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Abstract: In the present study, the performance of a 70 L photobioreactor, operating outdoors,
was investigated using a purple bacterial strain as Rhodopseudomonas sp. S16-VOGS3 for producing
poly-3-hydroxybutyrate (PHB). The novel photobioreactor was equipped with 5 rows L-shaped;
the bottom of every row was placed in a stainless-steel tank containing water with controlled
temperature. The photofermentation trials were carried out under fed-batch mode and under a
semi-continuous regimen using lactic acid as the carbon source. The effect of the irradiance and
the carbon/nitrogen ratio on the PHB accumulation was investigated, in order to evaluate the
optimal bacterial growth. The results showed the feasibility of the prototype photobioreactor for
the production of PHB by Rhodopseudomonas sp. S16-VOGS3 under the natural light/dark cycle.
During the fed-batch growth (144 h long), the cumulative PHB increased quickly reaching a maximum
value of 377 mg/L and decreased to 255 mg/L during the semi-continuous regimen (336 h long).

Keywords: photobioreactor; Rhodopseudomonas sp. S16-VOGS3; poly-3-hydroxybutyrate; thermal
analysis; C/N ratio

1. Introduction

Global petroleum-based plastic production passed 320 million tons (Mt) worldwide in 2016 and
it is expected to double in the next 20 years [1]. The United Nations Environment Program (UNEP)
showed that only the 54% of plastic waste went to landfills or recycled but the rest entered the ocean
and accumulated as debris every year, representing a global problem for the marine ecosystems [2].
Globally, 5 to 13 Mt of plastics end up in the oceans every year [3]. Better recycling and the
replacement of the petrol plastics with bioplastics (BPs), not only compostable but also biodegradable
in different natural environments, could be a concrete answer to this serious environmental problem.
The biodegradability of BPs in different natural environments, such as soil and marine/fresh water,
is a key property that makes their life cycle more eco-sustainable compared to the conventional plastics.
Despite the environmental benefits of BPs, their actual worldwide production is only about 1 Mt/y [1]
but their demand is continuously growing and, in accordance with the last market data collected
by European Bioplastics, the global BP production capacity is expected to increase from around
2 Mt/y in 2017 to around 2.4 Mt/y in 2022, in absence of government support measures, and to
higher values with specific government incentives [4]. The main limitations that penalize the BPs
market are the competition for the use of renewable materials for the food and energy sectors and their
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actual high production costs. Among the BPs available on the market, the polyhydroxyalkanoates
(PHAs), polyesters synthesized by numerous bacteria, are attracting great attention due to their
thermoplastic properties similar to that of polypropylene (PP), good mechanical properties and
excellent biodegradability in various ecosystems such as fresh water, soil, industrial/domestic compost
and sea water. PHAs, with poly-3-hydroxybutyrate (PHB) as the simplest and most abundant PHA,
are synthesized under stressful conditions by higher plants, bacteria (e.g., Halobacteriaceae and Archea)
and many photosynthetic microorganisms such as purple non-sulfur bacteria (PNSB) or genetically
enhanced species of microorganisms [5–7].

Due to bioplastic degradability also in seawater, PHAs are among the most promising candidates
for the production of biodegradable items for different industrial applications. It has been estimated
that the world demand of PHAs is going to increase from the actual 10,000 to 34,000 tons/y in
2018, corresponding to an average growth of about 28% [8]. Nevertheless, their relatively high cost
(7–12 €/kg), compared to traditional petroleum-based plastics and also to other biopolymers such
as poly-lactic acid (PLA), has restricted their use only to high-value applications in medical and
pharmaceutical sectors, refraining research activity on their use in commodities such as packaging
and service items. These high market costs are mainly due to the high costs of used carbon sources
(e.g., glucose and sucrose), the low productivity and the low efficiency of extraction process of
PHAs from microbial biomasses [9,10]. Consequently, further research must be undertaken by
scientists in order to reduce the actual production costs of PHAs and increase their industrial
sustainability and commercialization. Also, the integration of the PHA production with biorefineries
can represent a strategy to lower the actual production costs using the biorefinery by-products (crude
glycerol, waste plant oils and low-grade biodiesels) as low-cost substrates for the PHA producing
microorganisms [11]. The integrated biorefineries will lead to a new way to produce bioplastics
along with biofuels (second generation bioethanol and biodiesel), like the modern oil-based refineries.
PHA production processes by means of numerous bacteria (e.g., Cupriavidus necator, Pseudomonas sp. K,
Ralstonia eutropha JMP 134 and genera of Bacillus sp.) are more studied and known than photosynthetic
processes carried out by means of cyanobacteria (Synechocystis sp. PCC 6803, Spirulina platensis etc.)
and/or PNSB (e.g., Rhodobacter sphaeroides, Rhodospirillum rubrum, Rhodopseudomonas palustris etc.).
This last family of proteobacteria (Rhodospirillaceae) can produce PHA through the photo-fermentation
process. The PNSB show a high potential to accumulate intracellular PHB granules as energy and
carbon reserves and are active H2 producers when they are grown under stress conditions [12,13].
Combined production of PHB and bio-hydrogen through photoautotrophic metabolism could lead to
a further advantage for the environment by converting solar energy into alternative sources of energy
and bioplastics [13]. Rhodobacter sphaeroides RV and Rhodospirillum rubrum represent the bacterial genera
more able to accumulate large quantity of PHB, showing that the efficiency of the biochemical pathway
depends not only on the particular species but also on the growth conditions (e.g., some nutrient
deficiency and pH value). Knowledge of the mechanism of the aforementioned relationships may
provide a clue to an alternative approach of controlling cultivation to achieve the preferred product,
PHB or H2. Khatipov et al. [13] achieved high PHB content (40% of dry cell weight) into the cells of
Rhodobacter sphaeroides RV on lactate media increasing the initial pH of the ammonium-free medium to
10 or higher.

In the biological PHB production by photo-fermentative process, the photobioreactors must be
designed to have an optimal use and penetration of light, these factors are essential to obtain high
biomass growth rates and consequent high PHB productivity. In conventional photobioreactors,
the increase of the concentration of cells and products and/or the formation of biofilm on the reactor
surface tend to markedly reduce the intensity of light [14] with consequent productivity reduction
over the time.

In this study, a wild strain of Rhodopseudomonas sp. S16-VOGS3, previously selected as
PHB-producer [15], was used for producing PHB in a novel outdoor L-shaped row photobioreactor
(L-SRP), under the natural light/dark cycle. The photo-fermentation trial was initially carried out
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in batch mode and then semi-continuous mode, using lactic acid as carbon source. The aim of this
study was to evaluate the performance of the novel photobioreactor in terms of biomass growth and
PHB accumulation under the natural sunlight conditions and to investigate the effect of the irradiance
(direct and diffuse) and carbon/nitrogen (C/N) ratio. The extracted PHB from Rhodopseudomonas
lyophilized-biomass produced was characterized in terms of thermal properties and stability in view
of its use as thermoplastic polymer.

2. Materials and Methods

2.1. Photobioreactor

The photo of the L-shaped row photobioreactor (L-SRP) used for the photofermentative PHB
production is reported in Figure 1a. It is equipped with 5 parallel rows (Pyrex® glass make) and
the total working volume is 70 L. Every row is a L-shaped loop with 4-pipes laid horizontally in a
stainless-steel tank that contains demineralized water at controlled temperature and 8-pipes placed
one over the other and connected with U fittings as shown in the Figure 1a. The photobioreactor
configuration with the 5 L-shaped loops permitted a good culture temperature control realized by the
4 pipes of each loop submerged in water, reducing the temperature excursion range experienced by
bacterial cells. This solution avoided the use of an external refrigeration system.
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Figure 1. (a) Photo of the novel L-shaped row photobioreactor (L-SRP) operating outdoors for
growing Rhodopseudomonas sp. S16-VOGS3; (b) Schematic diagram of a previous underwater tubular
photobioreactor (UWTP) used for growing Rhodopseudomonas palustris 42OL [16,17].
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The pipes and U-fittings have inner and outer diameter of 2.6 and 3.0 cm, respectively. All 5 rows
are connected with 2 collectors: the first placed at the bottom and the second on the top of the culture
system. The photobioreactor is joined with a vessel. A pump, provided with 3 flat blades placed at
120◦ to one another on the propeller shaft, is used to recirculate the culture in the system: the culture
flows into the bottom collector which has 5 pots: one for each loop, then from the bottom up along each
line until reaching the top collector. From the top collector, the culture returns to the vessel, where the
pH is regulated at 7.0 ± 0.5 by adding 0.5mM HCl. The photobioreactor used in the present work
derives from previous studies [16,17] on temperature controlled underwater tubular photobioreactor
(Figure 1b) operating in outdoor conditions to growth Rhodopseudomonas palustris 42OL.

2.2. Microorganism Strain and Culture Conditions

In the present study, Rhodopseudomonas sp. S16-VOGS3, belonging to the culture collection of the
Istituto per lo Studio degli Ecosistemi (Consiglio Nazionale delle Ricerche (ISE, CNR), Florence, Italy),
was employed. The 16S sequence of Rhodopseudomonas sp. S16-VOGS3 was deposited in GenBank
under the following accession numbers: KU899101-KU899105.

Rhodopseudomonas sp. S16-VOGS3 cells were grown initially indoors and, then, outdoors in the
70-L photobioreactor. The bacterium was cultured in batch mode into 8-Sovirel bottles containing
100 mL medium at constant temperature of 30 ± 0.2 ◦C under continuous artificial irradiance of
75 W/m2 in anaerobic conditions. After 7 days of growth, Rhodopseudomonas cells were harvested
by centrifugation (9000 rpm) and transferred into two photobioreactors with 4 L working volume
(not shown here) containing fresh medium. The growing conditions were the following: fed-batch
mode, continuous irradiance of 150 W/m2, constant temperature (30± 0.2 ◦C) and anaerobic conditions
obtained by fluxing argon (99.99% pure). A 150 W OSRAM power-star HQI-TS lamp was used to light
the culture; the light intensity was measured using a Quantum/Radiometer/Photometer. Successively,
cells of Rhodopseudomonas sp. S16-VOGS3 were used to inoculate the 70 L photobioreactor positioned
outdoors containing fresh medium. A total of 1L of growth medium used for both indoor and outdoor
bacterial growth contained 4.0 g lactic acid, 0.5 g NH4Cl, 1.0 g KH2PO4, 0.4 g NaCl, 0.05g CaCl2 2H2O,
0.4 g MgSO4 7H2O, g 0.005 ferric citrate and 0.1 mg para-aminobenzoic acid. Trace elements were
provided by adding 10 mL (per 1 L) of a solution containing 30 mg H3BO3, 3.0 mg MnCl2 4H2O,
500 mg Na2MoO4 2H2O, 10 mg ZnSO4 7H2O, 1.0 mg CuCl2 2H2O, 2.0 mg NiCl2 6H2O and 24.5 mg
CoNO3 6H2O. The pH of the medium was adjusted to 6.8 by using NaOH solution. During the outdoor
bacterial growth, the pH was adjusted by adding HCl solution.

2.3. Outdoor Bacterial Growth

The L-SRP was inoculated in the evening by using the total volume of Rhodopseudomonas sp.
S16-VOGS3 culture grown indoors. No argon was used for obtaining the anaerobic conditions since
these conditions were reached two hours and half after the inoculation due to the dark natural
conditions. The L-SRP was operated under fed-batch (FB) mode along the 144 h of biomass growth.
A second experiment was carried out under a semi-continuous (SC) regimen, adopted to maintain
the cell dry-weight concentration (CDWC) of about 4.0 g/L. Moreover, the medium replacement was
accomplished every time (culture time of 72 h) adding to the culture an adequate amount of lactic
acid to restore its initial concentration of 4.0 g/L. In this way, the unsuitable situation that could have
stopped growth of Rhodopseudomonas sp. S16-VOGS3 due to lack of nutrients, such as the carbon
source, is avoided. The culture samples were collected through a sampling point with respect to time to
measure the CDWC, residual substrate (lactic acid) concentration and intracellular PHB concentrations
in accordance with the analytic methods reported below. The investigation was carried out under the
natural light/dark cycle in the summer period: 27 June–18 July 2017 at Sesto Fiorentino (Florence, Italy)
(Latitude: 43◦49′54′ ′ N; Longitude: 11◦11′57′ ′ E; Altitude above sea level: 60 m).
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2.4. PHB Recovery

Bacterial cells were separated from culture suspension by centrifugation at 9000 rpm and, then,
the pellet was suspended in a physiological solution (9‰) to wash it and, then, the suspension was
centrifuged at 9000 rpm. The washing operation was repeated twice before collecting the final biomass
that was frozen and, then, lyophilized to be used for the subsequent PHB extraction. The extraction
was carried out in accordance with Al-Kaddo et al. [18]: about 2 g of lyophilized cells were added to
200 mL of chloroform (CHCl3) and the suspension was kept under stirring at room temperature for
6 days. Thereafter, the solution was filtered under vacuum utilizing a paper filter (Whatman No. 3)
to remove cell debris and the filtrate was concentrated in a rotary evaporator to around 25 mL and
PHB was precipitate by addition of 200 mL of cold methanol under vigorous stirring. Wet PHB was
collected by centrifugation and then it was air dried, weighted and used for the thermal analyses.

2.5. Analytical Methods

Cell dry-weight concentration (CDWC) and bacteriochlorophyll (Bchl) concentration were
determined in accordance with Carlozzi and Sacchi [16]. The PHB content accumulated in the
bacterial cells was measured by HPLC (High-Performance Liquid Chromatography) using the Thermo
Finnigan-Spectra System 6000 LP (Thermofinnigan, San José, CA, USA), following the procedure
reported elsewhere [15]. The organic acid concentration in the bacteria cultures was determined
as reported elsewhere [19] by using the HPLC (Thermo Finnigan-Spectra System 6000 LP) with a
C18 analytical column (250 × 4.6 mm) operating at 25 ◦C. The cells were separated from the culture
suspension by disposable syringe filter units (MFS-13 mm, pore size 0.45 µm) and the supernatant
sample was injected into the C18 analytical column for the analysis of the lactic acid concentration.
An aqueous solution 0.1 wt.% H3PO4 was used as the mobile phase at a flow rate of 1.0 mL/min.
All analyses were carried out in triplicate.

2.6. Thermal Analysis

Differential scanning calorimetry (DSC) and thermo-gravimetric analysis (TGA) were used to
study the thermal properties of the recovered PHB in view of its use as thermoplastic polymer. DSC was
performed using a DSC Q200 (TA Instruments, Waters LLC, New Castle, DE, USA) calibrated with
standard indium. PHB samples (about 12 mg) were first heated from ambient temperature to 200 ◦C at
a heating rate of 10 ◦C/min in order to erase any previous thermal history. After an isotherm at 200 ◦C
for 5 min, the samples were cooled until ambient temperature and heated again to 200 ◦C with an
increasing temperature rate of 10 ◦C/min. The glass transition temperature (Tg), melting temperature
(Tm) and enthalpy (∆Hm) were determined from the second heating thermogram. The degree of
crystallinity xc of PHB was calculated using the following equations:

xc = ∆Hm/∆Hm,100·100

where ∆Hm is the melting enthalpy of the sample (J/g); ∆Hm,100 is the enthalpy value for a theoretically
100% crystalline PHB (146 J/g) [20].

The thermal stability of the polymeric samples produced by Rhodopseudomonas sp. S16-VOGS3
was determined by TGA using a TA Q-500 (TA Instruments, Waters LLC, New Castle, DE (USA)).
About 10 mg of sample was loaded into an aluminum pan and heated from room temperature to 600 ◦C
at a heating rate of 10 ◦C/min under nitrogen atmosphere. The thermal stability of the polymer was
determined measuring the decomposition temperature (Td), defined as a temperature corresponding
to a sample weight loss of 5%.
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3. Results and Discussion

3.1. Photobioreactor Performance

The improved geometry configuration of the novel L-SRP tested in the present study is evident
and significant respect to some typical horizontal tubular photobioreactors. The verticalization
of the cultural system allows the light to reach full pipe surface. In accordance with a previous
investigation [21], spacing properly the rows of the 70-L photobioreactor, the light distribution
improved inside Rhodopseudomonas culture causing a type of culture lamination that permitted the
dilution of solar radiation (SR). In fact, the lamination of the culture can increase the irradiated surface
(Si) and consequently the Si/V ratio of the photobioreactor and control the photic ratio by spacing or
narrowing the parallel rows. Table 1 shows the internal diameter (di) and the Si/V ratio of several
tubular photobioreactors proposed in literature [17,21–24]: the lower the internal diameter the higher
the Si/V ratio. With a di of 0.010 m, a Si/V ratio of 400 m-1 was reached [24]. A recent tubular
photobioreactor with a Si/V ratio of 182 m-1 was identified as the best culture system among those
tested by Palamae et al. [23]. They reported that the Si/V ratio affects the production of biomass and
hydrogen differently: a high Si/V ratio favored the hydrogen production over biomass production
when growing Rhodobacter sphaeroides S10.

Table 1. Internal pipe diameter (di) and some important parameters of tubular photobioreactors
proposed in literature.

di (cm) Working Volume (L) Si (m2) Si/V Ratio (m−1) Ref.

8.0 80.0 3.200 40.0 [22]
4.8 53.0 3.014 56.9 [17]
2.6 70.0 6.300 90.0 This study
2.2 1.0 0.182 181.7 [23]
1.6 22.1 2.200 99.5 [24]
1.0 11.0 4.400 400.0 [21]

3.2. PHB Production

Figure 2 shows the profiles of the daily maximum irradiance (Imax) and solar irradiation
(SR) and Bchl, lactate and PHB concentrations in the bacterial culture during the cultivation of
Rhodopseudomonas sp. S16-VOGS3 in the outdoor L-SRP under fed-batch mode (run1). After a
lag-phase growth period, lasted about 48 h, during which Bchl concentration was stable and the
irradiance had a fluctuating behavior (Figure 2a,b), it was observed a continuous increase of the
Bchl amount up to double its concentration (3.8 g/Lculture) in the subsequent 96 h. During the
fed-batch growth (lasted 144 h), lactic acid was consumed and, consequently, added twice (after 72
and 124 h) to restore its initial concentration to 4 g/L (Figure 2c). The lactate concentration restoring
operations caused significant heightening of the C/N ratio in the medium since the concentration
of ammonia nitrogen (NH3-N) in the culture broth decreased progressively over time (Figure 2c).
It is known that stressed growth conditions caused by a high C/N ratio and/or nutrient limitation
(e.g., Nitrogen and Phosphorus) in the culture medium promote the accumulation of intracellular
PHB [25–28]. As expected, the PHB concentration in the culture grew over time and, more significantly,
when the initial lactate concentration was restored (Figure 2d). In particular, PHB concentration
augmented of 32% in the last period of bacterial growth when the amount of NH3-N was totally
depleted and the growth occurred under nitrogen starvation. After 144 h of batch cultivation, a final
amount of 377 mg(PHB)/Lculture was reached corresponding to a PHB volumetric productivity of
about 63 mg L−1 day−1. Recently, a PHB production of 10.3 mg/L/day was reported by growing
(indoors) Synechocystis PCC6803 [29]. In the present investigation, at the end of Rhodopseudomonas sp.
S16-VOGS3 fed-batch growth (run 1), the CDWC was 2.92 g/L, which corresponded to the total dry
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biomass produced of 134.4 g with the 70 L photobioreactor; the content of PHB in the dry-biomass
was ≥19.6%.Sustainability 2018, 10, x FOR PEER REVIEW  7 of 13 
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Figure 2. Culture of Rhodopseudomonas sp. S16-VOGS3 grown outdoors into a 70 L L-SRP under
fed-batch mode (run 1): (a) Bchl concentration versus time, (b) daily changes of the maximum irradiance
(IMax) and solar radiation (SR); (c) lactate and ammonia nitrogen (NH3-N) concentrations versus time
and (d) intracellular poly-3-hydroxybutyrate (PHB) concentration. The arrows indicate the points of
addition of lactic acid to restore the initial lactate concentration (4 g/L).

In order to evaluate the effect of the solar light intensity on the productivity of PHB accumulated in
the bacterial cells, a further investigation was carried out by covering about 80% of the photobioreactor
with a dark cloth as shown in Figure 3a (run 2). In this way, the light intensity impinging on the L-SRP
was significantly reduced and the culture was irradiated principally by diffuse irradiance, with the
exception of the U-fittings. Figure 3b shows typical daily trends of the direct and diffuse irradiance on a
horizontal plane measured at Sesto Fiorentino (Florence, Italy) in the period June–July 2017. The results
obtained during the 336 h of Rhodopseudomonas growth under diffuse radiation (run 2) are shown in
Figure 4a–d. During the first 192 h, the photobioreactor was operated in FB mode; when the Bchl
concentration reached the value of 16.4 mg/Lculture and the CDWC 4.0 g/L, the regimen of growth was
changed from FB to SC mode (Figure 4a). In order to maintain the CDWC ranging from 3.2 to 4.1 g/L,
an appropriate culture volume was withdrawn from the reactor and replaced with an equal volume
of fresh medium every 72 h. During the 336 h of cultivation, the maximum light intensity was quite
constant and ranged from 900 to 956 W/m2; on the contrary, the global solar radiation (SR) changed
significantly from 22.3 to 29.8 MJ/m2 day, as shown in Figure 4b. The lowest reached lactate content
was about 1.0 g/L and its initial concentration (4.0 g/L) was restored when the fresh culture medium
was added in accordance with the SC regimen of growth (Figure 4c). The NH3-N amount decreased
progressively and reached zero after 164 h of cultivation. The accumulated PHB concentration
decreased significantly during the first period of bacterial growth; subsequently, in the SC regimen the
PHB concentration ranged from a minimum of 154 to a maximum of 286 mg/L (Figure 4d). This second
outdoor investigation demonstrated that when Rhodopseudomonas sp. S16-VOGS3 was cultured under
lower irradiance, the amount of PHB into bacterial cells decreased significantly, indicating the dominant
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role of irradiance on other parameters such as C/N ratio. In fact, as elsewhere demonstrated [27,28],
stressed growth conditions caused by high C/N ratios should increase the amount of PHB into bacterial
cells, but this was true as far as the results of our first investigation (run 1) is concerned, but not for
those of the second one (run 2) (Figure 5). In fact, despite the similar increases in the C/N ratio for
both cases (Figure 5a), the PHB content into the cells had an opposite behavior (Figure 5b): during the
run 1 (direct irradiance), the PHB content rapidly increased reaching the value of 19.6% of dry biomass
weight; during the run 2 (diffuse irradiance), the PHB content decreased reaching a value of about 7%
at the end of the investigation.

Recently, the same bacterial strain used in the present study (Rhodopseudomonas sp. S16-VOGS3)
was identified as a potential candidate for employing crude glycerol coming from biodiesel
industry [15]. The authors obtained (indoors) a PHB-rich biomass with a content of 18% on dry-weight
biomass, demonstrating that a degradable plastic material as PHB could be efficiently produced
by feeding Rhodopseudomonas sp. S16-VOGS3 with the byproduct coming from biodiesel industry,
in order to obtain a significant reduction of PHB production-costs. A higher cost reduction for
PHB production could be achieved when PHB biosynthesis is achieved by CO2 bioconversion,
which is a sustainable alternative to the non-renewable, petroleum-based polymer production [29].
The authors reported a cumulative PHB of about 290 mg/L, along 28 days of Synechocystis PCC6803
batch growth. In the present investigation, a similar cumulative PHB-value (286 mg/L) was
obtained with Rhodopseudomonas sp. S16-VOGS3 grown outdoors during the semi-continuous regimen.
An overview of the current carbon sources (e.g., industrial byproducts) used in the PHA production
has recently reported by Jiang et al. [11]; they also reported the typical microorganisms that can use
the various substrates.
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Rhodopseudomonas cells grown under fed-batch mode (run 1) and semi-continuous regimen (run 2).

3.3. PHB Thermal Properties and Stability

Figure 6a,b show the DSC and TG/DTG (thermogravimetric and derivate thermogravimetric)
thermograms of the recovered PHB from Rhodopseudomonas sp. S16-VOGS3 cells, respectively. The DSC
thermogram (second heating curve after cooling from the melt) shows an endothermal baseline
shift associated with the glass transition (Tg = 4.2 ◦C) followed by a cold-crystallization exotherm
(Tc = 52.8 ◦C) and, then, by a melting endotherm (Tm = 172 ◦C). On the basis of the melting enthalpy
of the sample, a PHB crystallinity of 51% was evaluated. These results are in excellent accordance
with the results of Martino et al. [30] obtained for PHB produced by cultivation of Cupriavidus necator
DSM 428, using cooking oil as carbon source, and recovered by an enzymatic and chemically assisted
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procedure and to those of PHB synthetized by another purple bacteria (Rhodococcus equi) investigated by
Altaee et al. [31]. Good accordance was obtained also with the results obtained with Bacillus sphaericus
NII 0838 by Sindhu et al. [32]. The TG and DTG curves of PHB produced with Rhodopseudomonas sp.
S16-VOGS3 (Figure 6b) show a decomposition temperature (Td) of 248◦C exhibiting a single weight loss
with maximum degradation rate at Tmax of 262 ◦C. Similar results were reported by Martino et al. [30]
for the PHB produced with Cupriavidus necator DSM 428. In Table 2, the thermal properties and
stability of the PHB produced in the present study by Rhodopseudomonas sp. S16-VOGS3 are compared
with those of PHB produced by another purple bacterial strain (Rhodococcus equi) [31]. As shown,
the thermal properties are very similar, except a lower crystallinity (51% vs. 62%) and Td of PHB
obtained in this study.
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Table 2. Thermal properties of PHB produced by cultivation of purple bacteria.

Microorganism Biopolymer Tc (◦C) Tg (◦C) Tm (◦C) ∆Hm (J/g) xc (%) T (◦C) Ref.

Rhodopseudomonas
sp. S16-VOGS3 PHB 52.8 4.2 172 90.7 51 248 This study

Rhodococcus equi PHB nd* 2.8 173 74.5 62 276 [30]

nd*: not determined.
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4. Conclusions

The main aim of the present work was to evaluate the performance of the novel tubular
photobioreactor for producing PHB by outdoor cultivation of Rhodopseudomonas sp. S16-VOGS3 using
lactate as carbon source. The results showed that the peculiar configuration of the photobioreactor
permitted an optimal temperature control and solar light capturing for producing PHB-rich biomass.
The reduction of the light intensity reduced the cumulative PHB showing the dominant role of this
parameter. The thermal characterization of the recovered PHB showed a semi-amorphous polymer
(51% crystallinity) with good thermal properties and stability, similar to those of PHBs obtained in
other studies.
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