
sustainability

Article

Analyzing the Impact of GDP on CO2 Emissions
and Forecasting Africa’s Total CO2 Emissions with
Non-Assumption Driven Bidirectional Long
Short-Term Memory

Bismark Ameyaw 1,2,* ID and Li Yao 1,2

1 School of Management and Economics, University of Electronic Science and Technology of China, No. 2006,
Xiyuan Ave, West Hi-Tech Zone, Chengdu 611731, Sichuan, China; liyao@uestc.edu.cn

2 Center for West African Studies, University of Electronic Science and Technology of China, No. 2006, Xiyuan
Ave, West Hi-Tech Zone, Chengdu 611731, Sichuan, China

* Correspondence: 201714110101@std.uestc.edu.cn; Tel.: +86-136-9349-8270

Received: 23 July 2018; Accepted: 28 August 2018; Published: 31 August 2018
����������
�������

Abstract: The amount of total carbon dioxide (CO2) emissions emitted into the environment threatens
both human and global ecosystems. Based on this background, this study first analyzed the
relationship between gross domestic product (GDP) and CO2 emissions in five West African countries
covering the period of 2007–2014 based on a panel data model. Our causality analysis revealed that
there exists a unidirectional causality running from GDP to CO2 emissions. Second, after establishing
the nexus between GDP and CO2 emissions, we forecast Africa’s CO2 emissions with the aim of
projecting future consumption levels. With the quest to achieve climate change targets, realistic
and high accuracy total CO2 emissions projections are key to drawing and implementing realizable
environmentally-friendly energy policies. Therefore, we propose a non-assumption driven forecasting
technique for long-term total CO2 emissions. We implement our bidirectional long short-term memory
(BiLSTM) sequential algorithm formulation for both the testing stage (2006–2014) and forecasting
stage (2015–2020) on Africa’s aggregated data as well as the five selected West African countries
employed herein. We then propose policy recommendations based on the direction of causality
between CO2 emissions and GDP, and our CO2 emissions projections in order to guide policymakers
to implement realistic and sustainable policy targets for West Africa and Africa as a whole.

Keywords: CO2 emissions; bidirectional long short-term memory (BiLSTM); Africa; West Africa;
diversification of energy sources; climate change; forecasting

1. Introduction

Currently, the two topmost challenges facing humanity are sustainable economic development
and environment degradation [1]. Degradation of the environment is triggered by surges in the
human population, a continual increase in economic growth or per capita affluence and technological
applications used in depleting of resources [2]. Environmental degradation is considered the hallmark
of industrialization which is a major driver of economic development [3]. However, as the level of
economic growth across many economies hinges on several factors which include the potential
availability of resources, the growth of an economy may breed adverse environmental issues,
over-exploitation of natural resources, degradation of wildlife habitats, and climate change [4]. With the
aim of achieving sustainable economic development, many governments are in a dilemma as to
whether to meet clean energy targets or combust fossils to aid in economic development [5]. Although
it is arguable that combusting fossils and the depletion of natural resources for economic gain is likely
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to increase the living standards of citizens [6], it is worth noting that any attempt to emit harmful
toxics into the environment will endanger the living conditions of humanity and the species now and
in the future [7].

In the field of energy, energy produced and consumed by conventional and exhaustible resources
(fossil fuels) is considered a major threat to the environment [8]. The combustion and production
of coal, oil and natural gas release harmful toxins into the environment [9]. Toxins emitted into the
environment from fossil fuels have intensified renewable energy production and consumption [10].
Yet, securing the environment from emissions has come to the forefront of contemporary issues for
most economies around the world [11]. The possibility of eradicating or reducing to an appreciable
level emissions mainly from greenhouse gases (GHG) raises concerns about climate change and global
warming [12]. As indicated by [13], global environmental change is one of the major threats facing
humanity nowadays. With global environmental change issues looming mainly in the developed
countries, many countries have either enacted their own policies or have partnered with other countries
in implementing strategic and efficient policies for a widespread future emissions-free environment.
Popular among climate change policies is the 21st Conference of Parties (COP 21) of the United
Nations Framework Convention on Climate Change (UNFCCC) agreement on global climate change
governance whereby each member country plans and reports its own contributions aimed at mitigating
global warming [14]. The agreement proposes long-term goals to hold the increase in global average
temperature below 2 degrees Celsius above pre-industrial levels and to limit the temperature increase
to 1.5 degrees Celsius above pre-industrial levels [15]. With this agreement, information is relayed to
member countries to help strengthen their Intended National Determined Contribution (INDC) targets
and action plans by enhancing transparency of mitigation and global regular collective inventory [14].
As the agreement highlights the global response to climate change, its main drawback is that putting
an end to the era of fossil fuels may lead to changes in economic development patterns, energy systems,
and social governance models, thereby reshaping the competition pattern of the international economy
and technology [12]. Thus, countries are likely to confront severe challenges and arduous tasks ahead.

Before the institution of the Paris Agreement, the key GHGs emitted through human activities
that are considered to transmit harmful toxics into the environment are carbon dioxide (CO2), methane
(CH4), nitrous oxide (N2O) and fluorinated-gases (F-gases). Amongst all the GHG emissions, total
carbon dioxide emissions account for 76% of GHG emissions globally [16]. Global GHG emissions are
presented in Figure 1.
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Based on Figure 1, as total carbon dioxide emissions account for 76% of global GHG
emissions, the world top energy-consuming countries have tabled more sustainable policies aimed
at reducing CO2 emissions coupled with fostering cleaner economic growth trajectories [17].



Sustainability 2018, 10, 3110 3 of 23

However, to effectively control CO2 emissions together with ensuring sustainable economic growth,
understanding the dynamic link between CO2 emissions and economic growth is key [5]. Literature
exploring the relationship between CO2 emissions and economic growth has concentrated on two main
streams. The first stream suggests an inverted U-shaped relationship between environmental pollutants
and economic growth which is known as the Environment Kuznets Curve (EKC). Recent studies on
EKC includes [18,19]. Conclusions drawn from these studies reveal that there exists an inconsistent
relationship between CO2 emissions and economic growth. However, results from these studies
are highly contingent upon regional and country-level specificities. The second stream of literature
examines the relationship between energy consumption and economic growth. Some representative
studies investigating this relationship are [20,21]. Conclusions on studies in this stream of literature
reveal varying relational results between energy consumption and economic growth. Such a varying
relationship can be attributed to the choice of datasets, model specifications, and the econometric
technique involved.

Focusing on the first stream of literatures in establishing the direction of causality between GDP
and CO2 emissions, Ref. [22] using Granger causality test found that there exists a unidirectional
causality running from GDP to CO2 emissions in South Africa and a reverse relationship from CO2

emissions to GDP in Brazil; however, there was no evidence of causality in the case of India and
China. Also, in analyzing the dynamic links between CO2 emissions and economic growth, Ref. [5]
concluded that there was evidence of unidirectional causality running from economic growth to CO2

emissions in China. In examining the relationship between CO2 emissions and economic growth in
24 African countries using a panel autoregressive distributed lag (ARDL) approach, Ref. [23] found
a long-run causality running from economic growth and CO2 emissions to energy consumption.
Likewise, investigating the causal relationship between economic growth and CO2 emissions during
the period 1980–2009 by applying the Granger causality technique for both the long and short run
revealed evidence of unidirectional causality running from economic growth to CO2 emissions [24].
Similarly, Ref. [25] in examining the causal relationship between CO2 emissions and economic growth
for a sample of 12 selected Sub-Saharan African countries, by using the Granger causality test to annual
data covering the period 1971–2010, concluded that economic growth Granger-causes CO2 emissions
in the short-run in Benin, Democratic Republic of Congo, Ghana, Nigeria and Senegal; evidence of
reverse causality running from CO2 emissions to economic growth was found for Gabon, Nigeria and
Togo; bi-directional causality between economic growth and CO2 emissions was found in the short-run
for Nigeria and in the long-run for Congo and Gabon.

For the nexus between CO2 emissions and economic growth, we analyze this relationship by
selecting five (5) West African countries, namely Ghana, Nigeria, Burkina Faso, Senegal and Benin.
We select these countries based on data consistency and uniformity. As we are aware of the existence
of extensive literature on the causal relationship between CO2 emissions and economic growth, this
study goes further to formulate an algorithm to forecast Africa’s CO2 emissions which are lacking in
literature as of now. As there are numerous prediction tools (univariate and multivariate forecasting
tools) for carbon emissions and its applications, we use a univariate forecasting technique because we
aim to avoid the challenge of measuring and determining the influence of causal variables on our main
dependent variables. As indicated by [26], univariate forecasting has existed for decades. To mention
a few works that have employed univariate forecasting, Ref. [26] formulated an algorithm to forecast
the U.S. sectoral energy demand and drew their conclusions based on the predictive accuracy of the
algorithm for the commercial sector, industrial sector, residential sector and transportation sector.
Also, Hu [27] employed used a neural-network-based grey residual modification model for energy
demand forecasting and concluded on the predictive accuracy of their model formulation. Furthermore,
Abdel-Aal [28] employed a neural and abductive network for monthly energy demand forecasting
and concluded that using a single next-month forecaster is highly accurate. For our study to be more
distinct from previous studies in Africa mostly analyzing the causal relationship, we formulate our
own algorithm based on the recurrent neural network (RNN)-based bidirectional long short-term
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memory (BiLSTM). To overcome the limitations of a regular RNN, we propose a bidirectional recurrent
neural network (BiRNN) that can be trained using all available input information in the past and
future of a specific time frame. We use BiLSTMs because it is an extension of traditional LSTMs that
can improve an algorithm’s performance on sequence classification problems. The predictive outcome
of our algorithm formulation will be for our testing stage and forecasting stage. Ideally, it would have
been viable to test our algorithm formulation test output against country-case total CO2 emission
projected values. Rather, previous International Energy Outlook (IEO) editions could not capture
country-case total CO2 emissions data on each of our selected West African countries. Therefore, we
make an assumption that if our BiLSTM test output year-over-year (YoY) errors outperform previous
IEO editions’ aggregated projections for Africa, our algorithm is likely to outperform country-case
projections. Therefore, for the country-case study, we present our test output against the observed
values and check its performance. We set a threshold that if our accuracy for Mean Absolute Percentage
Error (MAPE) is above 90%, we will go on to make long-term future projections to the year 2020.
Long-term as used herein represent a timeline of five years or more [29].

In a nutshell, as we prefer that this research ends by proposing policy measures to mitigate
CO2 emissions to an appreciable level in the selected West African countries employed herein, we
first present on existing environmental tax models that aim to reinforce cleaner energy targets.
First, the existence of fiscal policy instruments (environmental tax) asserts that taxes should be
leveraged on activities that cause harm to the environment. Based on environmental tax models,
African countries have been urged to start national carbon tax systems in readiness for carbon taxing
regimes. However, in an extremely coal-reliant economy, the proposed carbon tax policies are likely
to have significant financial consequences for industries that are either unprepared to implement the
carbon tax or unable to mitigate its effects. Based on this background, we formulate our own algorithm
for estimating future CO2 emission levels which will help policymakers to propose realistic and
sustainable emission-free policies in Africa particularly, West Africa. Also, the use of RNN to forecast
CO2 emissions in Africa is lacking in literature, and our study will encourage researchers to replicate
our algorithm formulation or propose a different algorithm for future CO2 emission comparisons.
Finally, although Africa is not a high emitter of GHG emissions, this study aims to contribute its quota
to realizing climate change targets for the ultimate goal of a sustainable emissions-free environment
in Africa.

2. Materials and Methods

2.1. Data Source for Panel Analysis

First, we focus on the panel data evidence for country-specific CO2 emissions data from selected
West African countries (Ghana, Nigeria, Burkina Faso, Senegal and Benin) all in thousands of tons.
However, the data available is not uniform because some countries have data up to 2016 while the last
updated data for other countries was 2014. For data uniformity, we chose the years spanning from
2007–2014. The representation of all causal variables and CO2 emissions used in our panel data is
converted into their natural logarithm forms and listed Table 1.

Table 1. Data display of all variables in the panel.

Variables Definition Data Source Unit

CO2 Carbon dioxide emissions WIND [30] 1000 tons
GDPC Gross domestic product per capita WDI [31] Constant 2010 US$

LF Labor force WDI [31] Total Labor force
GFCF Gross fixed capital formation WDI [31] Percentage (%) of GDP

Notes: Country-case data was obtained from the WIND data portal; GDPC, LF and GFCF data is obtained from the
World Development Indicators.
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Although CO2 emissions from the African continent and its countries account for an insignificant
portion of global CO2 emissions [32], recent trends show that there is a continual rise in CO2 emissions
for Africa and the selected West African countries herein [33]. We use CO2 emissions as the dependent
variable because of its upsurge; gross domestic product per capita (GDPC) is employed because it is
selected to represent the growth of an economy. Although literature shows that international trade
is the main drive of CO2 emission [34,35], this study sets labor force [36] and gross fixed capital
formation [37] as control variables by selecting labor force and gross fixed capital formulation from the
Cobb–Douglas production function [38]. Labor force and gross fixed capital formation are selected as
control variables because energy is known to influence productivity [39]. On a macroeconomic scale,
the relationship between energy consumption, capital, labor force, and economic growth is described
by a production function. The maximization of this production function determines a sequence of
optimal savings, investment and consumption decisions. Explaining further, carbon dioxide emissions
are obtained from the amount of fossil fuels consumed. Therefore, CO2 emissions and non-renewable
energy consumption have a direct impact on a macroeconomic perspective. Specifically, labor force
and gross capital formulation are likely to influence CO2 emissions on a macroeconomic scale if
more non-renewables are consumed. On the economic relationship between labor force and CO2

emissions, as Africa’s technologies for renewable energy are limited [40], it is fair to point out that the
use of fossil fuels is dominant. Therefore, an increase in the labor force will drive an upsurge in the
consumption of fossil fuels thereby causing a corresponding increase in CO2 emissions. Moreover,
the assets used in the production of energy-related resources requires capital. Furthermore, as the
carbon footprint is the amount of greenhouse gases—primarily carbon dioxide—released into the
atmosphere by a particular human activity, an increase in human activity that requires a greater labor
force connotes a corresponding increase in CO2 emissions if there is a limited or untapped renewable
energy technology. Economically, ignoring the relationship of carbon footprint and gross fixed capital
formation, labor force and CO2 emissions is a pretty big oversight. We present the data for all our
variables used for the panel in Figure 2.
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2.2. Panel Economic Model Method

In order to start with the appropriate methods for our unit root test, we employ the Pesaran
cross-sectional dependency test [41]. We develop our panel model as:

zit = αi + βityit + µit (1)

where i = 1, 2, . . . , N is the subscript of each West African country is employed herein; t = 1, 2, . . . , T
represents our study time dimension; βit represents a parameter vector for the evaluation of our causal
variables; yit represents each of the causal variables; αi indicates the constant parameters and µit is our
error term. We define both our null and alternative hypothesis as:

H0 : γij = γji = cor(µit, µjt) = 0 for i 6= j (2)

Ha : γij = γji 6= 0 for i 6= j (3)

Mathematically, we formulate γij = γji as:

∑T
t=1 µitµjt(

∑T
t=1 µ2

it

) 1
2
(

∑T
t=1 µ2

jt

) 1
2

(4)

For our test sample, we employ [41] an improvement on [42] the Lagrange multiplier test (LM) since it
is suitable for this current study. Pesaran [41] formulated his version of the LM test as:√

2T
N(N − 1)

N−1

∑
i=1

N

∑
j=i+1

τij → N(0, 1) (5)

where τij represents the residual coefficients of our panel model.
After the Perasan cross-sectional dependency test is achieved, we first employ the Im, Pesaran

and Shin (IPS) test developed by [43] which allows for heterogeneous autoregressive coefficients.
We formulate our mathematical model as:

∆zit = γizit−1 + δiYit + εit (6)
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where Yit represents our predictor variables comprising individual time trend; autoregressive
coefficients is represented by γi; and εit represent the stationary stochastic error terms. Since there may
be evidence of autocorrelation in Equation (6), we use the Levin et al. [44] exploration of high order
differential delay terms formulated as:

∆zit = γizit−1 +
γi

∑
j=1

φij∆zit−1 + δiYit + εit (7)

where the number of lags in the Augmented Dickey–Fuller (ADF) regression is represented by γi.
We propose our null hypothesis to be a case where there exists a unit root in each series of our panel
data sets whereas an alternative hypothesis supposes that at least one individual series in the panel
data is stationary.

After our variable sequence is confirmed to be stable, the Pedroni [45] heterogeneous panel
cointegration test is employed. The regression equation becomes:

zit = αi + δit + β1iY1i,t + β2iY2i,t + β3iY3i,t + εit (8)

where αi and δi represents each country’s deterministic trends; εit represents the residuals as a result of
deviations from the long-run relationships. We propose our null and alternative hypothesis as there is
no and there is co-integration between our variables in the long-run. Cointegration analysis comprises
(panel and group) as proposed by [45]. The panel test established on the Within-Dimensions form
comprises Panel v-Statistic, Panel rho-Statistic, Panel PP-Statistic and Panel ADF-Statistic by pooling
dissimilar countries autoregressive coefficients for unit root investigations on estimated residuals.
The group test also established on the between-Dimensions form comprises Group rho-Statistic, Group
PP-Statistic and Group ADF-Statistic. The group test is performed to check individual autoregressive
coefficients associated with the unit root investigations of the residual for each country in our
panel [46,47].

Cointegration between two data sequence reveals the existence of Granger Causal relationships
between the variables [48]. We utilize the Granger causality test [49] to analyze the influence of one
data sequence on another. We define our null hypothesis as a particular data sequence does not
Granger-cause another data sequence. In analyzing the causal relationships amongst our variables,
the mathematical formulation is presented as:

zt = α0 +
r

∑
i=1

αizt−i +
r

∑
i=1

βiyt−i + εt (9)

yt = α0 +
x

∑
j=1

αjzt−j +
x

∑
j=1

β jyt−j + εt (10)

2.3. Data Source and Conversion for Training, Testing and Forecasting Stage

Here, we focus on univariate forecasting of the aggregated data for Africa and the selected West
African countries used in this study spanning from 1980–2014. The data time dimension spans from
1980 to 2014 because we are not able to obtain consistent data for both our country-case scenarios and
Africa. Therefore, in terms of uniformity, this time dimension is suitable for this study.

We employ our univariate forecasting based on RNN-based BiLSTM for training, testing and
forecasting. For the aggregated data on Africa in million metric tons (MMT), we obtain our data from
the U.S. Energy Information Administration (EIA). However, for the selected West African countries
used for this study, our data were obtained from the Wind data portal in thousand tons. Therefore,
for data consistency, all data units in 1000 tons is converted to MMT using International Energy Agency
(IEA) unit converter where 1000 tons = 0.00090718474 MMT [50]. Our training data set covered the
period from 1980 to 2005. After training, we test our model output for the period of 2006 to 2014 and
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make future projections from 2015 to 2020. The BiLSTM testing stage output for Africa is compared
with the EIA’s IEO 2010 [51], IEO2011 [52], and IEO2013 [53] projections for total CO2 emissions.
We compare our testing stage output with past IEO editions because it captures forecast projections
for all the continents in the world. Also, IEOs are able to capture the intricate patterns in the world’s
energy market, technological advancements and well as demographic factors into their model [26].
For our testing stage, IEO2010 presents projections for the year 2005 and 2006; IEO2013 presents
projections for 2009 and 2010; and IEO2011 presents projections for 2011 and 2012. Past editions of
the IEO could not capture Africa’s total CO2 emissions for the year 2008, 2013 and 2014. Therefore,
a comparison of these years is not made. Before presenting on our sequential algorithm formulation,
we first show a pictorial evidence on total CO2 emissions in Africa and the selected West African
countries from 1980–2014 in Figure 3.

Sustainability 2018, 10, x FOR PEER REVIEW  8 of 23 

Energy Agency (IEA) unit converter where 1000 tons = 0.00090718474 MMT [50]. Our training data 
set covered the period from 1980 to 2005. After training, we test our model output for the period of 
2006 to 2014 and make future projections from 2015 to 2020. The BiLSTM testing stage output for 
Africa is compared with the EIA’s IEO 2010 [51], IEO2011 [52], and IEO2013 [53] projections for total 
CO2 emissions. We compare our testing stage output with past IEO editions because it captures 
forecast projections for all the continents in the world. Also, IEOs are able to capture the intricate 
patterns in the world’s energy market, technological advancements and well as demographic factors 
into their model [26]. For our testing stage, IEO2010 presents projections for the year 2005 and 2006; 
IEO2013 presents projections for 2009 and 2010; and IEO2011 presents projections for 2011 and 2012. 
Past editions of the IEO could not capture Africa’s total CO2 emissions for the year 2008, 2013 and 
2014. Therefore, a comparison of these years is not made. Before presenting on our sequential 
algorithm formulation, we first show a pictorial evidence on total CO2 emissions in Africa and the 
selected West African countries from 1980–2014 in Figure 3. 

  
(a) (b) 

Figure 3. Total CO2 emissions in Africa (a) and the selected West African countries (b). 

From Figure 3, it is evident that the total amount of CO2 emissions in Africa increases with 
respect to time. However, for the selected West African countries, the total amount of CO2 emitted 
into the environment has experienced steady growth except for Nigeria whose CO2 emissions 
fluctuate with respect to time. Thus, we formulate a BiLSTM algorithm that is capable of mimicking 
the intricate patterns in the data for a better forecasting output. 

2.4. Bidirectional Long Short-Term Memory (BiLSTM) Algorithm Formulation Processes 

In the elimination of the restraining factors of extant approaches to non-structural forecasting, 
we developed our sequential algorithm using a deep-learning approach, with long short-term 
memory (LSTM) cells. The analysis of times series data in addition to previous relationships 
becomes complex. As time steps increase, these relationships become difficult to capture and reflect. 
Meanwhile, LSTM networks, which evolved from a traditional recurrent neural network model can 
consider previous relationships as time progressed. In this work, we focused on improving the 
robustness of predictions with a BiLSTM network. Here, we present a traditional LSTM network in 
Figure 4. 

Figure 3. Total CO2 emissions in Africa (a) and the selected West African countries (b).

From Figure 3, it is evident that the total amount of CO2 emissions in Africa increases with respect
to time. However, for the selected West African countries, the total amount of CO2 emitted into the
environment has experienced steady growth except for Nigeria whose CO2 emissions fluctuate with
respect to time. Thus, we formulate a BiLSTM algorithm that is capable of mimicking the intricate
patterns in the data for a better forecasting output.

2.4. Bidirectional Long Short-Term Memory (BiLSTM) Algorithm Formulation Processes

In the elimination of the restraining factors of extant approaches to non-structural forecasting, we
developed our sequential algorithm using a deep-learning approach, with long short-term memory
(LSTM) cells. The analysis of times series data in addition to previous relationships becomes complex.
As time steps increase, these relationships become difficult to capture and reflect. Meanwhile, LSTM
networks, which evolved from a traditional recurrent neural network model can consider previous
relationships as time progressed. In this work, we focused on improving the robustness of predictions
with a BiLSTM network. Here, we present a traditional LSTM network in Figure 4.
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In each LSTM cell of our BiLSTM, there exists the sigmoid layer (σ), tanh layer and pointwise
operations of summation and multiplication. In the diagram above, the output from the forget gate
layer ( ft) is formulated as:

ft = σ(w f × [ht−1 , xt] + b f ) (11)

where w f is the hidden weight in the forget gate layer; ht−1 is the hidden vectors at the previous time;
xt is the variable input at a time; and b f is the forget gate biased vector.

The output from the input layer (it) is formulated as:

it = σ(wi × [ht−1 , xt] + bi) (12)

where wi is the hidden weight in the input gate layer and bi is the input gate biased vector.

The output from the tanh layer (ct) is formulated as:

ct = tanh(wc × [ht−1 , xt] + bc) (13)

where wc is the hidden weight from the tanh layer output and bc is the tanh layer output biased vector.

The output from the current cell state of the cell (Ct) is formulated as:

Ct = ft × Ct−1 + it × ct (14)

where Ct−1 is the cell state of the previous cell.

Our output gate layer (Ot) is formulated as:

Ot = σ(w0 × [ht−1 , xt] + b0) (15)

where w0 is the hidden weight in the output gate layer and b0 is the output gate layer biased vector.

Finally, our hidden vectors (ht) is formulated as:

ht = Ot × tanh(Ct) (16)
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Traditional LSTM, are limited in the sense that, at any particular node, they can have access to
only the past information and hence the output can only be generated based on what the network
has seen (obviously the learned information as well). Our BiLSTM has two networks, one accesses
information in the forward direction and another accesses in the reverse direction. We create two
independent LSTM networks and put them together. We then feed the input sequence in normal time
order for one network, and in reverse time order for another. This enables our model to have access to
past and future information during its training and prediction phases; hence, the output is generated
from both the past and future contexts. This gives our BiLSTM-based network information persistence
and increased performance.

Our sequential algorithm framework which comprises the train and test dataset is fed into the
architecture as input. The time series data is then converted by our input module to a stationary form.
Similar to other neural network techniques, BiLSTM cells keep data within the network activation
function. Setting our BiLSTM network as a hyperbolic tangent (tanh), we specify a minimum [−1] and
maximum [1] range for our time series data in order to perform a normalization of the inputs which
further guarantees stable convergence of weight and biases. As in [26], we formulate this as:

xs =
x−min(x)

max(x)−min(x)
(17)

In learning the data trends and volatilities, our network utilizes a stack of LSTMs. Stacking our
LSTMs’ hidden layers propels our model to conform to deep learning techniques [54]. In our network,
we use a concatenation method to merge the forward and backward outputs, and their combination is
passed on to the next and to the last output layer. Furthermore, rectified linear unit (ReLu) is set as
our model’s activation function in order to decide whether a neuron should be activated or not [55].
Again dropout blocks are added to our model to check each neurons' weighted contributions to the
general network model [56]. We implement a dropout percentage of 30% keeping one neuron in the
output layer. The retained weight of neurons is set to withstand co-adaptations in order to check the
ability of neuron weights to be tuned for specific features of other retained neurons. With this, our
model is set to achieve better generalization of our forecasting task in order not to overfit the training
dataset. Again, as in [26], during the algorithm compilation, we use mean square error as our loss
function and “Adam” as our optimizer. We then fit the network with a batch size of 60 to give as our
optimized output. We present the application of the bidirectional LSTM in Figure 5.
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In Figure 5, we initialize our BiLSTM network as:

sF
0 0 = 0, hF

0 = 0 (18)

sB
t = 0, hB

t = 0 (19)

With x1, x2 . . . being our inputs; where F is the forward pass; B is the backward pass and T is the time.
Propagation in the forward LSTM is set up as:

sF
t , 0F

t = LSTMF
(

sF
t−1, 0F

t−1, xt

)
∀t ∈ [1, t ] (20)

The backward LSTM propagation flow is set up as:

sB
t , 0B

t = LSTMB
(

sB
t+1, 0B

t+1, xt

)
∀t ∈ [1, t− 1 ] (21)

2.5. Error Indexes

Here, we measure errors from our BiLSTM model output using the YoY errors, MAPE, mean
absolute deviation (MAD), mean absolute percentage error and root mean square error (RMSE) [26].
Denoting our observed values in a particular year as Ot and Ft as our forecasted values in a particular
year, the YoY errors is formulated as:

λt =
|Ot − Ft |

Ot
(22)

where Ot and Ft are the observed and forecast amount of total CO2 emissions. Results from Equation
(22) are deemed an undercast if Rt > Ft or of an overcast if Ft > Rt. We calculate the MAD, MAPE,
and RMSE error indexes as:

MAD =

n
∑

t=1
λt

n
(23)

MAPE =

[
100

n

(
n

∑
t=1

λt

Ot

)]
(24)

RMSE =

√√√√√ n
∑

t=1
(λt)

2

n
(25)

where n is the number of the time period in years.
Although we use MAD and RMSE in evaluating the predictive accuracy of our formulated

algorithm, MAPE is used as our main benchmark error index because there are no extreme values in
our data sets including zeros.

3. Empirical Panel Data Analysis

3.1. Cross-Sectional Dependence Analysis

The results of the Pesaran cross-sectional dependence test is shown in Table 2. As it is evident
from Table 2 that the p-value is below 5%, we conclude that cross-sectional dependency should be
utilized before stationarity and co-integration relationships are analyzed.

Table 2. Cross-sectional dependence test.

Cross-Sectional Dependence Test Pesaran’s Test p-Value

Pesaran’s Test 3.6849 0.0253 y

Footnote: y represents 5% significance level.
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3.2. Stationarity Analysis

For the stationarity analysis, we use the Levin, Lin, and Chu (L.L&C), Augmented Dickey–Fuller,
IPS and Phillips–Perron Fisher (PP-Fisher) tests. The results of our panel unit root examination are
presented in Table 3. From Table 3, we conclude that variables are not stationary at level but stable at
first differencing.

Table 3. Panel unit root results.

Form Variables L.L&C IPS ADF PP-Fisher Conclusions

Level

lnCO2
0.7532

(0.7368)
0.3564

(0.5983)
0.7191

(0.6037)
1.3899

(0.3784) Non-stationary

lnGDPC 0.6891
(0.6582)

1.9332
(0.9173)

0.05728
(0.9428)

0.0482
(0.9682) Non-stationary

lnLF −1.2382
(0.2920)

−0.3873
(0.3649)

1.8320
(0.3289)

1.4897
(0.4928) Non-stationary

lnGFCF −0.5803
(0.1893)

0.2894
(0.3702)

1.8739
(0.3492)

1.0478
(0.6397) Non-stationary

First
Difference

∆lnCO2
−1.2513

(0.0392) y
−0.9527

(0.0402) y
4.6891

(0.0447) y
6.8024

(0.469) y Stationary

∆lnGDPC −2.5856
(0.0005) x

−1.9274
(0.0264) y

6.9357
(0.0317) y

10.6134
(0.0021) x Stationary

∆lnLF −1.8397
(0.0001) x

−1.3492
(0.0017) x

7.9582
(0.0021) x

9.5983
(0.0004) x Stationary

∆lnGFCF −0.4294
(0.0203) y

−0.1793
(0.0217) y

5.8937
(0.0289) y

7.6743
(0.0185) y Stationary

Notes: Values in brackets represents the probabilities. x represents a 1% significance level and y represents a 5%
significance level.

3.3. Panel Co-Integration Test

After establishing that all our variables employed herein are stationary at first differencing,
we perform Pedroni co-integration analysis to check the long-run relationship between our variable
data sequences in Table 4. The result of our panel co-integration test reveals that there exist long-run
relationship amongst our variables of the study.

Table 4. Panel co-integration test result.

Method Test Statistics Value Probability

Pedroni

Panel v-Statistics −1.4684 0.0294 y

Panel rho-Statistics −1.1490 0.0379 y

Panel PP-Statistics −5.8294 0.0071 x

Panel ADF-Statistics −1.7236 0.0014 x

Group rho-Statistics −1.6873 0.0117 y

Group PP-Statistics −7.5832 0.0000 x

Group ADF-Statistics −1.3848 0.0019 x

Notes: x indicates 1% level of confidence and y indicates 5% level of confidence.

3.4. Granger Causality Analysis

Table 5 depicts the results of the Granger causality analysis. Here, we establish that if the
probability values in brackets are less than 5% significance level, then there is evidence of a Granger
causality relationship. From our analysis, we conclude that there exists a unidirectional causal
relationship running from GDPC to CO2 emissions and from LF to CO2 emissions. However, there
exists no causal relationship between GFCF and CO2 emissions.
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Table 5. Results for Granger causality test.

Null Hypothesis Ghana Nigeria Burkina-Faso Senegal Benin

lnGDPC does not Granger cause lnCO2
8.9482

(0.0029) x
12.6892

(0.0021) x
4.7492

(0.0278) y
5.0254

(0.0178) y
4.1394

(0.0278) x

lnCO2 does not Granger cause lnGDPC 1.1274
(0.1585)

1.1946
(0.2742)

0.2172
(0.3673)

0.1734
(0.1949)

0.0978
(0.4822)

lnLF does not Granger cause lnCO2
9.7839

(0.0382) y
11.2674

(0.0288) y
5.0269

(0.0458) y
5.9426

(0.0378) y
3.4980

(0.0279) y

lnCO2 does not Granger cause lnLF 2.6542
(0.1178)

2.9459
(0.1830)

1.9894
(0.7595)

2.1387
(0.8427)

1.3738
(0.6921)

lnGFCF does not Granger cause lnCO2
4.5921

(0.6821)
5.4298

(0.8468)
3.0129

(0.6193)
3.7342

(0.7742)
2.1617

(0.4782)

lnCO2 does not Granger cause lnGFCF 1.5967
(0.3247)

1.9678
(0.3957)

1.1204
(0.2895)

1.3849
(0.3076)

1.0068
(0.2154)

Notes: the values in brackets indicates the probability values. x indicates 1% level of confidence and y indicates 5%
level of confidence.

4. BiLSTM Testing and Forecasting Analysis

4.1. Testing Stage

First, in order to check the predictive accuracy of our BiLSTM algorithm formulation, we present
the BiLSTM test output performance against the observed values for Africa and the selected West
African countries. We present the performance of our BiLSTM algorithm formulation against the
observed values as well as the error indexes in Figures 6 and 7 respectively.

From Figure 6, our test output for Africa covering our test years performed well as against the
observed values (see Figure 6a). BiLSTM test output YoY Errors is ~3.99% for 2006, ~2.18% for 2007;
~1.36% for 2008; ~1.28% for 2009; ~1.11% for 2010; ~0.28% for 2011; ~0.99% for 2012; ~0.87% for
2013; and ~1.13% for 2014. We achieve MAPE accuracy of ~98.53% with a MAD and RMSE value
of ~16.54309844 and ~19.57926425, respectively (see Figure 7). For Ghana, the performance of our
BiLSTM test output on the observed values are presented in Figure 6b. BiLSTM output for the testing
stage YoY errors for Ghana is ~5.96% for 2006; ~2.43% for 2007; ~3.35% for 2008; ~4.50% for 2009;
~2.58% for 2010; ~2.24% for 2011; ~1.41% for 2012; ~2.10% for 2013; and ~1.27% for 2014. MAPE
accuracy of ~97.58% is achieved with a MAD and RMSE value of ~0.228479179 and ~0.257513613,
respectively (see Figure 7). Nigeria’s BiLSTM testing stage output performance on observed values is
presented in Figure 6c. The YoY errors for Nigeria is ~3.53% for 2006; ~2.21% for 2007; ~2.40% for 2008;
~2.13% for 2009; ~1.64% for 2010; ~3.08% for 2011; ~1.09% for 2012; ~3.25% for 2013; ~1.92% for 2014.
MAPE accuracy of ~97.63% is achieved with a MAD and RMSE of ~2.02728923 and ~2.146268084,
respectively (see Figure 7). We present Burkina Faso’s testing stage BiLSTM testing stage output and
its performance against the observed values in Figure 6d. Burkina Faso’s YoY errors spanning 2006 to
2014 is ~13.24%; ~8.20%; ~7.11%; ~5.52%; ~6.37%; ~6.90%; ~7.60%; ~4.24%; and ~5.71%, respectively.
We achieve MAPE accuracy of ~92.78% with a MAD and RMSE of ~0.132274181 and ~0.134805768,
respectively (see Figure 7). For Senegal, our BiLSTM test output performance on the observed values
is presented in Figure 6e. Burkina Faso’s YoY errors are ~6.82% for 2006; ~2.38% for 2007; ~4.39% for
2008; ~4.92% for 2009; ~3.20% for 2010; ~1.42% for 2011; ~2.07% for 2012; ~3.16% for 2013; and ~1.35%
for 2014. MAPE accuracy of ~96.70% is achieved with a corresponding MAD and RMSE of ~0.182577
and ~0.193074381, respectively (see Figure 7). Benin’s BiLSTM testing stage output performance on
th observed values is presented in Figure 6f. Benin’s YoY errors covering the period from 2006 to
2014 are ~7.51%; ~3.40%; ~5.37%; ~5.80%; ~7.80%; ~0.30%; ~3.78%; ~1.67% and ~1.65%, respectively.
We achieve MAPE accuracy of ~95.86% with a MAD and RMSE of ~0.178489815 and ~0.204477393,
respectively (see Figure 7).
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According to the results obtained, our initial threshold that if the MAPE for the selected West
African countries is above 90%, we will make long-term projections to the year 2020 is achieved.
However, for Africa’s data, we compare our BiLSTM output against previous IEOs in Table 6. However,
because the previous IEOs did not make forecast projections for all the years of the testing stage, we are
unable to compute the MAPE, RMSE and MAD. Nevertheless, we present the YoY errors for the years
we obtained IEO forecast projections.

Here, our test output for Africa is compared with IEO2010, IEO2013 and IEO2011 projections.
We compare the YoY errors for both the BiLSTM test output and previous IEO editions projections
against the observed values for the year 2006, 2007, 2009, 2010, 2011 and 2012 in Table 6. YoY errors for
each of the years indicates that the BiLSTM outperformed IEO projections. Our technique presents
an improvement of ~2-fold, ~3-fold, ~4-fold, ~7-fold, ~13-fold and ~2-fold for the year 2006, 2007, 2009,
2010, 2011 and 2012 respectively.

Table 6. International Energy Outlook (IEO) and BiLSTM year-over-year (YoY) errors.

IEO2010 (Africa in MMT)

2006 2007

Observed BiLSTM IEO Projection Observed BiLSTM IEO Projection

1064.547 (1021.971) 988 1086.893 (1063.184) 1011

YoY Error

0.040 0.072 0.022 0.070

IEO2013 (Africa in MMT)

2009 2010

Observed BiLSTM IEO Projection Observed BiLSTM IEO Projection

1108.286 (1094.129) 1047 1161.128 (1148.208) 1070

YoY Error

0.013 0.055 0.011 0.078

IEO2011 (Africa in MMT)

2011 2012

Observed BiLSTM IEO Projection Observed BiLSTM IEO Projection

1162.475 (1159.231) 1120 1206.576 (1194.608) 1184

YoY Error

0.003 0.040 0.010 0.019
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4.2. Forecasting Stage

For Africa’s total CO2 emissions, IEO2017 [57] makes projections for the year 2015 and 2020.
Thus, we present future projections for both BiLSTM and IEO2017. As it is evident that our testing
stage model output YoY values outperformed previous IEO editions projections for Africa coupled
with our algorithm’s ability to satisfy the MAPE 90% accuracy threshold initially specified, we make
future projections for Africa and the selected West African countries adopted in this study. For the
selected country-cases, we present BiLSTM output just for the period covering 2015 to 2020 since there
are no country-case projections for total CO2 emissions available. For Africa’s total CO2 emissions,
BiLSTM reports ~1283 MMT for 2015, ~1313 MMT for 2016, ~1343 MMT for 2017, ~1374 MMT for 2018,
~1405 MMT for 2019, and ~1438 MMT for 2020. IEO2017 total CO2 emissions projections for the year
2015 and 2020 are ~1251 MMT and ~1370 MMT respectively. For each of the West African countries,
the BiLSTM projections for Ghana are ~13.83 MMT for 2015, ~14.07 MMT for 2016, ~14.01 MMT for
2017, ~14.81 MMT for 2018, ~14.99 MMT for 2019, and ~15.12 MMT for 2020. Projections for Nigeria are
~86.75 MMT for 2015, ~87.32 MMT for 2016, ~87.75 MMT for 2017, ~88.47 MMT for 2018, ~88.58 MMT
for 2019, and ~88.43 MMT for 2020. For Burkina Faso, we estimate ~2.62 MMT for 2015, ~2.47 MMT
for 2016, ~2.65 MMT for 2017, ~2.68MMT for 2018, ~2.66 MMT for 2019, and ~2.71 MMT for 2020.
For Senegal, ~8.24 MMT, ~8.55 MMT, ~8.16 MMT, ~8.68 MMT, ~8.72 MMT, and ~8.94 MMT is projected
for 2015, 2016, 2017, 2018, 2019 and 2020 respectively. For Benin, BiLSTM projects ~5.89 MMT for 2015,
~6.11 MMT for 2016, ~6.17 MMT for 2017, ~6.20 MMT for 2018, ~6.22 MMT for 2019, and ~6.23 MMT
for 2020. We present BiLSTM and IEO2017 projections in Figure 8.
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5. Discussion

Energy is the spine of the socio-economic development and human welfare of a country [39].
Shortages in the supply of energy are likely to impose an adverse impact on an economy, especially
in the developing and emerging countries [58]. However, production of energy from its sources
emits harmful toxins into the environment that endanger humans and ecological safety. Due to this,
analyzing the nexus between CO2 emissions and economic growth is crucial to formulating and
enacting sustainable policy measures in ensuring an emission-free environment. Literature analyzing
the causal relationship between these two variables is extensive. For example; uni-directional causality
running from CO2 emissions to economic growth was found by [59]. Also, by employing the error
correction model (ECM), Kasperowicz [60] concluded that economic growth impels the intensive
usage of energy-related resources which results in increasing CO2 emissions. Using ECM estimation,
a negative effect was found for the long-run relationship between GDP and CO2 emissions but the
short-run relationship between GDP and CO2 emissions was found to be positive. Furthermore,
by using simultaneous-equations models with panel data of 14 Middle East and North Africa (MENA)
countries, Anis [61] concluded that there exists a bidirectional causal relationship between economic
growth and CO2 emissions. However, after establishing the nexus between CO2 emissions and
economic growth, most research papers we have come across on Africa fail to provide researchers,
stakeholders and policymakers with an estimation of the future amount of total CO2 emissions into
the environment. After extensive literature searches, we have not come across on original research
paper forecasting total CO2 emissions with an author’s own formulated algorithm. In order to fill
this gap, we have forecasted Africa and some selected West African countries total CO2 emissions by
formulating an algorithm based on BiLSTM.

Most certainly, the high-accuracy forecast of total CO2 emissions is crucial to strategizing and
implementing reliable and sustainable policies for environmental safety [62,63]. Emissions of global
warming gases continue to rise as Africa burns ever more coal, oil and gas for energy [64]. The upward
surge in Africa’s total CO2 emissions is a threat to human and ecological safety if past and current
intricate paths in data are transmitted into the future. Therefore, forecasting total CO2 emissions in
Africa is required to help governments and stakeholders enact and implement effective policies.
However, although the EIA’s IEO reference case scenario represents the most credible state of
an economic deterministic trend, inaccuracies of past projections affect the implementation of core
strategies aimed at curbing or reducing to an appreciable level harmful toxins released into the
environment. Based on this background, we propose and use the BiLSTM technique for our testing
and forecasting stage. Our network output YoY errors outperform the EIA’s IEO previous projections.
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Also, after comparing our network output against the observed values for the testing stage, our values
do not deviate so much from the observed values. Thus, we present the YoY errors of our output on
the observed values in Figure 9. The high accuracy achieved in the proposed BiLSTM technique in
Figure 9 is ascribed to the zero assumption-driven variables used and the ability of the technique to
keep track of the volatilities in the intricate data trends.
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With substantial evidence on the predictive accuracy of our BiLSTM algorithm formulation,
it would be viable to compare our BiLSTM test output with research that has formulated an algorithm
for predicting Africa’s total CO2 emissions. However, since literature in this subject matter is lacking,
we could only compare our projections with previous IEO projections for Africa. Also, for the selected
West African countries employed in this study, we only check the performance of our output against
the observed values since previous IEOs did not capture country-case scenarios. Therefore, with
our algorithm formulation explained in the material and method section, researchers can replicate
our algorithm or formulate a new deep learning algorithm to compare the predictive accuracy of
their algorithm with ours. Formulating or replicating our algorithm helps provide policymakers and
stakeholders with in-depth information on the future total amount of CO2 emissions in order to lay
down strategic tools aimed at curbing or reducing emissions to an appreciable level for the ultimate
goal of sustainability.

6. Conclusions and Policy Recommendations

This paper first investigated the relationship between total CO2 emissions, GDPC, LF, and GFCF
in Africa and some selected West African countries spanning from 2007 to 2014. The main conclusions
drawn from our panel data analysis is the existence of unidirectional causality running from GDPC to
CO2 emissions and from LF to CO2 emissions. However, no evidence of causality was found between
CO2 emissions and GFCF. Therefore, with reference to the results obtained, the selected West African
countries should diversify into alternative energy sources with lower greenhouse gas emissions.
This will assist in reducing CO2 emissions and at the same sustain long-run economic growth.
Also, with respect to the long-run co-integration relationships evident in this study, suggestions
for sustainable economic growth in African countries should revolve around the promotion of energy
efficiency and the development of clean renewable energy. Furthermore, a new comprehensive
evaluation system for economic development should be established in the selected countries in West
Africa that aims to reduce pollutant emissions on the environment.
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Second, emissions of harmful toxics into the environment have attracted much attention due
to the gradual transition to an emission-free environment [65]. However, past forecast imprecision
is somewhat high due to assumption-driven causal variables used in core modules. Imprecisions
in previous forecasts raise concerns which may force policymakers to be reluctant in implementing
environment-related policies. Thus, after analyzing the nexus between total CO2 emissions, GDPC,
LF, and GFCF, we proposed the BiLSTM algorithm for forecasting CO2 emissions for Africa and
some selected West African countries. Our BiLSTM algorithm records significant improvement on
previous IEO projections. As total CO2 emissions in Africa and some selected West African countries
employed herein are on the rise according to data trends and from our future projections, we first
give readers fair idea about previous and recent measures outlined to mitigate CO2 emissions and
further propose policy recommendations that should be adopted by policymakers to intensify the
emission-free environment.

In 2017, the African Development Bank (ADB) through its investments in renewable energy
emphasized its commitment to clean energy and efficiency. An initiative entitled The Africa Renewable
Energy Initiative (AREI) is tasked to deliver 300 Gigawatts (GW) of renewable energy in 2030 and
10 GW by 2020. With this initiative launched, the G7 has promised to commit US$10 billion to
support the initiative, which came out of COP 21 and subsequently was approved by the African
Union. The ADB has also administered The Sustainable Energy Fund for Africa (SEFA) which is
a multi-donor trust fund anchored in a commitment of USD 60 million by the governments of Denmark
and the United States to support small and medium-scale renewable energy and energy efficiency
(EE) projects in Africa. For country case scenarios, the ADB is doing its utmost best to land deals to
change the phase of Africa’s energy sector. To mention a few, the Côte d’Ivoire Singrobo-Ahouaty
project involves the design, construction and operation of a 44-MW hydropower plant which intends
to significantly raise its hydropower generation capacity. At the 19th Board Meeting in Songdo, South
Korea, the board of the Green Climate Fund (GCF) approved the first funding proposal of the ADB
for Zambia’s Renewable Energy Financing Framework. The GCF provided a US$50 million loan
and a US$2.5 million grant which aims to finance 100 MW of renewable energy projects under the
renewable energy feed-in-tariff (REFiT) policy of Zambia. Also, the emerging concern for carbon
emissions and sustainable development has created an opportunity for renewable energy on the
continent of West Africa. The Economic Community of West African States (ECOWAS) due to such
concern has developed rural renewable energy development agendas. ECOWAS members target
nearly 20% for the renewable makeup of energy by 2030, which includes off-grid electricity serving
25% of the rural population. Although ECOWAS member states have agreed on a binding renewable
energy goal, we are abreast of the fact that each country has different legislation on emissions and
emissions control. Therefore, country-case recommendations are addressed further by proposing
solutions to emission mitigation.

Africa as a continent should adopt the cap-and-trade system in ensuring an emission-free-
environment. For the cap-and-trade system, policymakers in Africa have to establish a limit or
‘cap’ on the overall amount of total CO2 emissions that can be emitted each year. Also, the carbon tax
policy should be adopted. Under the carbon tax policy, high taxes should be imposed on firms emitting
high harmful toxics into the environment. After imposing the taxes, firms in Africa covered by the ‘cap’
would weigh the cost of reducing their emissions against the tax they would pay if they kept emitting
at their present level. As Ghana’s INDC identifies emission reduction actions to be undertaken between
2020 and 2030 in the field of energy, Ghana should increase renewable energy penetration, scale up
adoption of efficient energy-saving technologies, and improve forest and solid waste management.
Nigeria being the largest emitter of CO2 emissions should implement mitigation measures that will
promote low carbon as well as sustainable and high economic growth, strengthen national institutions
and mechanisms (policy, legislative and economic) to establish a suitable and functional framework for
climate change governance, and significantly increase public awareness which involves private sector
participation in addressing the challenges of climate change. Burkina Faso should reduce the pressure
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on ligneous resource through forestry development in order to achieve sustainable production of wood
energy and to promote energy economies by the use of improved energy technologies. Also, energy
options in Burkina Faso should connect with the electrical network to renewable energies power plants
in order to develop both the community and the individual photovoltaic system for the ultimate aim
of sustaining the reduction of CO2 emissions. Senegal should manage energy supply through the
implementation of and strengthen actions aimed at optimizing renewable energy demand–supply
systems as well as controlling the use of fossils in the sectors of electricity, domestic fuel and transport.
Lastly, in order to reduce to an appreciable level Benin’s CO2 emissions, Benin should intensify its
already set up production of non-polluting energy from agricultural residues. Intensifying production
of non-polluting energy from agricultural residues will enhance the use of an enormous amount of
biomass waste from agricultural production for electricity generation through the use of biomass
gasifiers. This is likely to be an effective strategy for diversifying alternative and sustainable sources
of energy.
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