability ( P(F|S) ) of system when
some specific scenarios happened.
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In the second part, the description of risk events and the judgment criteria of system failure
need be given based on specific situations of different systems, as the criteria of different systems
vary widely. Collection of this information is important when system risk assessment is in progress.
The flow of Monte Carlo simulation program of system risk scenarios is shown in the next figure.

3.3. Generation Steps of Risk Scenarios

In order to find the UIM values of all system activities, risk scenarios can be generated. Concrete
steps are as follows:

Step 1. Rank the UIM values of activities, and got the results: A1 > A2 > · · · > Ai > · · · >
An (1 < i < n), where i means the ranking numbers of UIM values;

Step 2. Analyze the system activities that have high UIM values; those that have a significant
impact on the variance of system time will be chosen, such as activities as A1, A2, · · · , Ai (1 < i < n),
while low-impact activities are ignored;

Step 3. Make activities with high UIM values the subject of risk events. Rank the importance of
risk events and identify risk scenarios;

Step 4. Combine the events in certain rules, and get important risk scenario set
S = {em|1 ≤ m ≤ i}, where all non-empty subsets can be considered risk scenarios.

The risk scenario generation method according to system critical activities in this article is simple
and straightforward. According to the ranking results of activity importance, we can understand
intuitively which activities have the greatest effect on the whole system and eliminate the low-impact
activities to greatly increase the efficiency; moreover, if the identified events are a total of N, the
number of scenarios may reach 2N − 1 in theory. Once the level of N cannot be reduced, 2N − 1 will be
a very large number. Therefore, some rules can be adopted to downsize scenarios in the stochastic
combination of risk scenarios. For instance, one way is to add in the preference of decision-makers to
filter out the risk scenarios; another is to classify the importance of activities and risk events into type
A, type B, or type C. Ranking the importance of risk events first would be an effective way to judge the
importance of risk scenarios, since important scenarios always include important events.

When risk events are independent of each other, the more important events there are in one
scenario, the larger probability it will be a more important scenario. There are two plans to rank risk
events: one is ranking with ECI results but requires additional Monte Carlo simulation; the other is
ranking the preliminary events according to the results of critical activities ranking. The latter not
only takes advantage of the information on critical activities, but saves time and resources as well.
Therefore, this article directly ranks the UIM values.

4. Examples

4.1. Overview

A specific example in this article is shown to analyze the critical activities and generate risk
scenarios. By ranking the UIM values of the critical activities of the system in the example, the critical
activities and events are identified and risk scenarios are generated based on importance measure
analysis, so as to illustrate the logical rationality of UIM indexes proposed in this article and verify the
risk scenarios generated method based on importance measure analysis. Such activity-based systems
are usually embodied in maintenance and logistic systems or engineering project systems, which are
usually composed of specific activities [24,34,39]. A PERT network with six nodes and nine activities is
shown in Figure 6, which is abstracted from an engineering project system. The durations of activities
1, 2, 4, 5, 6, 8, and 9 obey normal distribution with a mean of 3 and a variance of 1 (months), while the
other two activities obey normal distribution with a mean of 6 and a variance of 2 (months).
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Figure 6. A PERT model of a project system.

4.2. Analysis of Critical Activity

First, transform the PERT model to a standard GERT network (Figure 7). Then compute the
probability of every path in a standard GERT network (in Table 1) so that the transfer function of the
entire GERT network can be obtained, as shown in Equation (13).
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WE = PaWa + PbWb + PcWc + PdWd + PeWe + Pf W f+PgWg + PhWh

= Pae21s+7s2
+ (Pb + Pc + Pd + Pe)e15s+5s2

+
(

Pf + Pg + Ph

)
e9s+3s2 (13)

Table 1. Probability of each path.

Path Probability Path Probability

Wa Pa = 0.97803 We Pe = 0.00548
Wb Pb = 0.00547 W f Pf = 0.00003
Wc Pc = 0.00548 Wg Pg = 0.00003
Wd Pd = 0.00546 Wh Ph = 0.00003

As stated above, the UIM values of each activity could be computed and compared with the
tolerance design results. Meanwhile, this article uses simulation to analyze the case. Using a
pre-established GERT network model based on Monte Carlo simulation, this article calculates the
mean and variance of the total system time under normal circumstances (i.e., the activity duration
parameter is not changed), and the distribution of the total system time can be obtained as shown in
Figure 8. The mean of the total time is 21.06 and the variance is 11.54.

Next, the effect on the system time of one activity’s variance fluctuation can be compared and the
mean and variance of system total time can be simulated after the variances of each activity changed.
The variance change of A3 and A7 affecting the total time is shown in Figures 9 and 10. Obviously,
the variance in A3 and A7 does not change the mean of total time much, but the variance grows
significantly larger. In order to better compare the variance importance of all activities, this article
computes the effect on the variance of system total time of the variance of each activity: UIM index.
After statistical analysis, the results are as shown in Table 2.
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Figure 9. Effect of A3’s variance on the total time.
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Figure 10. Effect of A7’s variance on the total time.

From Table 2, it is known that the influence of the variances of the nine activities on the mean of
the total time is not significant. The variances of A3 and A7 have the greatest impact on the variance of
system total time, reaching 67.25% and 49.87%, respectively, with A1, A5, and A9 following behind.
Only 9.49% of the impact is from A4, while A2, A6, and A8 can be neglected.

Table 2. Contrast of impact on system total time of the variance of each activity.

Activity Name
Variance of Activity Time Is 0 Variance of Activity Time Is Specific Value

Mean Variance Change of Mean Change of Variance

A1 21.165 9.94 −0.50% 16.10%
A2 21.024 11.53 0.17% 0.09%
A3 21.18 6.90 −0.57% 67.25%
A4 21.09 10.54 −0.14% 9.49%
A5 21.21 10.10 −0.71% 14.26%
A6 21.11 11.54 −0.24% 0.00%
A7 20.84 7.70 1.06% 49.87%
A8 20.67 11.31 1.89% 2.03%
A9 21.08 9.96 −0.09% 15.86%



Sustainability 2018, 10, 3207 14 of 18

A comparison of UIM indexes and results from the three methods is given in Table 3, in which
Monte Carlo simulation obtains the most detailed analysis results. The importance values calculated
by some activities are very close in mathematical analysis methods and Taguchi tolerance design, so
activities are only divided into three types: The most important activities are A3 and A7, with A1, A5,
and A9 following behind, along with A2, A4, A6, and A8. In Taguchi tolerance design, A2, A4, A6, and
A8 have almost no importance at all (a UIM value of zero), while in mathematical analysis, although
the UIM values of A2, A4, A6, and A8 are not zero; this method does not make a further division of the
activities of the three different importance measures. Monte Carlo simulation results show that A3

is more important than A7 (only from the perspective of UIM values comparison), while A4 is more
important than A2 and A6.

Table 3. Activities UIM results comparison of three methods.

Activity
Monte Carlo Simulation Mathematical Analysis Taguchi Tolerance Design

UIM Values (%) Rank of UIM UIM Values (%) Rank of UIM UIM Values (%) Rank of UIM

1 13.86 3 13.5382 2 14.29 2
2 0.09 7 0.0749 3 0 3
3 40.21 1 26.9273 1 28.57 1
4 8.67 5 0.0749 3 0 3
5 12.48 4 13.464 2 14.29 2
6 0.00 7 0.0749 3 0 3
7 33.28 2 26.9273 1 28.57 1
8 1.99 6 0.0749 3 0 3
9 13.69 3 13.5382 2 14.29 2

From the results of UIM index, the mathematical method is also the preferred method to assess
the criticality of project activities, and with respect to the Taguchi tolerance design method, the
mathematical method is not only applicable to PERT networks but more suitable for any stochastic
networks that can be converted to standard GERT networks. Thus, compared with Taguchi tolerance
design, the mathematical method is more common and easy to transplant. However, after comparing it
with the simulation method, Monte Carlo simulation calculates the results more accurately. One reason
is the specialty of the case: mathematical analysis makes further calculations after transforming
the PERT networks into standard GERT networks. The process involves path probability problems
that cannot be solved; the probabilities of paths are obtained by simulation, so it is not a strictly
mathematical process. The other reason is that the simulation method is a stochastic sampling method;
because of its limited number of simulations, the data convergence is not strong, and this will create
differences in the UIM values.

4.3. Identification of Risk Events

According to the ranking results of UIM achieved by Monte Carlo simulation, A3, A7, A1, A5, and
A9 are chosen as activities of interest. The mean of the system is 21.06 and the variance is 11.54. Table 4
shows the failure criterion of this system case, with only the consideration of risk on time dimension;
the failure criterion does not take cost and quality into account. Based on the results of critical activity
analysis, A3, A7, A1, A5, and A9 are the subject body of risk event and the type of event is time, as
shown in Table 5.

Table 4. Failure criterion of the system.

Criterion Type Expectation Failure Determination

time 21 T > 25.2

In order to ensure the seriousness of risk events and their ECI values, the Monte Carlo simulation
method is used to obtain the ECI indexes and rank the importance of each set of events, as shown
in Table 6. Among them, e1 and e2 have the highest ECI values of about 27.3% (error between 27.2%
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and 27.3% is ignored); their events activities, A3 and A7, have the highest UIM values. Meanwhile,
the UIM values of A1, A5, and A9 are about 12% smaller than A3 and A7; the ECI values of involved
events e3, e4, and e5 are also smaller than e1 and e2 and they are close numerically (the difference can
be ignored).

Table 5. Identification results of risk events based on critical activity analysis.

Risk Events Subject Type Content

e1 A3 time t > 7.2
e2 A7 time t > 7.2
e3 A1 time t > 4.2
e4 A5 time t > 4.2
e5 A9 time t > 4.2

Table 6. ECI index statistics of risk events.

Risk Events Subject ECI (%) UIM of Subject (%)

e1 A3 27.3 32.23
e2 A7 27.2 32.23
e3 A1 15.6 12.07
e4 A5 17.9 12.03
e5 A9 17.1 12.07

From Table 6 the conclusion can be drawn that if an activity is determined as a critical activity
in the time dimension (or in the cost or quality dimension), the importance measure of risk events
(which makes this activity the subject and time the event type) is relatively high, as well as the UIM
values of this activity. In other words, when we identify risk events through critical activity analysis, it
is not necessary to simulate and compute ECI indexes with Monte Carlo simulation for judging the
importance of risk events, because the ranks of risk events and critical activities relate to each other
closely (the more critical the activities are, the higher importance the involved risk events have).

4.4. Generation of Risk Scenarios

After critical activity analysis of GERT network, important risk events can be identified from the
UIM of project activities. Based on different combinations of rules, risk scenarios are generated to
have a greater impact on the entire system failure risk. Since the systems in this article are small and
the quantities of identified events are not high, this article takes a stochastic combined approach to
generate a combination of risk scenarios, as shown in Table 7. In practical applications, other methods
can be used to add risk preference to generate the corresponding risk scenarios.

Table 7. Importance analysis of risk scenarios combinations generated by risk events.

Risk Scenario S SCI (%) Sum (ECI) Risk Scenario S SCI (%) Sum (ECI)

S1 = {e1, e2, e3, e4, e5} 100 105.1 S14 = {e1, e3, e5} 58.6 60
S2 = {e1, e2, e4, e5} 91.8 89.5 S15 = {e2, e3, e5} 57.2 59.9
S3 = {e1, e2, e3, e4} 92.2 88 S16 = {e1, e2} 58.2 54.5
S4 = {e1, e2, e3, e5} 92.2 87.2 S17 = {e3, e4, e5} 60.6 50.6
S5 = {e1, e3, e4, e5} 73.2 77.9 S18 = {e1, e4} 35.4 45.2
S6 = {e2, e3, e4, e5} 75.2 77.8 S19 = {e2, e4} 31.6 45.1

S7 = {e1, e2, e4} 79.2 72.4 S20 = {e1, e5} 36 44.4
S8 = {e1, e2, e5} 77.2 71.6 S21 = {e2, e5} 37.4 44.3
S9 = {e1, e2, e3} 75.8 70.1 S22 = {e2, e3} 42 42.8
S10 = {e1, e4, e5} 53.6 62.3 S23 = {e1, e3} 37.2 42.9
S11 = {e2, e4, e5} 55.4 62.2 S24 = {e4, e5} 32.2 35
S12 = {e1, e3, e4} 54.8 60.8 S25 = {e3, e4} 34.4 33.5
S13 = {e2, e3, e4} 55.6 60.7 S26 = {e3, e5} 37.6 32.7
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From Table 7, the SCI generated by stochastic combinations of risk events is related to its ECI.
Table 7 shows SCI values of 26 risk scenarios and the sum of their ECI values, which are analyzed after
Monte Carlo simulation (which does not contain the scenarios combined by a single event). This shows
that when the sums of ECI are more than 60%, there is a more than 50% probability that would the
project system will fail. The higher sum of ECI indicates that according to the risk scenarios SCI is
higher. For example, risk scenario S4 is combined with risk events e1, e2, e3 and e5, which are subjected
to activities A3, A7, A1 and A9. That means that if activities A3, A7, A1 and A9 of the project fail, the
whole-project system failure probability is 92.2%. So, when project managers are assessing project
risk, the risk scenario is critical. In particular, if activities A3, A7, A1, A5 and A9 of the project all fail,
corresponding to events e1, e2, e3, e4 and e5, respectively, scenario S1 will occur, and the probability of
occurrence of project failure caused by it is 100%. Basically, risk scenarios that contain more critical
risk events (namely, higher ECI values of events) or more risk events will have higher SCI indexes.

Based on the above analysis, we can conclude that risk scenarios combined with critical risk
events (which refers to the higher ECI index here) are also critical risk scenarios. Therefore, after the
“critical activity analysis-risk event identification-risk scenario generation” process of risk scenario
generation, risk scenarios can be ranked in importance. The ranking results will let project managers
know which risk scenarios to focus on.

5. Conclusions

Risk assessment is an important issue affecting the sustainability of economics and management.
In this article, we propose a set of importance measurement indexes for activity, event, and risk
scenarios in activity-based systems. Then we analyze the importance of critical activities by three
different methods. Through computing the UIM indexes of activities, a ranking is obtained so that risk
scenarios can be generated for project engineering. Finally, we analyze the SCI and ECI indexes of
different risk scenarios and get the critical risk scenarios combinations generated by critical risk events.

After simulation and analysis, we conclude that the three critical activity analysis methods have
their advantages and disadvantages. In the Taguchi tolerance design method, the steps are variable
and the formulas are complex, so this method is mainly applicable to simple PERT networks with fewer
factors (activities). In the mathematical analysis method GERT networks need to be standardized; for a
simple standard GERT stochastic network this method is undoubtedly the most effective, but if the
activity-based system is really complex, the GERT networks may not be transformed into standard
networks directly. Monte Carlo simulation is a common method that, with the help of a computer
program, can greatly reduce the human workload and improve the accuracy of the analysis results.

In brief, from the simulation results of the example system in this paper, it is proven that the
proposed risk scenario generation method based on importance measurement analysis is effective
compared with other methods. It includes three importance measurement indexes (for activity, event,
and scenario respectively) during risk scenario simulation processes. Due to the constraints of the
generation framework of risk scenarios, the method is much more suitable for activity-based systems,
such as maintenance and logistics systems or engineering project systems. When implementing the
present method to analyze system risk, a time-related system model should be built before the activity,
event, and scenario analysis to describe the system risks. Sometimes it is difficult to abstract various
types of systems to a time-related model. Meanwhile, the current importance measurement indexes,
UIM, ECI, and SCI, all work on just one dimension of system failure (time, cost, or quality), which
indicated by the variance of system parameters. In future work, the covariance could be considered to
represent a multi-parameter importance measurement.
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