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Abstract: Forecasting commodities prices on vividly changing markets is a hard problem to tackle.
However, being able to determine important price predictors in a time-varying setting is crucial
for sustainability initiatives. For example, the 2000s commodities boom gave rise to questioning
whether commodities markets become over-financialized. In case of agricultural commodities, it was
questioned if the speculative pressures increase food prices. Recently, some newly proposed Bayesian
model combination scheme has been proposed, i.e., Dynamic Model Averaging (DMA). This method
has already been applied with success in certain markets. It joins together uncertainty about the model
and explanatory variables and a time-varying parameters approach. It can also capture structural
breaks and respond to market disturbances. Secondly, it can deal with numerous explanatory
variables in a data-rich environment. Similarly, like Bayesian Model Averaging (BMA), Dynamic
Model Averaging (DMA), Dynamic Model Selection (DMS) and Median Probability Model (MED)
start from Time-Varying Parameters’ (TVP) regressions. All of these methods were applied to 69 spot
commodities prices. The period between Dec 1983 and Oct 2017 was analysed. In approximately 80%
of cases, according to the Diebold–Mariano test, DMA produced statistically significant more accurate
forecast than benchmark forecasts (like the naive method or ARIMA). Moreover, amongst all the
considered model types, DMA was in 22% of cases the most accurate one (significantly). MED was
most often minimising the forecast errors (28%). However, in the text, it is clarified that this was due
to some specific initial parameters setting. The second “best” model type was MED, meaning that,
in the case of model selection, relying on the highest posterior probability is not always preferable.

Keywords: commodity price forecasting; commodity price predictability; dynamic model averaging;
forecast combination; model averaging; model selection; model uncertainty

1. Introduction

During the 2000s, a commodities price boom was observed. Naturally, this led to the question
of what was the purpose of such price spikes. Some of the hypotheses were based on the growing
financialization of commodities markets. In other words, it was observed since the 1990s that the
links between commodities prices and equity markets become more and more tight. For the previous
periods, more research emphasis was put on the fundamental factors like supply and demand, etc.

The problem of sustainability is clearly seen in agricultural commodities. Especially in recent years,
this has been noticed not only by the final goods’ consumers, but also by the producers. Nevertheless,
such initiatives spread over whole commodities’ markets. Sustainable products might generate more
stable revenues to producers, stakeholders can reduce their risk exposure, consumers become more
aware of natural resources. Within this context, it seems interesting to construct a tool which would
be able to model commodities prices, and which would be able to deal with variable uncertainty,
as well as having its initial feature of time-varying coefficients. These adaptive abilities might make it
a superior method in a highly volatile market background.
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Forecasting commodity prices is a very difficult task. The reason for this is that the structure and
the behaviour of commodities markets can be quite complex. For example, certain nonlinear effects
can emerge, which, furthermore, can lead to chaotic behaviours. However, even without incorporating
the developed conceptual machinery, many previous studies indicated that, in different time periods,
different factors are the leading determinants of the prices of various commodities [1–3]. Therefore,
in some periods, certain models work quite well, but, in the other periods, some other models work
much better.

In other words, when a longer time horizon is analysed, the uncertainty about the true model
arises (i.e., the set of predictors). However, except for the model uncertainty, there are strong arguments
to also allow for time-varying parameters in the considered models (i.e., to allow regression coefficients,
if the regression models are considered, to vary in time). This corresponds to possible changes in the
strength (or even in the direction) of the impact of a predictor on the considered commodity price.

Naturally, this problem can be tackled with the Bayesian methods, and indeed, Bayesian Model
Averaging (BMA) and its slight modification, i.e., Bayesian Model Selection (BMS), have been recently
used in various branches of economics with a success. In order to extend this method, recently,
a new framework was proposed [4]. Dynamic Model Averaging (DMA) allows for both time-varying:
the state space of the model and its parameters (i.e., regression coefficients). Moreover, the final DMA
forecast is computed as a weighted forecast from the predictions of all included models. However,
the weights used are updated recursively with respect to the quality of forecast (i.e., predictive density)
produced by the models in preceding periods.

A few years after presenting the theoretical foundations of this method, a rapid interest in
it for the purpose of economics and finance can be observed. Of course, most of the published
results provide arguments in favour of DMA, which can beat some alternative forecasts. Therefore,
the first aim of this paper is to report a unified and consistent application of DMA to possibly
large number of commodities. In addition, to provide some hints about the “calibration” of the
initial parameters for this method. In particular, 69 time-series provided by The World Bank [5] were
taken. The second aim of this paper is to compare DMA with the other, similar Bayesian methods.
In other words, to verify whether DMA is superior to the previously proposed averaging method,
and whether the model averaging itself improves the forecast accuracy in the case of commodity
prices. Following Gargano and Timmermann [6], this study is based on macroeconomic and financial
predictors. The second motivation behind using macroeconomic and financial predictors is to obtain
a common set of predictors and use quite numerous time-series of commodity prices.

Indeed, this paper tries to fill some literature gaps. Contrary to previous DMA studies focusing on
one approach to a relatively small number of independent variables (for example, [7–9], here, applying
a similar pattern to possibly many commodities is attempted to see if some pattern will be recovered.
However, this is not a somehow veiled data dredging. It is obvious that a more tailored data set of
predictors can result in higher forecast accuracy. On the other hand, if certain research argues that
some macroeconomic and financial variables (therefore common ones for different commodities) can
serve as satisfactory commodities prices’ predictors [6], then it is worth checking if DMA can produce
more accurate forecasts in comparison to the existing methods. In other words, the results of this paper
might provide some arguments that, indeed, DMA forecast combination scheme is highly beneficial.
However, they might also bring some shadow on DMA and provide rather the following argument:
the already reported success of DMA (see, for example [10–12]) is mostly due to the suitable choice of
predictors (and analysed period), not due to the method itself.

In the next section, a brief overview of the results already obtained with DMA is presented.
In addition, the short review motivating the selection of possible commodity price predictors is given.
It is also discussed why model averaging can lead to better forecast performance. Next, data are
described in details. Furthermore, a short overview of DMA and other methods used in this research
is sketched. Next, the results are presented and discussed. Moreover, some preliminary results,
motivating the selection of the initial parameters for the main DMA models are discussed. This is
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believed to be of some help for future researches based on DMA methods. For the reader’s convenience,
the list of abbreviations is given at the end of the paper.

2. Literature Review

This section is divided into two parts. First, which fields DMA has already been applied in is
summarized. Next, a few recent research papers are presented with a stress put on the novelty of the
methodology. Finally, which variables can be initially considered as potentially useful predictors in the
construction of the econometric model of the selected commodities is presented.

2.1. Dynamic Model Averaging

DMA has already been applied to model various time-series and, in the case of commodities:
copper, crude oil and gold. Aye et al. [13] used DMA to forecast gold price returns. Most of the
predictors were chosen on the basis of a recursive principal component analysis. Both DMA and DMS
were found to be superior to BMA and the naive forecast. In addition, Baur et al. [10] found similar
conclusions. Risse and Ohl [14] compared the DMA improved by the Dynamic Occam’s Window
of Onorante and Raftery [15] with the original DMA and some other machine learning techniques.
They found that such a modification produces the best forecasts of gold prices.

Buncic and Moretto [7] found that DMA and DMS produces more accurate forecasts than
the historical mean and the naive forecast in case of copper price. They used as predictors both
macroeconomic and financial variables as well as fundamental factors specific for copper. For example,
supply and demand, returns from specific stocks (firms heavy depending on commodity market), etc.
Drachal [8] found that, in case of crude oil prices, it is quite hard to produce a statistically significant
more accurate forecast than the naive one and autoregressive models with DMA. However, these
benchmark forecasts were also not found to be superior to DMA and DMS. On the other hand,
Naser [11] used DMA with a large set of predictors, and concluded that DMA outperforms alternative
models as well as forecasts based on future prices.

Baxa et al. [16] successfully applied DMA to forecast inflation in G7 countries. Similarly, inflation
was modeled with DMA by Del Negro et al. [17]. However, Di Filippo [18] concluded that, in the case
of inflation, DMS produced better forecasts than DMA. In other words, model selection was more
appropriate than model averaging. Ferreira and Palma [19] concluded that, in the case of modeling,
the Brazilian inflation DMA behaves very well. These studies were usually done in the context of the
generalized Phillips curve [20]. Indeed, such studies were usually made in a general macroeconomic
context. For example, the economic growth was also modeled with DMA [21,22].

DMA was also used in real property markets. Bork and Moller [23] used it (and also DMS) to
forecast house prices in the US. Risse and Kern [9] found DMA a superior method for forecasting
house prices in the Euro area countries. Wei and Cao [12] applied DMA to model house prices in
major Chinese cities. They also implemented a slight modification of the original DMA method.
They concluded that this method is more accurate than BMA, information-theoretic averaging, and
that, indeed, the time-varying weights’ scheme significantly improves the forecast quality.

De Bruyn et al. [24] applied DMA to forecast South African rand to the US dollar exchange rate
and to the UK pound. The comparison was made with BMA and the random walk model. DMA was
found to be superior to the benchmark models. Gupta et al. [25] examined with DMA the growth of
China’s foreign exchange reserves. DMA and DMS were found superior to the random walk, recursive
OLS-AR(1), recursive OLS and BMA.

DMA was also found useful in modeling carbon prices [26]. Liu et al. [27] used this method
to forecast the realized range-based volatility. They concluded that time-varying weights indeed
generate more accurate forecasts. Similar conclusions were derived by Wang et al. [28]. Finally,
Naser and Alaali [29] applied a DMA framework to model the US stock prices’ returns.
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2.2. Other Models

Indeed, the fact that forecast combination can lead to a more accurate forecast than the selection
of one model is both an empirical and theoretically understood fact. The seminal paper in this context
was published quite long ago [30]. In case of commodities, the recent findings support averaging
over various models [31] as well as the necessity to consider a possibly wide set of predictors [32,33].
However, there are various methods of forecast combinations [34,35] and, yet, within the context of
data-rich models, it is natural to focus on the Bayesian methodology [36,37]. This is, for example, due to
the fact that, if the number of predictors exceeds the number of observations, then the conventional
methods, like OLS are no longer meaningful. On the other hand, the Bayesian formulas are still
reasonable in such a case. For example, recently, Lee and Huh [38] proposed some improvements in
choosing informative priors for Bayesian models of crude oil price. Yin et al. [39] found that replacing
the predictive densities with modified hit ratios in DMA weights’ construction can result in forecast
accuracy improvement for oil prices.

Of course, the Bayesian approach is not the only one, which has been applied to commodity prices.
However, except for purely classical and fundamental methods like multilinear regression models,
etc., various improvements were applied. This was done in order to capture the specific features of
the commodity market. For example, Kriechbaumer et al. [40] joined a well-known ARIMA modeling
with a wavelet decomposition approach to forecast metals’ prices. The motivation behind using the
wavelet analysis was to encompass in the model the cyclical behaviour of metals prices. The obtained
framework allowed for increasing the accuracy of one-month ahead forecasts in comparison with the
basic ARIMA models. Wang and Sun [41] studied the relationship between oil prices and economic
activity and political tension with a structural equation model.

In addition, VAR/VECM methods were applied in the case of bidirectional relationships and the
presence of many variables influencing each other. For example, Cross and Nguyen [42] focused on
links between China’s economic growth and global oil market fluctuations. They modified the basic
VAR methodology to include time-varying parameters’ VAR. Gangopadhyay et al. [43] used VECM
methodology to model gold prices in the Indian market, investment decision and inflation.

Gil-Alana et al. [44] used the fractional integration modeling framework to identify structural
breaks in metals prices. Kim and Jung [45] improved the predictive ability of standard forecasting
models of crude oil prices by a functional partial least squares approach. This was done to deal with
multicollinearity of predictors. The framework was compared with principal component regression
and least absolute shrinkage and selection operator models.

In the case of a nonconventional approach, neural networks and various types of machine learning
techniques are also popular. The review of such methods can be found, for example, in the paper
by Hamdi and Aloui [46]. Liu et al. [47] proposed a machine learning algorithm with a decision tree.
This method was able to significantly improve copper price forecasting. Zhao et al. [48] focused
on the problems with uncertainty about the predictors of oil price. The study was based on almost
200 time-series. They proposed a certain deep learning ensemble approach. They joined an advanced
deep neural network model to capture the nonlinearities and an ensemble method to generate multiple
training data sets. The implemented algorithm was able to outperform the alternative models.

2.3. Commodities Prices Predictors

In the case of particular commodities prices’ predictors this research follows Gargano and
Timmermann [6]. They selected various macroeconomic and financial predictors, which can be common
for different commodities. In other words, they were using predictors like interest rates, term spreads,
industrial production growth, etc., whereas no specific predictors suitable for just one particular
commodity (like, for example, production quotas) was used. Their selection and construction of
predictors was much influenced by the studies on stock prices and equity premium forecasting [49].
Of course, this is some kind of a limitation. Indeed, the fundamental factors, for example, inventory
quotas, are known to have a significant impact on commodities prices [50]. Nevertheless, the narrowing
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to macroeconomic and financial predictors is treated as another modeling approach, rather than a sign
of ignoring the importance of other predictors. Moreover, such an approach is quite often adapted [51].

It has already been tried to find such common predictors for various commodities in general.
For example, Kagraoka [52] within a generalized dynamic factor model concluded that the U.S. inflation
rate, the world industrial production, the world stock index and the price of crude oil impact commodities
prices. Such methodology was also used by Lübbers and Posch [53] in the analysis of futures prices.

However, even based on a different methodological approach Arango et al. [54], as well as
Byrne et al. [55] provided arguments that interest rates significantly impact numerous commodities
prices. Alam and Gilbert [56] within a VAR framework concluded that the impact of monetary policy,
global economic conditions and U.S. dollar exchange rates are significant for agricultural commodities.
However, this study was based also on commodity-specific predictors like inventories quotas, etc.
The motivation of this study was similar to the one presented herein: to analyse a big data set of
commodities and find common predictors. In case of analysing the impact of exchange rates on
commodities prices, a more detailed research was done by, for example, Chen et al. [57].

Much research was also devoted to links between commodities spot and futures prices [58].
However, Hong and Yogo [59] concluded that open interest can serve as an even better proxy than
future prices itself. Chen [60] provided arguments that commodity-sensitive stock prices contain an
important information for forecasting commodities prices. Indeed, such predictors were used in the
already mentioned DMA study of copper prices by Buncic and Moretto [7].

Finally, it should be stressed that, except for various already existing methodologies and continual
improvements and development of new ones, forecasting commodities prices remains a very difficult
task [61].

Summarizing this considerations, it can be seen that there is a recent rapid increasing interest in
the methods combining time-varying parameters and uncertainty about the predictors (or dealing
with data-rich models). Economically it is motivated by the increasing complexity of the markets,
and time-varying relationships between predictors and commodity prices: both in a sense of the
strength and the direction, and even in a sense which predictors are important in particular moments
of time. From the mentioned literature of these novel methods, a certain group can be classified, i.e.,
BMA, BMS, DMA and DMS. All of them emerge from time-varying parameters (TVP) regressions with
the Kalman filter. The differences between these methods lie in whether from numerous models the
final forecast emerge through the model averaging or model selection—in addition, in case of estimation
of the model’s performance, how the weights are updated. It seems that currently there is no paper
presenting a unified and consistent approach comparing all these methods for a relatively large set of
independent variables (i.e., various spot commodities prices). The current paper is a try to fill this gap.

In particular, it was checked whether DMA indeed outperforms these other Bayesian methods.
Secondly, it was checked whether these methods and time-varying regression with all predictors
produce significantly more accurate forecasts than ARIMA models or the naive forecast. Once again,
it is stressed that the aim was not to focus on some similar set of commodities, but to consider a possibly
wide set of commodities and apply a unified methodology to them and see if this methodology leads to
some improvement in forecasting. For certain conventional methods, such an approach was reported
by Gargano and Timmermann [6].

3. Data

The monthly data between January 1984 and October 2017 were taken. The frequency was
chosen as a kind of compromise. Indeed, many macroeconomic data are available even only in
quarterly frequency. Therefore, more frequent than monthly data would result in problems with
macroeconomic data. On the other hand, too high frequency would need a separate analysis of
particular problems connected with very short periods. For example, it can be expected that, in
monthly frequency, short-term speculative behaviour is flattened. The period before 1984 was not
included due to two facts. First, many commodities prices before that time were not available or their



Sustainability 2018, 10, 2801 6 of 27

volatilities were so small that the analysis would not be interesting. Secondly, as it is explained further,
some variables are missing for certain periods before 1984. Resolving this problem—how to deal with
missing observations—would need another discussion and may not seem worth the current research.

Commodities prices were obtained from The World Bank [5]. After trimming the time-series to
the above-mentioned period, the remaining time-series which contained missing observations were
excluded. As a result, 69 time-series remained. The full list of the analysed commodities is given
in Table 1.

Table 1. Commodities abbreviations. Details can be found in the original source: The World Bank [5].

IBEVERAGES Beverages index includes cocoa, coffee and tea.

IFOOD Food index includes fats and oils, grains and other food items.

IFATS_OILS Fats and oils index includes coconut oil, groundnut oil, palm oil, soybeans,
soybean oil and soybean meal.

IGRAINS Grains index includes barley, maize, rice and wheat.

IOTHERFOOD Other food index includes bananas, beef, chicken meat, oranges and sugar.

IRAW_MATERIAL Agricultural raw materials index includes timber and other raw materials.

ITIMBER Timber index includes tropical hard logs and sawn wood.

IOTHERRAWMAT Other raw materials index includes cotton, natural rubber and tobacco.

IAGRICULTURE Agriculture index includes beverages, food and agricultural raw materials.

ALUMINUM Aluminium (LME) London Metal Exchange, unalloyed primary ingots, high grade,
minimum 99.7% purity, settlement price beginning 2005; previously cash price

BANANA_US Bananas (Central & South America), major brands, US import price, free on truck
US (f.o.t.) Gulf ports

BARLEY Barley (Canada), feed, Western No. 1, Winnipeg Commodity Exchange, spot,
wholesale farmers’ price

COAL_AUS
Coal (Australia), thermal, f.o.b. piers, Newcastle/Port Kembla, 6300 kcal/kg
(11,340 btu/lb), less than 0.8%, sulfur 13% ash beginning January 2002;
previously 6667 kcal/kg (12,000 btu/lb), less than 1.0% sulfur, 14% ash

COCOA
Cocoa (ICCO), International Cocoa Organization daily price, average of the first three
positions on the terminal markets of New York and London, nearest three
future trading months.

COCONUT_OIL Coconut oil (Philippines/Indonesia), bulk, c.i.f. Rotterdam

COFFEE_ARABIC Coffee (ICO), International Coffee Organization indicator price, other mild Arabicas,
average New York and Bremen/Hamburg markets, ex-dock

COFFEE_ROBUS Coffee (ICO), International Coffee Organization indicator price, Robustas,
average New York and Le Havre/Marseilles markets, ex-dock

COPPER Copper (LME), grade A, minimum 99.9935% purity, cathodes and wire bar shapes,
settlement price

COPRA Copra (Philippines/Indonesia), bulk, c.i.f. N.W. Europe

COTTON_A_INDX Cotton (Cotton Outlook “CotlookA index”), middling 1-3/32 inch, traded in Far East,
C/F beginning 2006; previously Northern Europe, c.i.f.

CRUDE_PETRO Crude oil, average spot price of Brent, Dubai and West Texas Intermediate,
equally weighed

CRUDE_BRENT Crude oil, U.K. Brent 38’ API, f.o.b. U.K ports, spot price

CRUDE_DUBAI Crude oil, Dubai Fateh 32’ API, f.o.b. Dubai, spot price

CRUDE_WTI Crude oil, West Texas Intermediate (WTI) 40’ API, f.o.b. Midland Texas, spot price

DAP DAP (diammonium phosphate), standard size, bulk, spot, f.o.b. US Gulf
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Table 1. Cont.

IENERGY Energy index, a Laspeyres Index with fixed weights based on 2002–2004
average developing countries export values, for coal, crude oil and natural gas.

IFERTILIZERS Fertilizers index includes natural phosphate rock, phosphate,
potassium and nitrogenous products.

FISH_MEAL Fishmeal (any origin), 64–65%, c&f Bremen, estimates based on wholesale price,
beginning 2004; previously c&f Hamburg

GOLD Gold (UK), 99.5% fine, London afternoon fixing, average of daily rates

GRNUT_OIL Groundnut oil (any origin), c.i.f. Rotterdam

LEAD Lead (LME), refined, 99.97% purity, settlement price

LOGS_CMR Logs (West Africa), sapele, high quality (loyal and marchand), 80 centimeter or more,
f.o.b. Douala, Cameroon beginning January 1996; previously of unspecified dimension

LOGS_MYS
Logs (Malaysia), meranti, Sarawak, sale price charged by importers,
Tokyo beginning February 1993; previously average of Sabah and Sarawak weighted
by Japanese import volumes

MAIZE Maize (US), no. 2, yellow, f.o.b. US Gulf ports

BEEF
Meat, beef (Australia/New Zealand), chucks and cow forequarters, frozen boneless,
85% chemical lean, c.i.f. U.S. port (East Coast), ex-dock, beginning November 2002;
previously cow forequarters

CHICKEN Meat, sheep (New Zealand), frozen whole carcasses Prime Medium (PM)
wholesale, Smithfield, London beginning January 2006; previously Prime Light (PL)

IMETMIN Metals and minerals index includes aluminum, copper, iron ore, lead, nickle,
tin and zinc.

NGAS_US Natural Gas (U.S.), spot price at Henry Hub, Louisiana

NICKEL Nickel (LME), cathodes, minimum 99.8% purity, settlement price
beginning 2005; previously cash price

INONFUEL
Non-energy index, a Laspeyres Index with fixed weights based on 2002–2004
average developing countries export values, for 34 commodities contain
in the agriculture, fertilizer, and metals and minerals indices.

ORANGE Oranges (Mediterranean exporters) navel, EEC indicative import price, c.i.f. Paris

PALM_OIL Palm oil (Malaysia), 5% bulk, c.i.f. N. W. Europe

PLATINUM Platinum (UK), 99.9% refined, London afternoon fixing

PLYWOOD Plywood (Africa and Southeast Asia), Lauan, 3-ply, extra, 91 cm × 182 cm × 4 mm,
wholesale price, spot Tokyo

POTASH Potassium chloride (muriate of potash), standard grade, spot, f.o.b. Vancouver

RICE_05 Rice (Thailand), 5% broken, white rice (WR), milled, indicative price based on weekly
surveys of export transactions, government standard, f.o.b. Bangkok

RUBBER1_MYSG
Rubber (Asia), RSS3 grade, Singapore Commodity Exchange Ltd. (SICOM)
nearby contract beginning 2004; during 2000 to 2003, Singapore RSS1;
previously Malaysia RSS1

SAWNWD_MYS

Sawnwood (Malaysia), dark red seraya/meranti, select and better quality, average 7
to 8 inches; length average 12 to 14 inches; thickness 1 to 2 inch(es); kiln dry, c. & f.
UK ports, with 5% agents commission including premium for products of
certified sustainable forest beginning January 2005; previously excluding the premium

SHRIMP_MEX Shrimp, (Mexico), west coast, frozen, white, No. 1, shell-on, headless, 26 to 30
count per pound, wholesale price at New York

SILVER Silver (Handy & Harman), 99.9% grade refined, New York

SORGHUM Sorghum (US), no. 2 milo yellow, f.o.b. Gulf ports
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Table 1. Cont.

SOYBEAN_MEAL Soybean meal (any origin), Argentine 45/46% extraction, c.i.f. Rotterdam
beginning 1990; previously US 44%

SOYBEAN_OIL Soybean oil (Any origin), crude, f.o.b. ex-mill Netherlands

SOYBEANS Soybeans (US), c.i.f. Rotterdam

SUGAR_EU
Sugar (EU), European Union negotiated import price for raw unpackaged sugar
from African, Caribbean and Pacific (ACP) under Lome Conventions,
c.I.f. European ports

SUGAR_US Sugar (US), nearby futures contract, c.i.f.

SUGAR_WLD Sugar (world), International Sugar Agreement (ISA) daily price, raw, f.o.b.
and stowed at greater Caribbean ports

TEA_AVG Tea , average three auctions, arithmetic average of quotations at Kolkata,
Colombo and Mombasa/Nairobi.

TEA_COLOMBO Tea (Colombo auctions), Sri Lankan origin, all tea, arithmetic average of
weekly quotes.

TEA_KOLKATA Tea (Kolkata auctions), leaf, include excise duty, arithmetic average of
weekly quotes.

TEA_MOMBASA Tea (Mombasa/Nairobi auctions), African origin, all tea,
arithmetic average of weekly quotes.

TIN Tin (LME), refined, 99.85% purity, settlement price

TOBAC_US Tobacco (any origin), unmanufactured, general import , cif, US

TSP TSP (triple superphosphate), up to September 2006 bulk, spot, f.o.b. US Gulf;
from October 2006 onwards Tunisian, granular, f.o.b.

UREA_EE_BULK Urea, (Black Sea), bulk, spot, f.o.b. Black Sea (primarily Yuzhnyy) beginning July 1991;
for 1985–1991 (June) f.o.b. Eastern Europe

WHEAT_US_HRW Wheat (US), no. 1, hard red winter, ordinary protein, export price delivered
at the US Gulf port for prompt or 30 days shipment

WHEAT_US_SRW Wheat (US), no. 2, soft red winter, export price delivered at the US Gulf port
for prompt or 30 days shipment

WOODPULP Woodpulp (Sweden), softwood, sulphate, bleached, air-dry weight,
c.i.f. North Sea ports

ZINC Zinc (LME), high grade, minimum 99.95% purity, settlement price beginning
April 1990; previously special high grade, minimum 99.995%, cash prices

The predictors were mostly based on the already discussed papers with a great emphasis on
the work of Gargano and Timmermann [6]. Dividend to price ratio (dpr) was taken as the difference
between the logarithm of dividends and the logarithm of prices. These data were obtained from
Schiller [62]. In particular, prices were taken as S&P Comp. Dividends were transformed to 12-month
moving sums. Treasury bill rate (str) was taken as the 3-month treasury bill: secondary market
rate (TB3MS) from FRED [63]. Long-term rate of bonds (ltr), because of the lack of exact recent
data and problems with methodology, was taken as long-term government bond yields: 10-year,
main (including benchmark) for the United States (IRLTLT01USM156N). Term spread (ts) was taken as
the difference between the long-term rate of bonds and treasury bill rate. Default return spread (drs)
was taken as the difference between long-term corporate bonds yield and treasury bill rate. Long-term
corporate bond yield was taken as the index based on bonds with maturities 20-years and above (AAA).
Inflation (cpi) was taken as the logarithmic difference of the CPI (Consumer Price Index CPIAUCSL).
Industrial production growth (ip) was taken as the logarithmic difference of industrial production
(INDPRO). Money stock (m) was taken as the logarithmic difference of M1 money stock (M1SL).
In order to measure the economic growth, the classically used GDP was not appropriate because



Sustainability 2018, 10, 2801 9 of 27

it is available in quarterly—not monthly—frequency. However, it can be found in literature that
Kilian [64] global economic activity index can serve as a good proxy (kei). All of these data, as well as
the unemployment rate (une, UNRATE), were obtained from FRED [63]. Following Chen et al. [57],
the logarithmic differences of Australian dollar (aud) and Indian rupee to the US dollar (inr) exchange
rates were taken (CCUSMA02INM618N and CCUSSP01AUM650N). These currencies were selected as
exchange rate representatives because the respective countries are the largest exporters of industrial
and agricultural commodities [6].

Open interest (op) was obtained from U.S. Commodity Futures Trading Commission [65] and
directly from the website of Yogo [66]. During an 11-month period from January 1982 to November
1982, U.S. Commodity Futures Trading Commission did not collect data, due to budgetary reasons.
Because the monthly growth rate of open interest is noisy, it was smoothed by taking a 12-month
geometric mean in the time-series [59]. For the period before 2009, data by Yogo [66] were taken.
Since 2009, data from U.S. Commodity Futures Trading Commission [65] were taken. As these data are
provided in higher than monthly frequency, mean values from every month were computed.

Behaviour of commodities prices through some one, general measure (tr) was proxied by
logarithmic differences of Thomson Reuters Equal Weight Commodity Index [67]. By equal weighting,
this index, featuring 17 commodities, provides quite even distribution into the major commodity
sectors, rather than overweighting in certain sectors such as energy or agriculture.

Prices of the commodities were transformed to logarithmic differences. The abbreviations of
commodities are explained in Table 1.

It should be mentioned that these predictors were already used in a DMA-type scheme applied to
modeling selected energy commodities prices [68]. However, in that study, these predictors were only
a part of a much bigger collection of various other predictors. In addition, in that study, the collection
of predictors was individually tailored for each commodity. For example, predictors indicating supply
and demand forces were included, whereas, herein, they were taken as an optimal collection of
predictors common for all analysed commodities. Finally, here the original DMA scheme is used [4],
whereas the mentioned study (due to the high number of predictors inserted) used the Dynamic
Occam’s Window of Onorante and Raftery [15]. Moreover, the mentioned study covered a different
period (mostly due to the fact that it was also using Internet search queries available since 2004).

The descriptive statistics are reported in Table 2.

Table 2. Descriptive statistics.

Variable Mean Standard Deviation Min Max Skewness Kurtosis

dpr −0.0134 0.0035 −0.0200 −0.0057 0.2356 −0.8496
str 0.0358 0.0277 0.0001 0.1047 0.2098 −1.0013
ltr 0.0553 0.0263 0.0150 0.1356 0.5970 −0.0447
ts 0.0195 0.0107 −0.0053 0.0376 −0.2611 −0.9187

drs 0.0327 0.0126 0.0036 0.0593 −0.2889 −0.8796
cpi 0.0022 0.0026 −0.0179 0.0137 −1.4017 11.2535
ip 0.0017 0.0061 −0.0440 0.0203 −1.5642 9.4380

une 0.0609 0.0146 0.0380 0.1000 0.7915 −0.0500
aud −0.0004 0.0332 −0.1798 0.0885 −0.7722 2.7502
inr −0.0045 0.0186 −0.1956 0.0594 −3.1422 28.1909
kei −0.0167 0.2709 −1.3324 0.6661 0.0505 1.5030
op 0.0136 0.0224 −0.0727 0.0937 −0.1124 3.4690
tr 0.0010 0.0338 −0.2010 0.1168 −0.7119 4.1604
m 0.0047 0.0083 −0.0337 0.0574 1.5217 9.2340

IBEVERAGES −0.0002 0.0462 −0.1592 0.2870 0.8529 4.7751
IFOOD 0.0009 0.0305 −0.1877 0.1500 −0.1921 4.6650

IFATS_OILS 0.0006 0.0459 −0.2540 0.1998 −0.3230 3.6843
IGRAINS 0.0005 0.0415 −0.1962 0.1837 0.1331 2.2778
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Table 2. Cont.

Variable Mean Standard Deviation Min Max Skewness Kurtosis

IOTHERFOOD 0.0019 0.0336 −0.1016 0.1055 0.1153 0.3257
IRAW_MATERIAL 0.0012 0.0256 −0.0901 0.1103 0.3225 2.7758

ITIMBER 0.0016 0.0338 −0.1317 0.2011 1.0682 7.1127
IOTHERRAWMAT 0.0007 0.0347 −0.1967 0.1147 −0.5056 3.8493
IAGRICULTURE 0.0008 0.0241 −0.1591 0.0941 −0.4836 5.1574

ALUMINUM 0.0008 0.0561 −0.3262 0.1801 −0.5625 3.6371
BANANA_US 0.0028 0.1619 −0.4556 0.5934 0.3911 1.5758

BARLEY 0.0015 0.0680 −0.2788 0.2832 −0.0479 2.5754
COAL_AUS 0.0030 0.0558 −0.3285 0.3637 0.2609 8.5692

COCOA −0.0005 0.0569 −0.1948 0.2309 0.0823 0.8005
COCONUT_OIL 0.0010 0.0782 −0.2598 0.3512 0.3355 1.2619

COFFEE_ARABIC −0.0001 0.0756 −0.3525 0.4227 0.6971 4.0604
COFFEE_ROBUS −0.0007 0.0673 −0.2498 0.3779 0.6395 3.4206

COPPER 0.0039 0.0635 −0.3501 0.2492 −0.3496 4.1479
COPRA 0.0010 0.0760 −0.2128 0.3258 0.3644 1.3311

COTTON_A_INDX −0.0003 0.0560 −0.2690 0.2006 −0.0479 2.7694
CRUDE_PETRO 0.0016 0.0874 −0.4388 0.4304 −0.4109 3.7925
CRUDE_BRENT 0.0017 0.0910 −0.3834 0.4326 −0.2648 2.7104
CRUDE_DUBAI 0.0017 0.0928 −0.5401 0.4910 −0.5290 6.1827

CRUDE_WTI 0.0014 0.0851 −0.3968 0.3755 −0.4118 2.7034
DAP 0.0012 0.0619 −0.4597 0.2551 −0.9681 12.9591

IENERGY 0.0015 0.0720 −0.3337 0.3449 −0.4010 2.8708
IFERTILIZERS 0.0020 0.0461 −0.2749 0.2425 −0.3816 5.6836
FISH_MEAL 0.0026 0.0433 −0.1542 0.2002 0.2202 1.3521

GOLD 0.0029 0.0356 −0.1248 0.1601 0.3494 1.3229
GRNUT_OIL 0.0012 0.0515 −0.2102 0.2607 0.3673 3.9632

LEAD 0.0045 0.0702 −0.2933 0.3091 −0.3071 2.6723
LOGS_CMR 0.0021 0.0345 −0.1743 0.1440 −0.2417 3.5366
LOGS_MYS 0.0013 0.0500 −0.1931 0.2941 0.8165 5.0984

MAIZE 0.0001 0.0586 −0.2448 0.2975 −0.1347 3.5803
BEEF 0.0015 0.0395 −0.1780 0.1432 −0.1629 2.4215

CHICKEN 0.0026 0.0205 −0.0558 0.1045 0.8058 3.0832
IMETMIN 0.0021 0.0496 −0.3045 0.1585 −0.8080 5.0908
NGAS_US 0.0002 0.1241 −0.4055 0.4779 0.0691 1.6753
NICKEL 0.0022 0.0856 −0.3824 0.5811 0.7231 5.7015

INONFUEL 0.0012 0.0265 −0.2032 0.1002 −1.1311 9.2270
ORANGE 0.0022 0.1233 −0.4199 0.4127 −0.2108 1.0353

PALM_OIL 0.0001 0.0739 −0.3469 0.2731 −0.3735 2.4278
PLATINUM 0.0021 0.0527 −0.2929 0.2335 −0.4484 4.7605
PLYWOOD 0.0019 0.0393 −0.1583 0.1781 0.8362 4.3207

POTASH 0.0025 0.0403 −0.4158 0.3438 −1.0375 41.9405
RICE_05 0.0011 0.0580 −0.2424 0.4233 1.2896 8.8429

RUBBER1_MYSG 0.0009 0.0708 −0.3904 0.2121 −0.4335 3.1845
SAWNWD_MYS 0.0018 0.0346 −0.1401 0.2382 1.1335 10.5032
SHRIMP_MEX −0.0001 0.0424 −0.2432 0.1839 −0.6345 7.0185

SILVER 0.0015 0.0621 −0.2143 0.2604 0.1165 1.6884
SORGHUM 0.0006 0.0634 −0.2777 0.3419 −0.0446 3.8254

SOYBEAN_MEAL 0.0008 0.0567 −0.1858 0.2176 0.2146 1.6060
SOYBEAN_OIL 0.0007 0.0557 −0.2785 0.2611 −0.0453 3.2895

SOYBEANS 0.0006 0.0503 −0.2561 0.2140 −0.2455 2.9699
SUGAR_EU 0.0001 0.0364 −0.3052 0.2568 −1.4701 24.9057
SUGAR_US 0.0006 0.0314 −0.1366 0.1670 0.0769 4.7483

SUGAR_WLD 0.0015 0.0832 −0.3080 0.3128 0.1817 0.7727
TEA_AVG 0.0007 0.0524 −0.1960 0.2378 0.2114 1.7555

TEA_COLOMBO 0.0014 0.0699 −0.4681 0.4046 −0.2496 8.3187
TEA_KOLKATA −0.0004 0.1224 −0.3100 0.4718 1.1349 2.1171

TEA_MOMBASA 0.0011 0.0704 −0.4613 0.4550 0.0674 10.5021
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Table 2. Cont.

Variable Mean Standard Deviation Min Max Skewness Kurtosis

TIN 0.0012 0.0567 −0.2517 0.1615 −0.3940 2.5582
TOBAC_US 0.0015 0.0185 −0.0486 0.0997 0.4662 2.0420

TSP 0.0016 0.0577 −0.4652 0.3021 −1.4839 19.0871
UREA_EE_BULK 0.0020 0.0857 −0.5548 0.2863 −1.0811 7.0126

WHEAT_US_HRW 0.0003 0.0594 −0.2192 0.2291 0.3510 2.0921
WHEAT_US_SRW 0.0005 0.0669 −0.2604 0.2582 −0.0620 1.7340

WOODPULP 0.0017 0.0407 −0.2430 0.1195 −0.9021 4.2056
ZINC 0.0033 0.0635 −0.2873 0.2440 −0.3777 1.6376

ADF, Phillips–Perron and KPSS stationarity tests are reported in Table 3. No important
discrepancies were found. Only in the case of dpr and une, stationarity cannot be assumed. kei is
stationary by the construction [64]. The reported opposition is due to analysing just a cut part of this
time-series. However, it should be stressed that, in case of DMA, stationarity is not required, as this
model is time-adapting. As it was already described, variables were taken in their differences mostly
due to the convention, and to provide comparable outcomes with the previously mentioned literature.
On the other hand, it is quite desirable due to computational issues in DMA that variables are of
similar size. Therefore, kei was divided by 100.

Table 3. Stationarity tests.

Variable ADF Stat. ADF p-Value PP Stat. PP p-Value KPSS Stat. KPSS p-Value

dpr −2.1052 0.5329 −5.7584 0.7880 3.8742 0.0100
str −4.2431 0.0100 −10.8935 0.5009 6.2736 0.0100
ltr −5.3644 0.0100 −26.3474 0.0187 7.2737 0.0100
ts −3.7999 0.0192 −16.8927 0.1654 0.2584 0.1000

drs −3.6411 0.0291 −13.1674 0.3737 0.6484 0.0182
cpi −7.2334 0.0100 −213.8512 0.0100 1.2606 0.0100
ip −5.3868 0.0100 −423.8474 0.0100 0.5108 0.0392

une −2.7554 0.2583 −4.6099 0.8523 0.6316 0.0198
aud −7.1520 0.0100 −378.7165 0.0100 0.0913 0.1000
inr −5.7244 0.0100 −299.0263 0.0100 0.5656 0.0269
kei −2.5681 0.3374 −24.2551 0.0280 0.9875 0.0100
op −6.1213 0.0100 −48.5397 0.0100 0.6558 0.0176
tr −6.8977 0.0100 −438.0874 0.0100 0.1613 0.1000
m −4.2691 0.0100 −440.1250 0.0100 0.6770 0.0156

IBEVERAGES −7.0048 0.0100 −308.1486 0.0100 0.1271 0.1000
IFOOD −7.3267 0.0100 −268.4524 0.0100 0.1037 0.1000

IFATS_OILS −7.2873 0.0100 −254.9748 0.0100 0.1066 0.1000
IGRAINS −7.4273 0.0100 −265.4955 0.0100 0.0746 0.1000

IOTHERFOOD −8.2980 0.0100 −324.5334 0.0100 0.0477 0.1000
IRAW_MATERIAL −5.9460 0.0100 −257.0040 0.0100 0.0794 0.1000

ITIMBER −6.2504 0.0100 −252.2372 0.0100 0.0952 0.1000
IOTHERRAWMAT −6.4909 0.0100 −220.2585 0.0100 0.0710 0.1000
IAGRICULTURE −7.2953 0.0100 −262.9362 0.0100 0.1247 0.1000

ALUMINUM −7.1961 0.0100 −365.2150 0.0100 0.0341 0.1000
BANANA_US −11.9615 0.0100 −386.4737 0.0100 0.0102 0.1000

BARLEY −6.6144 0.0100 −295.1878 0.0100 0.0398 0.1000
COAL_AUS −7.2526 0.0100 −300.5987 0.0100 0.0589 0.1000

COCOA −6.9616 0.0100 −328.7648 0.0100 0.1377 0.1000
COCONUT_OIL −6.0853 0.0100 −310.3757 0.0100 0.1201 0.1000

COFFEE_ARABIC −6.9242 0.0100 −303.8905 0.0100 0.0504 0.1000
COFFEE_ROBUS −6.4421 0.0100 −286.3518 0.0100 0.1332 0.1000

COPPER −8.3053 0.0100 −229.5696 0.0100 0.0559 0.1000
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Table 3. Cont.

Variable ADF Stat. ADF p-Value PP Stat. PP p-Value KPSS Stat. KPSS p-Value

COPRA −6.2123 0.0100 −298.2183 0.0100 0.1291 0.1000
COTTON_A_INDX −7.6277 0.0100 −186.2706 0.0100 0.0412 0.1000

CRUDE_PETRO −8.0039 0.0100 −276.5855 0.0100 0.0738 0.1000
CRUDE_BRENT −8.0758 0.0100 −302.9128 0.0100 0.0744 0.1000
CRUDE_DUBAI −8.1482 0.0100 −272.9248 0.0100 0.0765 0.1000

CRUDE_WTI −7.8943 0.0100 −267.0152 0.0100 0.0669 0.1000
DAP −7.8995 0.0100 −154.9484 0.0100 0.0555 0.1000

IENERGY −7.7445 0.0100 −269.3615 0.0100 0.0834 0.1000
IFERTILIZERS −6.5734 0.0100 −208.0159 0.0100 0.0769 0.1000
FISH_MEAL −7.2824 0.0100 −219.0414 0.0100 0.0876 0.1000

GOLD −6.2878 0.0100 −334.6587 0.0100 0.3927 0.0803
GRNUT_OIL −5.6487 0.0100 −203.1413 0.0100 0.0450 0.1000

LEAD −6.5034 0.0100 −323.0123 0.0100 0.0610 0.1000
LOGS_CMR −7.6097 0.0100 −326.3537 0.0100 0.0915 0.1000
LOGS_MYS −7.1826 0.0100 −221.0901 0.0100 0.0356 0.1000

MAIZE −7.6758 0.0100 −293.5180 0.0100 0.0667 0.1000
BEEF −7.8711 0.0100 −259.0861 0.0100 0.0854 0.1000

CHICKEN −9.1732 0.0100 −200.7275 0.0100 0.0144 0.1000
IMETMIN −6.9904 0.0100 −293.4994 0.0100 0.0556 0.1000
NGAS_US −8.7317 0.0100 −322.0952 0.0100 0.0427 0.1000
NICKEL −6.1845 0.0100 −270.5022 0.0100 0.0612 0.1000

INONFUEL −7.5280 0.0100 −256.6703 0.0100 0.1051 0.1000
ORANGE −12.8775 0.0100 −249.7639 0.0100 0.0119 0.1000

PALM_OIL −7.2318 0.0100 −271.7718 0.0100 0.0825 0.1000
PLATINUM −7.7853 0.0100 −301.4866 0.0100 0.0889 0.1000
PLYWOOD −6.8155 0.0100 −244.4742 0.0100 0.1393 0.1000

POTASH −4.5756 0.0100 −268.4068 0.0100 0.1228 0.1000
RICE_05 −8.8139 0.0100 −224.9817 0.0100 0.0445 0.1000

RUBBER1_MYSG −6.1189 0.0100 −302.8696 0.0100 0.0737 0.1000
SAWNWD_MYS −6.2102 0.0100 −304.1856 0.0100 0.1167 0.1000
SHRIMP_MEX −6.9083 0.0100 −313.0972 0.0100 0.0290 0.1000

SILVER −7.1789 0.0100 −320.0327 0.0100 0.2318 0.1000
SORGHUM −8.6741 0.0100 −306.9272 0.0100 0.0551 0.1000

SOYBEAN_MEAL −7.5551 0.0100 −281.1673 0.0100 0.0679 0.1000
SOYBEAN_OIL −6.6635 0.0100 −261.9871 0.0100 0.0884 0.1000

SOYBEANS −7.7068 0.0100 −305.9913 0.0100 0.0751 0.1000
SUGAR_EU −7.8297 0.0100 −392.6856 0.0100 0.2977 0.1000
SUGAR_US −6.6006 0.0100 −263.9091 0.0100 0.0360 0.1000

SUGAR_WLD −7.5119 0.0100 −264.4007 0.0100 0.0352 0.1000
TEA_AVG −7.9940 0.0100 −407.1172 0.0100 0.1510 0.1000

TEA_COLOMBO −7.7583 0.0100 −340.4424 0.0100 0.1450 0.1000
TEA_KOLKATA −12.4679 0.0100 −318.4301 0.0100 0.0345 0.1000

TEA_MOMBASA −7.1334 0.0100 −331.5262 0.0100 0.0468 0.1000
TIN −7.4442 0.0100 −309.7754 0.0100 0.2339 0.1000

TOBAC_US −5.6608 0.0100 −297.5882 0.0100 0.1241 0.1000
TSP −7.2420 0.0100 −173.8512 0.0100 0.0468 0.1000

UREA_EE_BULK −7.2560 0.0100 −221.0777 0.0100 0.0428 0.1000
WHEAT_US_HRW −7.6825 0.0100 −291.1223 0.0100 0.0479 0.1000
WHEAT_US_SRW −8.5903 0.0100 −304.0612 0.0100 0.0382 0.1000

WOODPULP −6.6187 0.0100 −230.4387 0.0100 0.0332 0.1000
ZINC −6.3500 0.0100 −291.2258 0.0100 0.0578 0.1000

4. Methodology

All the methods used herein are well explained in the original papers. Therefore, to keep both
the clarity of the explanation and the reader’s convenience, only a short sketch is presented below.
The computational details can be recovered from the cited sources, while the emphasis is put on the
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general idea of the methods. All computations were done in R Core Team [69] with the help of some
additional packages [70,71].

4.1. Dynamic Model Averaging (DMA)

DMA was proposed by Raftery et al. [4]. Suppose that there are m potential predictors for
the independent variable yt. In this research, yt denotes the logarithmic differences of the selected
commodity price and m = 15 because the possible predictors are: lagged one period back dpr, str,
ltr, ts, drs, cpi, ip, m, kei, une, aud, inr, op, tr and the first lag of yt. The lag of yt was taken because
of the serious arguments in the literature and significant improvement observed in pre-simulations.
On the other hand, more lags were decided not to be included because one of the alternative models is
ARIMA. Thus, it was tried to check if there is some trade-off between the inclusion of other predictors
and autoregressive lags.

Out of these m = 15 predictors, K = 215 = 32768 linear regression models can be constructed.
Therefore, let x(k)t be the vector of predictors in k-th model, with k = 1, . . . , K. Then, the state space
model of DMA is given by

yt = (x(k)t )>θ
(k)
t + ε

(k)
t , θ

(k)
t = θ

(k)
t−1 + δ

(k)
t ,

where θt is the vector of regression coefficients. It is assumed that errors follow the normal distribution,
i.e., ε

(k)
t ∼ N (0, V(k)

t ) and δ
(k)
t ∼ N (0, W(k)

t ). All of these K models are estimated as Time-Varying
Parameters regressions (TVP) with the help of the Kalman filter [4]. Due to the computational issues,
a certain forgetting procedure is used in updating W(k)

t . This needs a forgetting factor λ ∈ (0, 1] to be
specified [4]. From the interpretative point of view, this factor is responsible for the allowed variability
of regression coefficients, and it corresponds to the effective rolling window size of 1

1−λ . Lower values
correspond to higher variability of regression coefficients.

Variance V(k)
t can be updated by the recursive moment estimation [4]. However, in the case of

the suspicion of ARCH effects in residuals, some authors suggest using the Exponentially Weighted
Moving Average (EWMA) method [72]. Here, both approaches were used and compared.

Further in this paper, by TVP, it will be denoted the model for all possible m = 15 predictors
estimated in this way. Equivalently, it can be seen as the above DMA model, but reduced to K = 1 and
keeping only this k-th model which contains all m = 15 predictors.

Now, having estimated all these K time-varying parameters models, the DMA introduces a set of
two weights, which are recursively updated. Therefore, this method to forecast at time t uses only the
information available up to time t− 1.

The weights are given by

πt|t−1,k =
(πt−1|t−1,k)

α

∑K
l=1(πt−1|t−1,l)

α
(1)

and

πt|t,k =
πt|t−1,k fk(yt|Yt−1)

∑K
l=1 πt|t−1,l fl(yt|Yt−1)

,

where α ∈ (0, 1] is a (second) forgetting factor, and fk(yt|Yt−1) is the predictive density of k-th model
at yt.

In order to start the above recursive computations, some initial values have to be set. Assuming
that initially all K models are equally “good” (i.e., using the noninformative prior), it is set π0|0,k =

1
K

and θ
(k)
0 = 0 for all k = 1, . . . , K. V(k)

0 should be initialized with respect to the magnitude of the
variables used. It should be big enough to allow for the changes in parameters. On the other hand,
too big V(k)

0 and small λ can result in catching noise rather than signal. From standard deviations reported
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in Table 2, it seems reasonable to set V(k)
0 = 1 for all k = 1, . . . , K. Unifying these values for all models

used in averaging also has some computational advantage:
Finally, the DMA forecast is given by

ŷDMA
t =

K

∑
k=1

πt|t−1,k ŷ(k)t =
K

∑
k=1

πt|t−1,k(x(k)t )> θ̂
(k)
t−1. (2)

Notice that, if α = 1, equal weights are produced. Secondly, if α = 1 = λ is taken, then DMA
reproduces in a (computationally efficient) way the Bayesian Model Averaging, further in the text
denoted simply as BMA [4]. Usually, it is suggested to set α = 0.99 = λ in DMA [4,72]. However,
in some cases, more accurate forecasts can be generated, if different pairs of these parameters are
taken [8]. Therefore, in this research, all possible pairs α, λ = {1, 0.99, 0.98, 0.95, 0.90} were considered.
More frequent search around α = 1 = λ, and less—around α = 0.90 = λ—was decided, because the
previous simulations suggest that forecast accuracy can change much when switching between higher
values of forgetting parameters, whereas, for lower values, the change is rather small [73].

At this point, it can be mentioned that DMA is an extension of BMA in the following sense.
First, it allows for time-varying parameters. Secondly, it allows the weights in model averaging to vary
in time. Equivalently, DMA can be seen as dynamic (i.e., with time-varying weights) averaging over
TVP models.

4.2. Dynamic Model Selection (DMS)

Of course, it is easy to replace the above averaging scheme with model selection [72]. Simply,
Equation (2) can be modified to

ŷDMS
t = ŷ(ht)

t ,

where ht denotes that model (out of K ones), which corresponds to the highest πt|t−1,k. Such a scheme
is called the Dynamic Model Selection (DMS).

Similarly, as with DMA and BMA, if in the above scheme α = 1 = λ is taken, then the resulting
model is called the Bayesian Model Selection (BMS).

4.3. Median Probability Model (MED)

However, Barbieri and Berger [74] noticed that the selection of the model with the highest
posterior probability πt|t−1,k is not always desirable. Indeed, it is under certain very general conditions,
but it is still optimal only in the case of only two models competing. Secondly, this is so in the case
of linear models having orthogonal design matrices. Therefore, they proposed Median Probability
Model (MED).

First, relative variable importance needs to be computed for every predictor. This is defined as
the sum of posterior probabilities πt|t−1,k for those models out of all K, which contain a particular
predictor. Next, the model which contains as the predictors exactly those whose relative variable
importances are equal to or greater than 0.5 is selected. Of course, relative variable importance can
vary in time, therefore the selected model also varies in time.

As previously, if in the above scheme α = 1 = λ is taken, then the resulting model is called the
Bayesian Median Probability Model (BMED). It should be noticed that models pre-named “Bayesian”
are the special cases of their more general encompassing combination schemes, just that their forgetting
parameters are α = 1 = λ. This name-based emphasis is done to stress the particular forgetting
factor values, corresponding to equal-weighting in Equation (1) and no variability of regression
coefficients assumed.

4.4. Evaluation of Models

To summarize, for each of the commodities, DMA, DMS and MED models were estimated.
These models were estimated with all possible pairs α, λ = {1, 0.99, 0.98, 0.95, 0.90}, i.e., in 25 different
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versions. Moreover, as described before, each of these models were estimated with AR(1) term and
without it, and with the mentioned EWMA procedure or with the recursive moment estimation.
For each of the commodities, TVP models with λ = {1, 0.99, 0.98, 0.95, 0.90} were also estimated.
They were also estimated with and without AR(1) terms, and with EWMA and recursive moment
estimation. This resulted in 320 models being estimated for each of the commodity.

As for the conventional alternative forecasting model, two choices were done: Auto ARIMA
model by Hyndman and Khandakar [71] implemented in a recursive way, and the naive method,
i.e., the observation from time t is taken as the forecast for time t + 1 (NAIVE). The model of Hyndman
and Khandakar [71] is choosing AR and MA order dynamically in each step by starting from the
one term and checking if more terms improve the selected criterion (in this case: Akaike Information
Criterion). To guarantee stopping, no more than five AR terms and 5 MA terms are considered.

The evaluation of the above described Bayesian schemes was done in the following way. First of all,
the forecast accuracy was measured by RMSE (Root Mean Squared Error). The estimated models were
divided into two groups. The first was consisting of DMA, DMS and MED models. In other words, they
are the models based on some kind of a model combination scheme. The second group was consisting
of TVP, ARIMA and NAIVE models, i.e., models not based on any model combination scheme.

In order to compare the forecast accuracy generated by two competing models,
the Diebold–Mariano test (DM) was used [75]. This test was chosen because of its relative little
assumptions and popularity. Its null hypothesis is that the two forecasts have the same accuracy.

This test was used to compare forecasts from the most accurate models representing the two above
described groups.

Secondly, for each commodity, the model minimising RMSE was chosen out of the various
versions of the DMA model. It was compared with ARIMA and NAIVE models, i.e., with the very
common benchmark models.

The aim was to statistically check if DMA can produce more accurate forecasts than the
conventional methods and if the considered Bayesian model combination schemes in general have
some forecast accuracy advantage over the conventional methods.

It was also analysed if a certain pattern in forecast errors depending on the forgetting factors can
be identified.

Finally, it should be remembered that the used methods were modeling the logarithmic differences
of commodities prices. However, RMSE and DM tests were applied to errors from the forecast of
commodities prices (i.e., the direct outcomes from the considered models were transformed).

5. Results and Discussion

This section is devoted to, at first, presenting the preliminary results and observations derived
from the summary of the estimation of the considered models. Indeed, as the selected Bayesian
techniques rely on recursive computations and a large quantity of models, the computational issues
result in certain obstacles. For example, the estimation of one DMA model for one particular
commodity took on an average computer no more than few minutes. It should be noticed that adding
one extra predictor doubles the time needed for computations; therefore, the computational issues
can easily switch from negligible to insuperable ones. As mentioned in the previous section, for all
69 commodities, a total of 22,218 models were estimated. The estimation was speeded up by the use of
both the cloud computing and the parallel computations. Nevertheless, the whole estimation took over
a day, despite the use of Amazon Web Services (AWS). Therefore, due to the number of the estimated
models, a certain degree of subjectivity in the summary outcomes presentation is a must (i.e., how to
present them, and on which put the emphasis).

The second part (i.e., Section 5.2) is devoted to the main results. In other words, RMSEs
(Root Mean Squared Errors) are reported. Additionally, the forecasts’ accuracies from different models
are statistically tested. It is also described whether some type of a model combination scheme seem to
play the dominant role in producing most accurate forecasts.
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The last part (i.e., Section 5.3) is devoted to a short discussion of the analysis, which seemed
interesting after looking at the main results. As just mentioned, a large number of models was estimated,
therefore it is not possible to present quite extensive analysis. In the first two parts, the outcomes are
presented and discussed within the context of the aims of this research, as they were stated in the
beginning. However, after the estimation, some other comparisons become interesting. For example,
forecast accuracy of DMA with α = 0.99 and λ = 1 was compared with forecast accuracy of BMA
(i.e., DMA with α = 1 = λ). The importance of these two models become evident after the knowledge
of the outcomes reported in the first and the second part.

Another example of subjectivity is that, due to the large amount of models if, for example, a DMA
model combination scheme was analysed and the model minimising RMSE was sought, then all
variations (with all considered forgetting factors, both with EWMA and recursive moment estimation
method used, with and without AR(1) term) of the models were put into one group. Some readers
might be willing to, for example, analyse all of these models in separate groups. However, as several
variations were considered, the number of such choices is quite big, and reporting all of that would
obscure the outcomes.

The considered Bayesian models require some initial number of observations to “learn”.
In other words, for the first observations, some chaotic outcomes are usually generated as the
initial parameters tune up to the upcoming new observations. For example, as explained in the
previous section, all models are initially set with zero regression coefficients. Therefore, the first
100 observations, i.e., approximately 1/4 of all observations were treated as in-sample. All reported
outcomes (RMSE, p-values of the Diebold–Mariano test, etc.) are based on the out-of-sample consisting
of the next 3/4 of observations. It should be stressed that the considered models are recursive ones,
therefore their predictors coefficients are updated with each extra observation. Therefore, these models
still evolve during the out-of-sample period. The in-sample period was chosen to cut off observations
during which models try to catch the signal. This method is well known and is sometimes called
evaluation on a rolling forecasting origin, walk forward validation, forward-chaining validation, or
time-series cross-validation [76].

All estimated models were divided into the following groups: DMA, DMS, MED, TVP, ARIMA
and NAIVE. Models in different versions due to the choice of forgetting factors, method of variance
updating: EWMA or recursive moment estimation, with and without AR(1) term, if not stated
otherwise, were not analysed separately. In particular, BMA was treated as a special case of DMA,
BMS—a special case of DMS, etc.

5.1. Descriptive Analysis of the First Results

First of all, it was observed that, in 87% of cases, DMA produced smaller RMSE than the
NAIVE model. Assuming a 5% significance level, according to the Diebold–Mariano test, these results
were statistically significant in 83% of cases. (The null hypothesis was that both methods have the
same forecast accuracy. The alternative is that DMA is more accurate than the NAIVE method.) If
the benchmark model was taken as the ARIMA, then DMA produced smaller errors in 80% of
cases, and they were statistically significant in 78% of cases. Such results can serve as an argument
that, in general, despite its quite high complexity, DMA is an interesting alternative for simple
forecasting models.

However, if the considerations are restricted only to DMA, DMS and MED models, then α < 1
allowed to minimise RMSE for 42% of DMA models, 54% of DMS models and 51% of MED models.
If the considerations are restricted only to DMA, DMS, MED and TVP models, then λ < 1 allowed to
minimise RMSE for 9% of DMA models, 12% of DMS models, 14% of MED models, and 6% of TVP
models. These outcomes suggest that λ = 1 is very strongly preferred for minimising RMSE, whereas
setting the value of α is not so obvious.

Indeed, narrowing the considerations only to DMA, DMS and MED models, the combinations of
forgetting factors such that α, λ < 1 minimised RMSE only in 1% of DMA models, 3% of DMS models,
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and 6% of MED models. Therefore, even though the Bayesian model combination schemes seem to be
beneficial as reducing the forecast error, this is mostly due to the time-varying weights construction.
As λ = 1 is the most often preferred value, the regression coefficients’ variability is not so beneficial
for forecast accuracy.

The DMA model with both forgetting factors being strictly less than 1 was the model for POTASH.
Interestingly, this model generated a significantly more accurate forecast (at 5% significance level) than
the NAIVE and ARIMA models. It was also the one which (for this commodity) minimised RMSE out
of all the considered types of models. However, this model did not generate a statistically significant
more accurate forecast than TVP model.

The preferences of forgetting factors can be visualised on a bubble plot in Figure 1. Clearly, it can
be seen that, in the case of DMA, DMS and MED models, λ = 1 is preferred if minimising RMSE is
the aim. In many cases, α = 1 = λ is also preferred, meaning that BMA, BMS or BMED is preferred.
However, in many cases, α < 1 remains the preferred option. More discussion about this result is
postponed for the end of this section.

Figure 1. Combination of forgetting factors for DMA, DMS and MED models, which minimise RMSE.
Circles are proportional to the number of models.

The next observation is that the model minimising RMSE was the one with the AR(1) term added
in 75% cases if the DMA type was considered. For DMS models, it was 62%, for MED—68%, and for
TVP—71%. This means that, in the majority of cases, it is desirable to add an autoregressive term;
however, in a reasonable number of cases, it is not.

EWMA (Exponentially Weighted Moving Average) variance updating method was present only
in 20% of DMA models which had the smallest RMSE. In the case of DMS models, it was 35%,
for MED models—38%, and for TVP models—35%. This suggests that, if minimising errors is the
aim, then considering EWMA method is not desirable, and one can stick to the recursive moment
estimation (which was proposed in the original paper introducing the DMA method [4]).

Anyway, the idea behind the EWMA method is to erase the possible ARCH effect in residuals.
Performing LM–ARCH test with a 5% significance level indicated that the selected models do not
have ARCH effects in residuals in 35% of cases of DMA type models, 32% of DMS type models,
33% of MED type models and 28% of TVP type models. Fortunately, as explained in the previous



Sustainability 2018, 10, 2801 18 of 27

section, the considered Bayesian model combination schemes are recursively updating the error term
in equations, so this is not an important obstacle in the case of forecasting. It should be stressed that
models were chosen due to minimisation of RMSE, and the verification of ARCH effects was done as
an additional check. In other words, for the purpose of this research, the model with ARCH effects,
but with smaller RMSE was preferred, even if some model did not possess ARCH effects, but would
have larger RMSE.

Of course, it is interesting to estimate how often the lack of ARCH effects could be assumed at
a 5% significance level, and, simultaneously, the chosen model was the one with the EWMA estimation
method. For DMA type, it was in 10% of cases, for DMS—12%, for MED—14%, and for TVP—10%.
Therefore, in line with the previous observation, it can be stated that EWMA allowed for erasing
ARCH effects efficiently only in 1/3—1/2 cases in which this method was applied.

To sum up the above results, the following is indicated: first, that DMA is an interesting alternative
method (if compared with ARIMA or NAIVE models); secondly, that λ = 1 is usually preferred, but
α < 1, meaning that most gains in forecast accuracy is due to the certain weighting procedure—not
time-varying regression coefficients; third, that the EWMA method is not necessarily “better” than the
recursive moment estimation; fourth, that adding the autoregressive term usually (but not always)
leads to smaller forecast errors.

5.2. Main Results

Table 4 presents the main outcomes for various model combination schemes. In other words,
Table 4 reports the normalized RMSE (nRMSE) from all estimated model. As each type of model
was estimated in various versions, in Table 4, the outcomes are present for the one which minimised
RMSE for the given type of a model (i.e., out of DMA type models, out of DMS type models, etc.).
The normalization of RMSE is done simply by dividing by the mean value of the forecasted time-series.
It can be seen (Table 2) that the orders of magnitudes of forecasted commodity prices are quite different.
It is easy to switch between RMSE and normalized RMSE having the information from Table 2 and
Table 4. However, normalized values seem easier for interpreting the forecasting benefit of each of
the models.

Generally, the normalized RMSE is around 0.07. This means that quite accurate forecasts can be
produced. In a few cases, very small errors were produced (0.01) or very high errors were produced
(0.19). However, for the given commodity, the errors from different models do not differ much.

More information can be derived from Table 5, which presents the results of the Diebold–Mariano
tests. The first columns of this table are devoted to comparison of the accuracies of forecasts generated
by the DMA method and the NAIVE and the ARIMA models. As a reminder, the null hypothesis of
the test is that both forecasts have the same accuracy. For each of the commodities, whether DMA
produced smaller RMSE than the NAIVE, and whether it produced smaller RMSE than the ARIMA,
was checked. If so, then the alternative hypothesis for the test was taken that the DMA forecast is more
accurate than the one from the NAIVE (or from the ARIMA). Otherwise, the NAIVE forecast (or the
ARIMA forecast) is more accurate. Clearly, it can be seen that, in the majority of cases, there is a strong
evidence to treat DMA as a significantly more accurate forecasting method.

The notation X < Y in Table 5 represents the alternative hypothesis for the Diebold–Mariano test,
and it should be read: “The forecast generated by model X is more accurate than the forecast generated
by model Y”. Similarly, the notation X > Y should be read: “The forecast generated by model Y is
more accurate than the forecast generated by model X”.

Finally, the last two columns in Table 5 are devoted to choosing the “best” model out of
all considered ones, for the given commodity price. The “best” model is understood to be the
one that generated the smallest RMSE. Next, as already mentioned in the Methodology section,
the estimated models were divided into two groups. The first contained DMA, DMS and MED models
and the second the TVP, ARIMA and NAIVE. In each group, the representatives with smallest (in the
given group) RMSE were chosen. Then, the Diebold–Mariano test was performed to check that, indeed,
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the forecast generated by one of these representative models is significantly more accurate than the
forecasts generated by the second representative model (from another group). The summary of these
considerations is presented in Table 6.

Table 4. Normalized RMSEs.

COMMODITY DMA DMS MED TVP ARIMA NAIVE

IBEVERAGES 0.0464 0.0483 0.0463 0.0477 0.0473 0.0475
IFOOD 0.0316 0.0314 0.0315 0.0318 0.0334 0.0353
IFATS_OILS 0.0461 0.0461 0.0470 0.0465 0.0487 0.0510
IGRAINS 0.0479 0.0483 0.0481 0.0481 0.0493 0.0514
IOTHERFOOD 0.0306 0.0305 0.0314 0.0320 0.0318 0.0313
IRAW_MATERIAL 0.0255 0.0258 0.0258 0.0259 0.0255 0.0272
ITIMBER 0.0279 0.0285 0.0286 0.0287 0.0271 0.0286
IOTHERRAWMAT 0.0462 0.0461 0.0456 0.0465 0.0476 0.0507
IAGRICULTURE 0.0249 0.0248 0.0247 0.0250 0.0273 0.0283
ALUMINUM 0.0479 0.0492 0.0478 0.0497 0.0531 0.0526
BANANA_US 0.1235 0.1231 0.1225 0.1324 0.1176 0.1223
BARLEY 0.0626 0.0631 0.0631 0.0633 0.0632 0.0654
COAL_AUS 0.0920 0.0928 0.0926 0.0937 0.1188 0.0981
COCOA 0.0573 0.0571 0.0571 0.0597 0.0580 0.0578
COCONUT_OIL 0.0854 0.0841 0.0839 0.0872 0.0902 0.0884
COFFEE_ARABIC 0.0850 0.0856 0.0857 0.0878 0.0881 0.0858
COFFEE_ROBUS 0.0782 0.0789 0.0779 0.0786 0.0801 0.0788
COPPER 0.0738 0.0734 0.0738 0.0736 0.0793 0.0786
COPRA 0.0895 0.0877 0.0877 0.0918 0.0984 0.0910
COTTON_A_INDX 0.0694 0.0677 0.0690 0.0696 0.0689 0.0808
CRUDE_PETRO 0.0811 0.0813 0.0812 0.0879 0.0867 0.0919
CRUDE_BRENT 0.0841 0.0841 0.0834 0.0914 0.0908 0.0942
CRUDE_DUBAI 0.0789 0.0795 0.0791 0.0858 0.0846 0.0924
CRUDE_WTI 0.0866 0.0864 0.0858 0.0926 0.0892 0.0947
DAP 0.0774 0.0743 0.0763 0.0810 0.0864 0.1104
IENERGY 0.0710 0.0706 0.0710 0.0775 0.0793 0.0814
IFERTILIZERS 0.0681 0.0647 0.0656 0.0691 0.0779 0.0904
FISH_MEAL 0.0450 0.0448 0.0448 0.0461 0.0447 0.0475
GOLD 0.0432 0.0424 0.0449 0.0447 0.0473 0.0454
GRNUT_OIL 0.0437 0.0442 0.0450 0.0462 0.0467 0.0540
LEAD 0.0949 0.0969 0.0964 0.0979 0.1015 0.0960
LOGS_CMR 0.0337 0.0341 0.0341 0.0345 0.0339 0.0351
LOGS_MYS 0.0499 0.0492 0.0494 0.0499 0.0511 0.0542
MAIZE 0.0696 0.0701 0.0703 0.0721 0.0714 0.0717
BEEF 0.0446 0.0438 0.0441 0.0455 0.0451 0.0474
CHICKEN 0.0135 0.0132 0.0131 0.0134 0.0128 0.0159
IMETMIN 0.0541 0.0543 0.0541 0.0560 0.0592 0.0602
NGAS_US 0.1804 0.1822 0.1810 0.1817 0.1920 0.1794
NICKEL 0.1116 0.1097 0.1100 0.1128 0.1177 0.1182
INONFUEL 0.0275 0.0274 0.0273 0.0277 0.0306 0.0331
ORANGE 0.1204 0.1196 0.1197 0.1272 0.1141 0.1210
PALM_OIL 0.0649 0.0646 0.0642 0.0674 0.0682 0.0707
PLATINUM 0.0628 0.0624 0.0635 0.0635 0.0681 0.0683
PLYWOOD 0.0320 0.0324 0.0328 0.0329 0.0310 0.0336
POTASH 0.0829 0.0836 0.0843 0.0847 0.1010 0.0891
RICE_05 0.0836 0.0828 0.0828 0.0824 0.0858 0.0805
RUBBER1_MYSG 0.1007 0.1000 0.0998 0.1031 0.1080 0.1046
SAWNWD_MYS 0.0292 0.0349 0.0337 0.0304 0.0283 0.0291
SHRIMP_MEX 0.0389 0.0394 0.0392 0.0399 0.0389 0.0399
SILVER 0.0910 0.0913 0.0895 0.0991 0.1039 0.0982
SORGHUM 0.0700 0.0705 0.0714 0.0719 0.0709 0.0714
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Table 4. Cont.

COMMODITY DMA DMS MED TVP ARIMA NAIVE

SOYBEAN_MEAL 0.0631 0.0620 0.0625 0.0665 0.0639 0.0658
SOYBEAN_OIL 0.0513 0.0504 0.0511 0.0531 0.0550 0.0565
SOYBEANS 0.0588 0.0589 0.0589 0.0600 0.0600 0.0605
SUGAR_EU 0.0323 0.0325 0.0321 0.0332 0.0322 0.0322
SUGAR_US 0.0393 0.0390 0.0388 0.0400 0.0398 0.0406
SUGAR_WLD 0.0799 0.0795 0.0794 0.0824 0.0784 0.0822
TEA_AVG 0.0486 0.0486 0.0486 0.0509 0.0490 0.0483
TEA_COLOMBO 0.0535 0.0530 0.0530 0.0584 0.0527 0.0529
TEA_KOLKATA 0.1222 0.1224 0.1215 0.1261 0.1147 0.1207
TEA_MOMBASA 0.0695 0.0689 0.0691 0.0729 0.0687 0.0678
TIN 0.0748 0.0759 0.0758 0.0754 0.0820 0.0789
TOBAC_US 0.0189 0.0224 0.0192 0.0196 0.0192 0.0192
TSP 0.0918 0.0924 0.0915 0.0941 0.1035 0.1251
UREA_EE_BULK 0.1327 0.1297 0.1301 0.1242 0.1393 0.1406
WHEAT_US_HRW 0.0748 0.0749 0.0747 0.0769 0.0772 0.0768
WHEAT_US_SRW 0.0853 0.0853 0.0852 0.0873 0.0880 0.0860
WOODPULP 0.0330 0.0330 0.0331 0.0345 0.0331 0.0378
ZINC 0.0778 0.0780 0.0787 0.0811 0.0789 0.0815

Table 5. p-Values of the Diebold–Mariano tests for forecast accuracy. Details are in the text.

COMMODITY DMA < NAIVE DMA < ARIMA DMA > NAIVE DMA > ARIMA BEST DM p-Value

IBEVERAGES 0.00 0.00 MED 0.00
IFOOD 0.00 0.00 DMS 0.10
IFATS_OILS 0.00 0.00 DMA 0.02
IGRAINS 0.00 0.00 DMA 0.17
IOTHERFOOD 0.00 0.00 DMS 0.00
IRAW_MATERIAL 0.00 1.00 ARIMA 1.00
ITIMBER 0.00 1.00 ARIMA 1.00
IOTHERRAWMAT 0.00 0.00 MED 0.00
IAGRICULTURE 0.00 0.00 MED 0.03
ALUMINUM 0.00 0.00 MED 0.08
BANANA_US 0.00 0.00 ARIMA 0.00
BARLEY 0.00 0.00 DMA 0.00
COAL_AUS 0.00 0.00 DMA 0.00
COCOA 0.00 0.00 MED 0.00
COCONUT_OIL 0.00 0.00 MED 0.01
COFFEE_ARABIC 0.00 0.00 DMA 0.00
COFFEE_ROBUS 0.00 0.00 MED 0.36
COPPER 0.00 0.00 DMS 0.07
COPRA 0.00 0.00 DMS 0.00
COTTON_A_INDX 0.00 1.00 DMS 0.00
CRUDE_PETRO 0.00 0.00 DMA 0.00
CRUDE_BRENT 0.00 0.00 MED 0.00
CRUDE_DUBAI 0.00 0.00 DMA 0.00
CRUDE_WTI 0.00 0.00 MED 0.00
DAP 0.00 0.00 DMS 0.08
IENERGY 0.00 0.00 DMS 0.00
IFERTILIZERS 0.00 0.00 DMS 0.38
FISH_MEAL 0.00 1.00 ARIMA 1.00
GOLD 0.00 0.00 DMS 0.18
GRNUT_OIL 0.00 0.00 DMA 0.00
LEAD 0.00 0.00 DMA 0.00
LOGS_CMR 0.00 0.00 DMA 0.00
LOGS_MYS 0.00 0.00 DMS 0.17
MAIZE 0.00 0.00 DMA 0.00
BEEF 0.00 0.00 DMS 0.00
CHICKEN 0.00 1.00 ARIMA 1.00
IMETMIN 0.00 0.00 MED 0.02
NGAS_US 0.00 1.00 NAIVE 1.00
NICKEL 0.00 0.00 DMS 0.03
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Table 5. Cont.

COMMODITY DMA < NAIVE DMA < ARIMA DMA > NAIVE DMA > ARIMA BEST DM p-Value

INONFUEL 0.00 0.00 MED 0.10
ORANGE 1.00 0.00 ARIMA 0.00
PALM_OIL 0.00 0.00 MED 0.02
PLATINUM 0.00 0.00 DMS 0.11
PLYWOOD 0.00 1.00 ARIMA 1.00
POTASH 0.01 0.00 DMA 0.18
RICE_05 0.00 0.99 NAIVE 0.99
RUBBER1_MYSG 0.00 0.00 MED 0.76
SAWNWD_MYS 1.00 1.00 ARIMA 1.00
SHRIMP_MEX 0.00 0.00 DMA 0.00
SILVER 0.00 0.00 MED 0.00
SORGHUM 0.00 0.00 DMA 0.00
SOYBEAN_MEAL 0.00 0.00 DMS 0.00
SOYBEAN_OIL 0.00 0.00 DMS 0.01
SOYBEANS 0.00 0.00 DMA 0.00
SUGAR_EU 0.00 0.00 MED 1.00
SUGAR_US 1.00 1.00 MED 1.00
SUGAR_WLD 1.00 0.00 ARIMA 0.00
TEA_AVG 0.00 1.00 NAIVE 1.00
TEA_COLOMBO 1.00 1.00 ARIMA 1.00
TEA_KOLKATA 1.00 1.00 ARIMA 1.00
TEA_MOMBASA 1.00 1.00 NAIVE 1.00
TIN 0.00 0.00 DMA 0.08
TOBAC_US 0.00 0.00 DMA 0.00
TSP 0.01 0.00 MED 0.08
UREA_EE_BULK 0.00 0.00 TVP 0.89
WHEAT_US_HRW 0.00 0.00 MED 0.00
WHEAT_US_SRW 0.00 0.00 MED 0.00
WOODPULP 0.00 0.00 DMS 0.00
ZINC 0.00 0.00 DMA 0.00

Indeed, from Table 6, it can be seen that, in 26% of cases, DMA was the model that generated
the smallest RMSE. Moreover, in 22% of cases, it did so and, simultaneously, this result was
significant at a 5% significance level according to the described procedure (dividing models into
two groups). The DMA model generated the smallest RMSE in 23% of cases. In 13% of cases, it did
so, and, simultaneously, this result was significant. The MED model generated the smallest RMSE
in 28% of cases. In 17% of cases, it did so, and, simultaneously, this result was significant. It seems
worth noticing that the scheme of selecting the model with the highest posterior probability is more
popular over the Median Probability Model (MED). The obtained results seem therefore interesting,
as they confirm that it is worth putting more attention in practice on the MED combination scheme.

Table 6. Summary of results from Table 5.

MODEL FREQ. BEST FREQ. SIGN. BEST

DMA 26% 22%
DMS 23% 13%
MED 28% 17%
TVP 1% 0%

ARIMA 16% 4%
NAIVE 6% 0%
BMA 0% 0%
BMS 0% 0%

BMED 0% 0%

The TVP model generated the smallest RMSE only in 1% of cases. In none of cases did it do so
significantly.

BMA, BMS and BMED models were never the ones minimising RMSE out of all considered
forecasting models. Together with the already discussed observation from Figure 1, it means that
models with α = 1 = λ are very often minimising RMSE amongst the discussed Bayesian model
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combination schemes, but they cannot generate significantly more accurate forecasts than the ARIMA
or the NAIVE models. On the other hand, if the Bayesian model combination scheme generated such
a significantly more accurate forecast, then it was the model with α < 1 or λ < 1. Again, looking at
Figure 1, it can be expected that this was rather due to α < 1 than to λ < 1.

Finally, the NAIVE model generated the smallest RMSE in only 6% of cases. In none of cases did
it do so significantly. The ARIMA model generated the smallest RMSE in 16% of cases. In only 4% of
cases did it do so, and, simultaneously, this result was significant.

It can be concluded that the considered Bayesian model combination schemes can result in
significantly more accurate forecasts. Secondly, both model averaging (like in DMA), and model
selection (like in DMS and MED) are efficient methods. It should be stressed that, due to Equation (1)
and the way the weights are updated recursively, the forgetting factor α plays an important role also in
model selection schemes. Its role is connected with the way that the past information is treated. Roughly
speaking, the information (how the model behaved) from i periods back is given αi weight [7,10].

Those figures present normalized RMSE from DMA models with an AR(1) term and with recursive
moment estimation used for variance updating. In Figure 2, various α = λ are considered. It can be seen
that, under such a restriction, higher values of forgetting factors are preferred. A similar conclusion is
valid if α = 1 is fixed and λ is changing, as it can be seen in Figure 3. However, in Figure 4, it can be
seen that, if λ = 1 is fixed, in most cases, changing the value of α does not lead to important changes
of normalized RMSE. Anyway, in a few cases, the smaller values of α are preferred.

Figure 2. Normalized RMSE for all commodities vs. different values of forgetting factors.

Figure 3. Normalized RMSE for all commodities vs. different values of forgetting factors.
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Figure 4. Normalized RMSE for all commodities vs. different values of forgetting factors.

5.3. Further Remarks

By looking at rows in Table 4, it could be seen that the average gain in lowering normalized
RMSE by applying some of the Bayesian model combination scheme over TVP, ARIMA or NAIVE
models is 0.002, which is very small. On the other hand, from Table 5, it was seen that Bayesian
model combination schemes very often produce significantly more accurate forecasts, so this gain
is important.

It is also interesting to come back to Figure 1 and discussion about the preferred forgetting factors.
Usually, if considerations are narrowed just to DMA, DMS and MED models, then the combination of
α = 1 = λ minimises errors. However, when considerations are narrowed to those of DMA, DMS and
MED models, which generate significantly more accurate forecasts than TVP, ARIMA and NAIVE,
then λ = 1 is preferred, but α < 1. Therefore, it is interesting to analyse whether the difference between
these two types of models is statistically significant. For this, DMA models with AR(1) term and based
on recursive moment estimation for variance updating were compared—in other words, those models
with α = 1 = λ (BMA) with α = 0.99 and λ = 1 (DMA). At the 5% significance level, according to the
Diebold–Mariano test, DMA generated a more accurate forecast than BMA in 14% of cases, at a 10%
significance level—in 23% of cases.

Actually, in Figure 1, some interesting patterns can also be seen for fixed α = 1. From the
interpretative point of view, the combination α = λ is also quite natural. Therefore, Figures 2–4 present
normalized RMSE for all analysed commodities prices with different combinations of forgetting
factors α and λ.

6. Conclusions

It was found that, in general, the Bayesian model combination schemes like Dynamic Model
Averaging (DMA), Dynamic Model Selection (DMS) and Median Probability Model (MED) in
most of the cases produced significantly more accurate forecasts than the ARIMA, NAIVE or TVP
(Time-Varying Parameters regression) models. Interestingly, the MED model in many cases generated
smaller RMSE (Root Mean Squared Error) than DMS.

It was found that, indeed, the schemes based on recursive estimation like in DMA, allowing for
time-varying regression coefficients and time-varying models’ weights, resulted in smaller RMSE and
more accurate forecasts. However, the more thorough analysis suggested that the forecasting benefit
from this approach is rather due to time-varying weights, not time-varying regression coefficients.
From the economic point of view, this might be interpreted that, in different periods, it is rather
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the model itself (the collection of predictors) which really matters as opposed to the strength of
the relationship between predictors and the given commodity price, which should be modeled
more carefully.

Indeed, all considered modeling schemes used in this research were based on the recursive
estimations. In other words, forecast at time t was based only on the information available up to the
time t− 1. Additionally, all information available up to time t− 1 was used, so, as the new information
become available, it was used to update the model’s parameters.

On the other hand, in a numerical sense, the decline in RMSE due to the use of the applied
schemes was not very high. Anyway, according to the Diebold–Mariano (DM) test, the applied
schemes generated significantly more accurate forecasts.

This research was not based on some index as a proxy of commodities prices. Instead, 69 individual
time-series were modeled. Generally, it was confirmed that adding the autoregressive first lag
as a predictor improves the forecast accuracy. The advantage of Exponentially Weighted Moving
Average (EWMA) in variance updating over the originally proposed recursive moment estimation was
not confirmed.

Summarizing the outcomes, the considered Bayesian model combination schemes were found
useful, i.e., generating more accurate forecasts in most of the cases.
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Abbreviations

The following abbreviations are used in this manuscript:

ARIMA Auto ARIMA model described by Hyndman and Khandakar [71]
BMA Bayesian Model Averaging as a special case of DMA with forgetting factors α = 1 = λ

BMED Bayesian Median Probability Model as a special case of MED with forgetting factors α = 1 = λ

BMS Bayesian Model Selection as a special case of DMS with forgetting factors α = 1 = λ

DM The Diebold–Mariano test [75]
DMA Dynamic Model Averaging proposed by Raftery et al. [4]

DMS
Dynamic Model Selection, i.e., model averaging in DMA replaced by selecting the model with
the highest posterior probability

MED Median Probability Model of Barbieri and Berger [74]
NAIVE the naive forecast, i.e., the last observation is the one-ahead forecast
RMSE Root Mean Squared Error
nRMSE Normalized RMSE, i.e., RMSE divided by the mean value of the forecasted time-series
TVP Time-Varying Parameters, i.e., DMA reduced to exactly one model, i.e., the one with all predictors
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