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Abstract: Radon is internationally recognized as one of the seven seismic precursors. A self-assembly
ultrasonic generator and experimental apparatus for radon measurement were utilized to explore the
radon exhalation regularities of water-bearing porous media under different ultrasonic intensities.
The experimental results showed that there was a coupling relationship among radon exhalation rate,
moisture content, and ultrasonic frequency. With the increase of the frequency of the ultrasonic wave,
its effect on the promotion of radon exhalation rate was found to be a more obviously positive linear
correlation. The radon exhalation rate, which could climb to a maximum value of 0.179 Bq·m−2·s−1

in a naturally air-dried sample, increased at first and then decreased along with increased moisture
content. Moreover, this study found that the ultrasonic wave had the most remarkable promoting
effects on the radon exhalation rate of porous media with high moisture content, and there is a
positive linear correlation between the growth rate of the radon exhalation rate and moisture content.
The experimental results could provide a beneficial reference for the continual monitoring of radon in
a seismically active belt and an explanation of radon anomalies; however, the proposed experimental
model was simplified, so further insights are strictly required for a reliable correlation with the real
monitoring of radon in a seismically active belt.

Keywords: water-bearing porous media; ultrasonic effect; radon exhalation rate; radon
earthquake precursor

1. Introduction

Radon is one of the sensitive components of subsurface fluid for reflecting earthquakes, and a
radon anomaly is internationally recognized as one of the seven seismic precursors [1]. Ulomov and
Mavashev [2] found the concentration of radon in a deep well in Tashkent changed significantly
before the 1966 Tashkent earthquake. Subsequently, many scholars also discovered the pre-earthquake
phenomenon of radon anomalies [3–6]. Nowadays, the radon earthquake precursor is an important
research direction for the field of earthquake prediction, and the monitoring of radon is one of the
earthquake-related research projects that has been observed for the longest time and studied to the
greatest extent. In China, the radon earthquake precursor plays a quite important part in seismic
analysis and earthquake prediction [7].
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The frequency band of acoustic emissions caused by fault creeping or microfracturing before
an earthquake is sufficiently wide and contains an ultrasonic vibration with the frequency from a
few 10s of kilohertz to 100 kilohertz, as well as acoustic vibrations and seismic waves with lower
frequencies [8–10]. In the aftershock region of Tangshan, Hebei Province, an ultrasonic signal with
the frequency of 40 kHz was recorded [11]. Therefore, whether there is an internal relation between
preseismic acoustic emissions and preseismic radon anomalies has attracted many scholars’ attention.
In 1977, A. H. Сyлтанходжаев [12] first proposed an ultrasonic mechanism of the radon seismic
precursor, and the relative experiment carried out by him validated that most gaseous molecules of
radon in rock pores were in the adsorption state, while the adsorptive power would be weakened
under ultrasonic treatment. Then, the adsorbed radon transformed to a free state and exhaled to the
surrounding space by diffusion. Feng et al. [13] conducted research on radon exhalation of artificial
rocks under the influence of ultrasonic vibrations and remarkable variations of microcracks of the
rocks were found, which proved there was an essential relation between radon anomalies exhaling
from rocks and microcracks in the rocks caused by the ultrasonic effect. Currently, research on the
mechanism of radon exhalation under ultrasonic effect in water-bearing porous media has not yet
been reported.

The seismically active zones are widely distributed in land area of China, and the hydrogeological
conditions in different regions vary from one to another due to differences in frost, rainfall,
human factors, and so on, which cause rocks (or porous media) in each region to be within different
states of water saturation [14,15]. In order to ascertain the mechanism of the radon seismic precursor
under different hydrogeological conditions, a self-developed experimental apparatus for radon
measurement with the effect of ultrasonic vibration was utilized on the basis of laboratory experiments
to explore the radon exhalation regularities of water-bearing porous media.

2. Material and Methods

2.1. Sample Preparation and Basic Properties Determination

Ultrasonic propagation is strongly influenced by textural and compositional features of porous
media [16]. Therefore, the uranium mill tailings taken from a uranium tailings pond in southern China
were employed as one of the major raw materials. Its radium content was measured by adopting the
scintillation chamber method [17,18], and the measuring result was 7.98 × 103 Bq·kg−1. The tailings
sieved by an 8-mesh sieve were well mixed with cement in three same self-made molds according to
the mass proportion of 10:3, and a moderate quantity of water was slowly poured into the mixture.
The molding samples (numbered as SPL 1, 2 and 3, respectively) were prepared as cubic shapes with a
side length of 150 mm, and a hollow circular cylinder with a diameter of 75 mm was in the middle of
two opposite planes of the cubic samples (see Figure 1).
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SPL 1 was dried at 110 ± 1 ◦C till a constant weight was obtained in a drying oven, and then it
was let to naturally cool to room temperature. SPL 2 was soaked in water until it was saturated and
was then naturally air-dried. SPL 3 was soaked in water until it was saturated (soaked for at least
12 h). SPL 1–3 were named dry sample, air-dried sample, and saturated sample, respectively. The basic
properties of the samples are shown in Table 1. In particular, the dose equivalent rate was measured
by a professional detector, RM250 gamma meter, produced by Shanghai Chaoqi Electronic Co., Ltd.,
China. The density and porosity were respectively determined by the weighing method and mercury
intrusion analytical method [19–21]. Both sides of each sample’s hollow circular cylinder were sealed
using two PVC boards as well as neutral glue. Then, the hollow part was used as a radon collection
space. In order to avoid variations in water content and radon escape, aluminum foil was utilized to
cover the surface of each sample.

Table 1. The basic properties of the prepared samples.

Sample Weight
(g)

Density
(g·cm−3)

Porosity
(%)

Water Content
(%)

Radium Content
(Bq·kg−1)

Dose Equivalent
Rate (µSv·h−1)

SPL 1 5017.1 2.24 9.62 0 6.01 × 103 1.01
SPL 2 5363.4 2.17 9.47 6.83 6.01 × 103 1.04
SPL 3 5739.1 2.22 9.55 14.37 6.01 × 103 1.03

2.2. Measurement of Radon Exhalation Rate under Ultrasonic Treatment

2.2.1. Description of Experimental Apparatus

The experiments were carried out by use of a self-assembly experimental apparatus that mainly
consisted of an ultrasonic generator, a thermostatic water bath, a pump, and a calibrated RAD 7 radon
monitor (see Figure 2). Engine oil was utilized as the couplant for eliminating the adverse effect of air
between the ultrasonic generator’s probes and the sample. The ultrasonic generator was a KMD-M1,
and its rated voltage and ultrasonic frequencies were 220 V and 10–60 kHz, respectively. Moreover,
the power of the ultrasonic generator contained six grades, namely, 10, 20, 30, 40, 50, and 60 kHz.
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2.2.2. Experimental Procedure

The procedure of each experiment was as follows:

(1) Check the gas-tightness of the apparatus, and never begin an experiment until the tightness
meets requirement.

(2) Place the flume inlayed with the prepared sample in the thermostatic water bath in preparation
for ultrasonic treatment.

(3) Each experiment was divided into three experimental units (30 min per experimental unit),
namely, the pre-ultrasonic treatment (Pre-UT) unit, under ultrasonic treatment (Under-UT) unit,
and post-ultrasonic treatment (Post-UT) unit. Continually monitor the radon concentration of
each experimental unit, for which the monitoring data were denoted as A1, A2, and A3.

(4) After completing the experiments, switch off all the devices and seal up the samples for 24 h for
next experiments.

The total time for procedures 1–4 was 27 h. For the purpose of obtaining accurate measuring
data of the radon concentration in the collection space, reducing the impact of ambient humidity was
imperative. Therefore, these experiments were conducted from 8 a.m. to 8 p.m., from September 2016
to October 2016. Additionally, samples’ temperature variations during the experiments were recorded.

3. Results and Discussion

3.1. Radon Exhalation Characteristics for Pre-UT Unit

The samples were sealed for 24 h before each experiment. The radon concentration of each sample
was continually monitored, and radon exhalation rates (see Figure 3) were obtained by using the
calculation method proposed by Zhang et al. [22].
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According to Figure 3, with respect to any of the six experiments for each sample, the values of
the radon exhalation rate were basically identical. In particular, the radon exhalation rate of the sample
with the moisture content of 6.83% (i.e., SPL 2) was 0.179 Bq·m−2·s−1, which was the maximum value.
In terms of SPL 1 and SPL 3, their radon exhalation rates were 0.128 and 0.074 Bq·m−2·s−1, respectively.
Additionally, the experimental results showed that the radon exhalation rates of these samples were
approximately equal after being sealed and carefully placed. This agrees well with previous research
results [12].

The weight of each sample, after finishing any experiment, was measured. The results indicated
that the variations of the pre- and post-experiment’s weight fluctuated between 1 and 2 g, which means
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that the moisture contents of the samples changed insignificantly during the implementation processes
of any experiment. The radon exhalation rates under the experimental condition of different moisture
contents (Pre-UT unit) are shown in Figure 4. As shown in this figure, a concave shape was found with
respect to the relationship between the radon exhalation rate and moisture content. With the increase
of moisture content, the sample’s radon exhalation rate increased. When the moisture content was 7%
or so, the radon exhalation rate reached the maximum value; however, the radon exhalation rate was
declining relatively sharply with a rising of moisture content. This may be explained based on the
hypothesis that lower moisture content promotes the exhalation process of radon from porous media,
while when the moisture content reached a certain value, with the increase of this parameter, the radon
exhalation would be restrained. This is consistent with previous research conclusions [23,24].
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3.2. Radon Exhalation Characteristics for Under-UT Unit and Post-UT Unit

Considering that heating effect was remarkable under ultrasonic action, those experiments of
the Under-UT and Post-UT units were strictly in temperature-controlled conditions. The measuring
data of all the samples’ temperature rise were 2 to 3 ◦C. Thus, the impact of the heating effect of
ultrasonic action on a sample’s radon exhalation rate was ignored. The continuous monitoring of radon
concentrations of each sample for the Under-UT and Post-UT units (A1, A2) were conducted, and based
on these monitoring values, the radon exhalation rate of each sample was obtained (see Figure 5).
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Within 30 min after stopping ultrasonic action, the radon exhalation rates of all the samples
slightly decreased but were still higher than those of the Pre-UT unit. Moreover, each sample’s radon
exhalation rate was on the same level before the treatment of ultrasonic action. This distinctly indicated
that there was a hysteretic effect of ultrasonic treatment on radon exhalation. The experimental results
also indicated that the samples’ radon exhalation rates to some degree increased when they were in
the status of ultrasonic action, and the growth rate continuously increased along with the increase of
ultrasonic frequency (see Figure 6).

As shown in Figure 6, different samples exhibited different growth rates with respect to radon
exhalation rate when they were treated by the same frequency. In detail, the growth rate of SPL 3’s
radon exhalation rate (under ultrasonic treatment with frequencies of 10, 20, 30, 40, 50, or 60 kHz) was
71.43%, followed by SPL 2 and SPL 1 (57.91% and 44.67%, respectively). Accordingly, the effect of
ultrasonic treatment on the growth rate of the radon exhalation rate with respect to the sample with
higher moisture content would be more remarkable.
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study aimed to explore the regularities of the radon earthquake precursor under different 
hydrogeological conditions. The conclusions drawn are as follows: 

(1) The radon exhalation rate of porous media to some extent increased under the treatment of 
ultrasonic action, and a positive correlation was discovered between the growth rate of the 
radon exhalation rate and ultrasonic frequency. 

(2) The radon exhalation rate of porous media slightly decreased after ceasing ultrasonic treatment, 
however, it would increase to the initial value when the sample was sealed for 24 h. That is to 
say, the radon exhalation capacity was insignificantly affected by ultrasonic action. 

(3) The radon exhalation rate of the air-dried sample was greater than those of the dry and 
saturated samples, and the water-saturated sample exhibited the lowest radon exhalation rate. 
The exhaling of radon from porous media was greatly affected by its moisture content. 

(4) The porous media with increased moisture content favored the conduction of ultrasonic waves; 
that is, the growing effect of ultrasonic treatment on the radon exhalation rate of the 
water-saturated sample was relatively prominent. 

(5) The variant feedback mechanisms of ultrasonic treatment on radon exhaling from those porous 
media with different moisture contents were found in this study as well as in the field of radon 
monitoring in different regions (the regions with various hydrogeological conditions). 
Therefore, the strengthening of radon monitoring in different regions could provide useful 
references for earthquake prediction. Nevertheless, considering that the proposed experimental 
model in this study was simplified, further insights are therefore required for a reliable 
correlation with the real monitoring of radon concentrations in a seismically active belt. 
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4. Conclusions

In this paper, the mechanisms of radon exhalation in porous media with different moisture
contents were studied utilizing a self-designed ultrasonic-considered radon monitor apparatus.
The study aimed to explore the regularities of the radon earthquake precursor under different
hydrogeological conditions. The conclusions drawn are as follows:

(1) The radon exhalation rate of porous media to some extent increased under the treatment of
ultrasonic action, and a positive correlation was discovered between the growth rate of the radon
exhalation rate and ultrasonic frequency.

(2) The radon exhalation rate of porous media slightly decreased after ceasing ultrasonic treatment,
however, it would increase to the initial value when the sample was sealed for 24 h. That is to say,
the radon exhalation capacity was insignificantly affected by ultrasonic action.

(3) The radon exhalation rate of the air-dried sample was greater than those of the dry and saturated
samples, and the water-saturated sample exhibited the lowest radon exhalation rate. The exhaling
of radon from porous media was greatly affected by its moisture content.

(4) The porous media with increased moisture content favored the conduction of ultrasonic
waves; that is, the growing effect of ultrasonic treatment on the radon exhalation rate of the
water-saturated sample was relatively prominent.

(5) The variant feedback mechanisms of ultrasonic treatment on radon exhaling from those porous
media with different moisture contents were found in this study as well as in the field of radon
monitoring in different regions (the regions with various hydrogeological conditions). Therefore,
the strengthening of radon monitoring in different regions could provide useful references for
earthquake prediction. Nevertheless, considering that the proposed experimental model in this
study was simplified, further insights are therefore required for a reliable correlation with the
real monitoring of radon concentrations in a seismically active belt.
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