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Abstract: In this paper we study and compare the environmental efficiency of 118 photovoltaic (PV)
plants in China. Drawing on the nonparametric data envelopment analysis (DEA) method, our study
takes the initiative to take the insolation, annual sunshine duration, and covering area as input
variables into account, as well as the installed capacity, annual electricity generation, CO2 emission
reduction, and coal saving as output variables, to provide a unified measure of environmental
efficiency of PV plants in China. We find widespread inefficiencies in roughly 95% of the PV
plants, and the performance of different economic zones and types of PV plants are quite different.
Specifically, those PV plants in eastern China are the least satisfying performers among three different
economic zones. The surprising result indicates that eastern China has room for improvement by
overcoming the inefficiencies caused by serious aerosol pollution and the high urbanization rate.
We also find rooftop PV plants have the highest efficiencies among the four types of PV plants due to
very little power loss. However, complementary PV plants have the lowest efficiencies most likely
because of high operating temperatures during the process of power generation.

Keywords: photovoltaic power plants; Data Envelopment Analysis (DEA); environmental efficiency;
economic zones; plant types

1. Introduction

The world’s population is growing, and meeting the increasing energy demands while managing
environmental, social, and economic issues is one of the greatest challenges of our time. Due to the
rapid development of human civilization and the world’s economies, fossil fuel energy is going to
be exhausted. On the one hand, increasing demand for energy is partly to blame for the relentless
decline of limited fossil energy reserves. On the other hand, the greenhouse effect produced by the use
of fossil energy has caused several environmental problems such as global warming. The problems
arising from the use of fossil energy have led to widespread considerations of the types and structure
of future social energy utilization. In this context, the transformation of alternative energy is thriving.
The world’s energy structure is shifting from high-emissions fossil energy to renewable energy and
clean energy, such as solar energy, wind energy, and hydropower. Economies of scale and technological
advances have seen production costs of renewable energy decline dramatically. This global shift in the
energy landscape means generating more renewable energy from sources like solar power which are
delivering more clean energy.
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According to national policies and practical energy demand, China has increased the contribution
of renewable share to its total energy consumption. Solar energy has generally been recognized as
a clean form of energy usage; its huge development potential has attracted a lot of attention. In recent
years, with more policy support from the Chinese government, the photovoltaic (PV) industry has
been experiencing a larger-scale development to replace traditional energy. With the stimulation
of relevant national policies, the PV industry in China represents an opportunity for high growth.
However, compared with the enormous potential of solar power, the level of its utilization is low at
present. Thus, further development of PV power has significant impetus for the in-depth development
of energy conservation and emission reduction and the optimization of energy structure adjustment
in China.

Our study takes initiative effort in the following two aspects. First, the heterogeneity of our
dataset enables us to undertake the DEA method for the first time to compare environmental efficiency
of PV plants in China. Second, it is the first time to compare the environmental efficiency of PV power
plants based on economic zones and types of plants. The purpose of this study is to examine whether
economic zones and PV types are sufficient factors in determining the environmental efficiency of PV
power plants in China, and we find high dispersions of efficiency across economic zones and types of
PV plants.

2. Literature Review

A large amount of literature has been devoted to the assessment of PV performance from different
aspects. This section reviews the most time-sensitive academic paper of PV performance assessment
based on four broad streams of literature, which include (a) the efficiency analysis of PV plants at
the international level based on DEA; (b) the efficiency analysis of PV plants in China based on DEA;
(c) influential factors of PV plants’ performance; (d) environmental efficiency analysis.

In recent years, several methods of estimating PV energy performance have been proposed,
which include process-chain analysis, standard parameters, system dynamics model, Balance Scorecard,
spatial planning, and performance simulation [1–6]. These methods consider different PV technological
features together with the actual characteristics of the operating settings. However, the most popular
method for benchmarking the performance of PV solar energy is the DEA method. There are
a few studies that include PV power plants into the DEA framework at the international level.
Jayanthi et al. [7] applied DEA for the 22 U.S. PV projects in the various stages of the industry value
chain to find out the potential of innovations for the policy maker. Sueyoshi et al. [8] compared
generation performance of PV power plants in Germany and the U.S. based on input-oriented
DEA with the insolation, number of PV modules, land area, and average annual sunshine as inputs
and installed capacity and annual generation as outputs. Their conclusion was that land use and
solar irradiation are not essential influence factors on the PV power plants’ efficiency. Wang and
Sueyoshi [9] adopted the similar input and output variables to assess the large commercial rooftop PV
system installations in California.

With the rapid development of the PV industry in China, the research on the Chinese PV industry
has made great progress. Zhang and Yang [10] built a comprehensive evaluation index system
for Chinese renewable energy technology based on data envelopment analysis (DEA); the result
shows that solar PV has the highest technical benefits. Li et al. [11] formulated an input-orientated
dynamic SBM model to measure the operational efficiency of Chinese PV producers and further
explore the impact of business models as well as listing markets on the performance of PV companies.
Zhao et al. [12] calculated the total factor productivity growth of 17 Chinese PV cells enterprise from
2008 to 2014, and found that the growth of the PV industry mainly relies on technological progress.
Zhang et al. [13] evaluated the operating performance of 58 Chinese PV listed enterprises, the results
indicated that the overall operating performance of the PV industry in China suffers from weak profits
due to low technical efficiency. It is noteworthy that these studies focus on management and operation
of PV producers and there is hardly any attention on PV power plants in China.
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Prior literature has indicated that some specific factors can influence the performance evaluation of
solar PV plants [14]. The following studies present the most important factors that affect performance
of PV plants. From the perspective of insolation, the research of Garcia-Domeno et al. [15] depicted
the main effect of insolation on the performance of PV modules. The reductions of output efficiency
at relatively lower or higher solar densities were much more severe under indoor and real outdoor
conditions [16,17]. Apart from the impacts of total solar insolation, sunshine duration is one of the
most important factors that affect PV efficiency. The PV plants located in low-latitude regions usually
have noticeable changes in power generation due to higher levels of sunshine, while there are no
significant changes in power generation for high-latitude PV plants with shorter sunshine duration [18].
The annual average electricity outputs were found to be better with longer sunshine hours [19]. Besides,
other variables including wind speed, soiling, and clouds can also be the primary factors that influence
PV power generation efficiency [20–23].

Environmental efficiency begins with the problem of the limitation of energy and the carbon
dioxide emissions caused in the process of energy production. However, in the literature, there are
only limited studies focusing on emissions reduction and environmental protection of the PV
industry. Wang et al. [24] employed a meta-frontier DEA approach to evaluate carbon reduction
efficiency of technologies; the result showed that although solar power has been exploited in
power generation for a long time, the sample consists of several groups of projects such as nuclear
energy, hydro-electric energy, wind energy, solar energy, and biomass energy in power plants.
Li et al. [25] proposed a sustainability assessment method with the northeast region of England chosen
as a case study. However, there were not enough samples to examine the environmental performance
in previous studies.

The review of previous literature shows that very few researches intend to take environmental
benefits into account and find out the environmental efficiency of PV power plants. Furthermore,
there is a lack of comparison studies on the environmental efficiency of PV power plants in China.

This paper tries to find out and compare the environmental efficiency of PV power plants in
China. Of which, the environmental efficiency measures each PV plant’s environmental performance
of the power-generation process. To achieve this purpose, this study extends the previous two
works. The first point is initiating efforts to quantitatively evaluate the environmental efficiencies
of PV plants in China. DEA models are implemented to pre-determine three input and four output
variables to measure and compare the environmental efficiencies of 118 PV plants. This paper applies
output-oriented DEA models to investigate the effects of the variables from the aspects of electricity
generation and environmental protection. The second point is comparing environmental efficiency
based on economic zones and the types of PV plants. This type of comparison has never been found in
the previous studies in PV efficiency analysis.

3. Methodology and Variables

3.1. Data Envelopment Analysis Method

Energy efficiency is an important index for measuring economic benefits in the Electric Power
Industry; accordingly, the electrical generation sector tends to be especially dedicated to improving
energy efficiency. A variety of research methods are established to estimate the efficiency of power
technologies, which are mainly assigned into the parametric method and nonparametric method.
Specifically, parametric method (such as Stochastic Frontier Analysis) is built on the basis of cost
functions; while cost and production function can be avoided using the nonparametric method (such as
Data Envelopment Analysis). The main function of the DEA method is efficiency evaluation [26],
which is especially suitable for evaluating relative advantages and disadvantages between two or
more comparative subjects. The DEA method has been widely used to assess the efficiency of the same
input and output indicators.
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Data Envelopment Analysis (DEA) was first proposed by Charnes, Cooper, and Rhodes in
1978 [27], which is a performance evaluation method based on the data of peer entities. DEA is
a methodology for mathematical modeling operational processes, and its empirical orientation and
minimization of prior assumptions have made it possible to use in a number of studies involving
efficient frontier estimation in the nonprofit sector, the regulated sector, and the private sector. In DEA,
the organizations under study are called Decision Making Units (DMUs). The definition of DMU is
regarded as the entity responsible for converting inputs into outputs and whose performances are
to be evaluated. The DEA method fully considers the optimal input–output scheme for the DMUs,
and compares the degree to which each DMU deviates from the efficiency frontier to ideally reflect the
relative effectiveness of each DMU. Specifically, if the DMU falls into a relatively effective production
frontier, it can be considered as having an efficient input–output combination with an efficiency value
of 1; those who fail to fall into the production frontier can be considered inefficient.

The following sections use some abbreviations, these abbreviations and their explanations are
shown in Table 1.

Table 1. Abbreviations and Explanations.

Abbreviations Explanations

DEA Data Envelopment Analysis
DMU Decision Making Unit

TE Total Efficiency
PTE Pure Technical Efficiency
SE Scale Efficiency

3.1.1. The CCR Model

The CCR model is the most basic DEA model, which was initially proposed by
Charnes et al. [27] in 1978. From a production function perspective, CCR is an effective approach
to measure technical efficiency of the production sector with multiple input and output variables
under the constant returns to scale (CRS) assumption. If the value of TE is closer to 1, the technical
performance of the production sector is quite better.

The input-oriented and output-oriented CCR models are presented in the following context.
The CCR model has the following input-oriented structure to measure an efficiency score θ:

minθ− ε
(
∑m

i=1 s−i + ∑s
r=1 s+r

)
subject to constraints :

∑n
j = 1 xijλj + s−i = θxi0 i = 1, 2, . . . , p

∑n
j=1 yrjλj − s+i = yr0 r = 1, 2, . . . , q

λj ≥ 0 j = 1, 2, . . . , n

(1)

As a methodological alternative of the input-oriented model, the CCR has the following
output-oriented model to measure the efficiency score η:

maxη+ ε
(
∑m

i=1 s−i + ∑s
r=1 s+r

)
subject to constraints :

∑n
j=1 xijλj + s−i = xi0 i = 1, 2, . . . , p

∑n
j=1 yrjλj − s+i = ηyr0 r = 1, 2, . . . , q

λj ≥ 0 j = 1, 2, . . . , n

(2)

θ and η are the total efficiency indexes of DMUs, λ represents a weighting, s− and s+ indicate
redundant and insufficient output respectively, xij denotes the amount of the ith input of the jth DMU,
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yrj denotes the amount of the rth output of the jth DMU. The DMU is CCR efficient if the efficiency
index reaches 1, otherwise, the DMU is CCR inefficient.

The input-oriented CCR efficiency explores efficiency from the perspective of input and compares
the usage of resources under the current output level. The output-oriented CCR efficiency explores
efficiency from the perspective of output and compares the achievement of output under the same
level of input. For guiding practical production, improving environmental achievements is more
meaningful for the PV industry, so we adopted the output-oriented CCR model in this paper.

3.1.2. The BCC Model

The input-oriented BCC model proposed by Banker et al. [28] evaluates the efficiency of DMUs
by relaxing the assumption of ‘constant returns to scale’ and associating the constraint of ∑n

k=1 λk = 1.
In the BCC model, the total efficiency (TE) can be decomposed into pure technical efficiency (PTE) and
scale efficiency (SE) under the assumption of ‘variable returns to scale’, the results calculated by the
BCC model are PTE. The BCC models are shown in the following.

The BCC model has the following input-oriented structure to measure an efficiency score θ:

min θ
subject to constraints :

∑n
j=1 xijλj ≤ θxi0 i = 1, 2, . . . , p

∑n
j=1 yrjλj ≥ yr0 r = 1, 2, . . . , q

∑n
k=1 λk = 1

λk ≥ 0 k = 1, 2, . . . , n

(3)

As a methodological alternative of the input-oriented model, the BCC has the following
output-oriented model to measure the efficiency score η:

max η
subject to constraints :

∑n
j=1 xijλj ≤ xi0 i = 1, 2, . . . , p

∑n
j=1 yrjλj ≥ ηyr0 r = 1, 2, . . . , q

∑n
k=1 λk = 1

λk ≥ 0 k = 1, 2, . . . , n

(4)

θ and η are the pure technical efficiency indexes of DMUs, which represents PTE score.
λ represents a weighting parameter for each DMU, s− and s+ are slack variables, xij denotes the
amount of the ith input of the jth DMU, yrj denotes the amount of the rth output of the jth DMU.
Compared with the CCR model, the BCC model has one more constraint ∑n

k=1 λk = 1 to construct to
a new envelope surface. Similarly, the DMU is BCC efficient if the efficiency index reach 1, otherwise,
the DMU is BCC inefficient.

TE is formulated by taking into account the technical factors and scale factors, which is a result
of multiplying PTE and SE together, and indicates the overall operating performance, which can be
expressed as follows:

TE = PTE × SE. (5)

This decomposition allows an insight into the source of inefficiencies. TE is related to the
productivity of inputs [29], which reflects the overall resource allocation and utilization efficiency of
a DMU. The PTE is a measure of TE without SE and reflects the managerial performance to organize the
inputs during the production process. The SE measure has been used as an index to capture optimum
scale of production resources. Besides improper allocation of inputs and outputs, the inefficiency of TE
may also be attributed to scale factors. Therefore, input–output configuration and scale factor need to
be considered simultaneously for improving the efficiency of the DMU.
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The input-oriented BCC model measures the degree to which each input should be reduced to
achieve Pure Technical Efficiency without reducing output. Reducing input serves as the main way
to increase efficiency for inefficient DMUs. The output-oriented BCC model measures the degree to
which each output should be increased to achieve Pure Technical Efficiency without increasing input.
Increasing output serves as the main way to increase efficiency for inefficient DMUs. Compared with
controlling input variables, increasing outputs has more practical implications for power utility and
environmental protection, so we adopted the output-oriented BCC model in this paper.

3.2. Combined Margin Emissions Factor

Due to geographical differences, the intensity of carbon dioxide emitted from different regions
is different. In other words, the amount of carbon dioxide emitted per kilowatt hour is generally
lower in those areas where there is advanced technology and a higher proportion of renewable energy.
Presently, the most common method is adopting the combined margin emissions factor.

The combined margin emissions factors can be affected by changes in the annual emissions and
power generation data. The combined margin emissions factor is calculated as follows:

EF = WOM × EFOM + WBM × EFBM (6)

In this formula, EF represents the Combined Emissions Factor; OM represents Operating Margin,
which refers to the group of existing power plants whose current electricity generation would be
affected by the proposed Clean Development Mechanism project activity; BM represents Build Margin,
which refers to the group of prospective power plants whose construction and future operation would
be affected by the proposed Clean Development Mechanism project activity; wOM represents the
weighting of operating margin emissions factor (%); wBM represents the weighting of build margin
emissions factor (%) [30]. In China, the wOM and wBM of the solar power generation project activities
are assigned to the value of 75% and 25%.

The combined margin emissions factor can be used to calculate CO2 emission reductions of the
PV power plants by the following formula:

CO2 Emission Reduction = CO2 Emission Reduction Factor × Annual Electricity Generation (7)

3.3. Variables

This study compares PV power plants in China to examine which economic zones and which
types of plant are more efficient in their usages and mitigation actions. A total of 118 PV power plants
are used for the comparison. In this paper, we introduce three inputs and four outputs to capture the
most remarkable characteristics of the environmental protection performance. The input and output
route is delineated in Figure 1.

Figure 1. Input and output route.
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3.3.1. Input Variables

In this model, we use the insolation, annual sunshine duration, and covering area for the inputs:
Insolation: Solar insolation measured at a given location on Earth with a surface element

perpendicular to the Sun’s rays, excluding diffuse insolation (the solar radiation that is scattered or
reflected by atmospheric components in the sky). The research of García-Domingo et al. [15] suggested
that direct normal insolation has a major role in affecting the performance of a concentrated PV module.
The larger the amount of solar insolation, the greater the amount of power generated. The insolation is
directly related to the intensity of sunlight, season, and geographical location.

In this paper, average insolation is measured in terms of peak direct insolation as MJ/m2.
The insolation parameter data for this study was derived from the average annual insolation that was
collected by local environmental protection agencies for each given location. In most cases, the lower
the latitude, the greater the solar incident angle, the less sunshine the location has, so that it receives
a lower insolation. Accordingly, the western region of China has a significant advantage in both
insolation and sunshine over central and eastern regions.

Annual sunshine duration: Sunshine duration is a significant climatological indicator, measuring
duration of sunshine in a given period (in this paper, it is measured by one year) for a given location
on Earth, typically expressed as an averaged value over several years. It is a general indicator of the
cloudiness of a location, and thus differs from insolation, which measures the total energy delivered by
sunlight over a given period. Sunshine duration can be influenced by seasonal change; it also depends
on the weather conditions, altitude, and geographical location of the observation point. The extension
of sunshine duration will increase the economic efficiency of PV power plants [31].

According to the annual average total sunshine hours disclosed by the China Climate Bulletin,
the distribution of the average annual sunshine duration in China has an increasing tendency from the
southeast region to the northwest region.

Covering area: Large-scale PV power plants generally need to occupy vast expanses of land.
Theoretically, there is a large amount of land in China which can be used for the construction of a PV
project, but in actual operation, land issues have become a struggle for the PV project development.
In this paper, we adopted the Total Covering Area as an input indicator, which refers to the overall
land demand of a PV power plant. We note that land area is also used as input in previous research [8].
More precisely, total covering area includes both utilized land and idle land within the boundaries of
the site. Idle land refers to land that has been approved for use by administrative departments but has
not broken ground yet.

3.3.2. Output Variables

We adopted installed capacity and annual electricity generation to measure the operational
performance of PV plants in China. Since China is a major carbon dioxide and other greenhouse
gas emissions producer, China’s environmental policy could greatly affect the balance of the global
climate. To realize sustainable emission reduction and energy saving goals, we also adopted CO2

emission reduction and coal savings to measure the environmental performance. Thus, the following
four output variables contribute to the environmental effects of PV plants in China.

Installed Capacity: The total installed capacity of a PV power system refers to the sum of rated
effective power of the PV generator sets actually installed in the system. The most common installed
capacity unit in China is MW. We note that installed capacity is also used as a desirable output in prior
literature. The use of capacity of power generation facilities as output with electricity generation in
DEA is a well-documented procedure [8,9,32].

Annual Electricity Generation: Annual power generation is the sum of the electrical energy actually
emitted by all generators sets in the system during the whole year, which can be a significant measurement
for the performance of any power plant. This data was collected from environmental impact assessment
reports prepared by electric companies involved in the operation of PV power plants.
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Coal Saving: Electricity in China’s electrical power system is mainly thermal power generation,
which is the main consumer of coal, petroleum, and other special fuel. The fuel combustion and
standard coal equivalent would be reduced by promoting the use of solar energy. Due to the differences
in the capacity and efficiency of thermal power plants across China, the amount of standard coal
consumed for each degree of power generation is different, so the saving of coal for PV power
plants built in the different regions is also different. This paper regards standard coal saving as
a desirable output.

CO2 emission reduction: PV products are highly environmentally friendly, and the utilization
of high-efficiency solar energy can reduce large amounts of CO2 emissions and thus achieve
environmental sustainability.

According to the coverage of the power grid, China can be divided into six regions. Within
each region, an emission reduction factor is calculated based on total emissions (coal, oil, gas)
and total power generation (thermal power, hydropower, and other renewable energy sources).
Moreover, the emission reduction factors are affected by changes in the annual emissions and power
generation data.

According to the annual emission reduction data released by the Climate Division of the National
Development and Reform Commission, the following emission reduction factors have been calculated
by models (6), and the results are shown in Table 2. It needs to be mentioned that the PV power
plants in this paper were established during years 2012–2016, so we only calculated the CO2 emission
reduction factor from 2012 to 2016.

Table 2. CO2 emission reduction factors in different regions over the years (unit: t/mwh).

Coverage 2012 2013 2014 2015 2016

North China
Power Grid

Beijing, Tianjin, Hebei, Shanxi,
Shandong, Inner Mongolia 0.9001 0.9171 0.9288 0.9197 0.9215

Northeast China
Power Grid Liaoning, Jilin, Heilongjiang 0.9727 0.9869 0.9845 0.9751 0.9722

East China
Power Grid

Shanghai, Jiangsu, Zhejiang,
Anhui, Fujian 0.7905 0.7856 0.7787 0.7691 0.7615

Central China
Power Grid

Henan, Hubei, Hunan, Jiangxi,
Sichuan, Chongqing 0.8641 0.8582 0.8477 0.8215 0.8045

Northwest China
Power Grid

Shanxi, Gansu, Qinghai,
Ningxia Hui Autonomous

Region, Xinjiang
Autonomous Region

0.8784 0.8569 0.8312 0.8141 0.7946

Southern China
Power Grid

Guangdong, Guangxi Zhuang
Autonomous Region,

Yunnan, Guizhou
0.7501 0.7045 0.6636 0.6478 0.6251

Note: The annual emission reduction factors were calculated by using the data of 3 to 5 years before the target years.
For example, the emission reduction factors of 2016 were calculated by the data of 2012, 2013 and 2014.

It can be observed that the CO2 Emission Reduction Factors in most of regions go down with
time, while there is no decreasing trend of CO2 Emission Reduction Factors in North China. On the
one hand, in the case of the same amount of power generation, more CO2 emissions are produced
in northern China. On the other hand, the utilization of PV power can provide a wider influence for
CO2 emission to replace carbon-intensive traditional energy in northern China, and even in the whole
country. The CO2 emission reduction of each PV power plant is calculated according to Model (7)
based on the CO2 Emission Reduction Factors of different region in which it is located and its annual
electricity generation.
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4. Comparison on PV Power Plants

4.1. General Efficiency Analysis

Table 3 summarizes descriptive statistics for the variables above of PV power plants in China.
These data sets include average values, maximum, and minimum values as well as standard deviations,
which are helpful for overviewing the variables.

Table 3. Descriptive statistics for the variables.

Inputs Outputs

Variables Insolation
Annul

Sunshine
Duration

Covering
Area

Installed
Capacity

Annual
Electricity

Generation

Coal
Saving

CO2
Emission
Reduction

Units MJ/m2 Hours m2 W KWh t t

Overall Max 2433 3398 10,091 357,330 51,981 166,000 400,900
(n = 118) Min 1056 1167 0.69 200 20 65 171

Ave 1558 2557 1115 34,391 4560 14,245 36,772
S.D. 234 516 1139 46,971 5953 17,066 41,768

We solve models (2) and (4) with the variables described in Section 3.3. The calculated efficiency
scores are summarized and divided into six intervals, the distribution of efficiency scores from the DEA
model is presented in Figure 2. For both SE and TE, the highest concentration of PV efficiency scores
is in the range between 0.4 and 0.6, and approximately 5% can reach SE and TE efficiency. For PTE,
we can find almost 90% of the PV power plants in the range between 0.4 and 1, only 10% can achieve
PTE efficiency. The wide spread inefficient units indicate that most plants have used specific resources
to produce a lower-than-expected level of output, indicating that the allocations of input–output and
scales are relatively illogical.

TE can be used to estimate whether the performance is comprehensively efficient, to the extent
that each input variable exerts the utility for a power plant’s performance. The average TE value of the
118 PV power plants in China is just 0.5091. The mean shows that the overall efficiency scores of those
sample PV plants are at a low level due to 111 PV plants’ TE being lower than 1, the general inefficient
situation implies adjustable vacancy is still exists.

Only 7 PV plants reach 1 TE, which can be attributed to their reasonable and practical operating
concepts. These PV power plants know how to maximize the role of technical and scale elements in
their operation management. However, 111 PV plants are left in inefficient states, the lagging behind
of the whole management level might be caused by some deviations in resource allocation, and also
a possible contribution coming from the lack of sufficiency of scale advantage for production. The vast
majority of PV power plants need to find the problems and the cause, to produce a better environmental
performance by technique optimization, management improvement, and input adjustment.
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Figure 2. Distribution of efficiency measures from the DEA model.

PTE measures the effect of technical factors such as high technology and management leadership
on the performance. The results show that the average value of PTE is 0.7688, indicating that the PTE
of PV plants are generally preferable. SE measures whether the scale of investment is appropriate or
not. The reasonable scale can allow the outputs to respond to the changes of inputs proportionally.
The average SE of the 118 sample plants is 0.6559, while the average PTE reaches 0.7688. The results
also show that the rankings of TE and SE are similar. Thus, the general inefficiency of PV plants tends
to be more affected by scale factors, and accordingly we should attach great emphasis on scale to
analyze the inefficiency. At the same time, 7 PV power plants are effective in scale and technique,
which only accounts for 5.93%. The minimum SE is 02394 and the maximum SE is 1, indicating that
there is a big difference in the scale efficiency among the power plants.

4.2. Economic Zones Efficiency Analysis

We now turn to examine whether the economic zones of PV power plants are related to their
performance. To carry out the analysis, we group the PV power plants at the economic zone levels
shown in Table 4. The 118 PV power plants include 36 in Eastern China, 32 in Central China, and 50 in
Western China. We do not categorize the power plants by provinces because a province is too small to
host enough available power plants for comparison.

Table 4. Three Major Economic Zones in China.

Economic Zones Provinces and Municipality

Eastern China Beijing, Tianjin, Hebei, Liaoning, Shanghai, Jiangsu,
Zhejiang, Fujian, Shandong, Guangdong, Hainan

Central China Heilongjiang, Jilin, Shanxi, Anhui, Jiangxi, Henan, Hubei, Hu’nan

Western China Inner Mongolia, Guangxi, Chongqing, Sichuan, Guizhou, Yunnan,
Tibet, Shaanxi, Gansu, Qinghai, Ningxia, Xinjiang

Table 5 summarizes descriptive statistics for the variables above of PV power plants in China.
In general, the western economic zone has the highest level of natural resources, while the eastern
economic zone has the lowest level of natural resources.
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Table 5. Descriptive statistics for the variables based on economic zone.

Inputs Outputs

Variables Insolation
Annul

Sunshine
Duration

Covering
Area

Installed
Capacity

Annual
Electricity

Generation

Coal
Saving

CO2
Emission
Reduction

Units MJ/m2 Hours m2 W KWh t t

Eastern Max 1664 2784 2610 84,706,560 7984 42,400 91,160
(n = 35) Min 1056 1167 0.69 200,200 20 65 171

Ave 1366 2132 738 25,628,760 2772 10,138 25,701
S.D. 142 406 531 19,054,038 1868 8319 20,490

Central Max 1770 3188 4044 357,330,930 17,800 60,000 150,957
(n = 51) Min 1220 1670 350 10,000,000 1305 4347 8900

Ave 1482 2600 1134 39,919,295 4202 13,972 35,511
S.D. 159 412 906 62,282,134 4113 12,337 30,656

Western Max 2433 3398 10,091 350,028,000 51,981 166,000 400,900
(n = 32) Min 1305 1218 264 1,019,520 1375 4400 10,000

Ave 1745 2836 1373 37,162,828 6076 17,376 45,550
S.D. 184 437 1471 48,787,812 8101 22,763 55,200

Table 6 shows the average efficiency scores of different economic zones. The efficiency distribution
of three economic zones in China has an apparent trend, the PTE, SE, and TE in the western region are
better than those in the central region, and those in central region are also better than the eastern region.

Table 6. Average Efficiency of Economic Zones.

Economic Zones PTE SE TE

Eastern China 0.851641 0.656184 0.558833
Central China 0.892783 0.752124 0.671484
Western China 0.912042 0.781162 0.715473

According to the results shown in Figure 3, over 70% of TEs in the eastern economic zone are
below 0.6; nearly 40% of TEs in the central economic zone are between 0.6 and 0.8, but there is still 30%
below 0.6, with 15% having reached 1; from the perspective of low efficiency, the TEs distribution in
the western economic zone is slightly better than that in the central economic zone, about 30% of TEs
in the western area are between 0.6 and 0.8, and about 20% below 0.6. The PTEs in all three economic
zones are distributed over 0.6. Eighty percent of the PTEs in the east had a distribution between 0.6
and 1, with the remaining 20% reaching 1. The situation in the central region is better, and about 80%
of PTEs are over 0.8. More than 40% have reached 1; while in the western region, 2/3 PTEs range from
0.8 to 1, and about 21% has reached 1. Eighty percent of the SEs in the Eastern Economic Zone are
below 0.8; while the SE in the Central and West is mainly concentrated between 0.6 and 1, however,
20% of the SE in the West is below 0.6.
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Figure 3. (a) Total Efficiency (TE) of photovoltaic (PV) stations in Eastern China; (b) Pure Technical
Efficiency (PTE) of PV stations in Eastern China; (c) Scale Efficiency (SE) of PV stations in Eastern
China; (d) TE of PV stations in Central China; (e) PTE of PV stations in Central China; (f) SE of PV
stations in Central China; (g) TE of PV stations in western China; (h) PTE of PV stations in western
China; (i) SE of PV stations in western China.

Several factors may contribute to the differences of efficiency in the different economic zones.
The most believable cause rests on the ‘aerosol pollution’ in eastern China. This aerosol pollution in
China greatly reduces surface solar PV resources. Especially high aerosol impacts exist over eastern
China, where air pollution is severe and electricity demand is greatest [33]. The aerosol pollution would
reduce insolation and annual sunshine duration of PV modules, which influence the environmental
efficiency of PV plants in Eastern China negatively.

Also, the high urbanization rate of eastern China could reduce the total efficiency of PV power
generation. On the one hand, the rising urbanization rate could lead to a significant increase in energy
consumption [34]. According to the relevant calculation data of the Development Research Center of
the State Council, the 1% increase in the urbanization rate would lead to the increase of 60 million
tons in standard coal consumption. However, due to the short-term coal-dominated energy pattern it
is difficult to fundamentally change, and new energy is hard to grow into the main force of energy
consumption. The situation of “high carbon lock” faced by urbanization is hard to crack, resulting in
difficulty for PV power generation efficiency. On the other hand, as the urbanization rate increases,
a large number of urban construction lands would erode the landscape of PV power generation.
The energy storage technology for power generation has not yet been broken, and the increase in the
urbanization rate will likely hinder the efficiency of PV power plant in the short term.
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4.3. PV Plant Types Efficiency Analysis

According to the four major PV plant types listed in Table 7, we also group the results by plant
types. Those PV plants can be classified into four types: 38 mountain PV plants, 37 desert PV plants,
15 rooftop PV plants, as well as 28 complementary PV plants.

Table 7. Four Major PV Plant Types in China.

Types Descriptions

Ground-based plant
Mountain plant PV power generation system usually builds in large tracts of land on barren mountains or

sloping fields with appropriate slope curve and long sunlight time.

Desert plant PV power generation system usually builds in desert or saline-alkali soil areas to utilize
the abundant solar energy and cheap land.

Distributed plant

Rooftop plant
Rooftop PV power generation system adopts distributed resources on the roof, which are
small sized and deployed near the users. Rooftop distributed generation is one of the most
widely used PV distribution projects.

Complementary plant
PV power generation system adjusts measures to differing conditions. The PV system can
be integrated with agroforestry activities, such as agricultural planting, poultry farming
and aquaculture, vegetation growth, etc.

Table 8 summarizes descriptive statistics for the variables above of PV power plants in China.
The rooftop plant and complementary plant are two typical distributed plants, while the mountain
plant and desert plant are ground-based PV plants, which usually have greater investment and scale.

Table 8. Descriptive statistics for the variables based on PV plant type.

Inputs Outputs

Variables Insolation
Annul

Sunshine
Duration

Covering
Area

Installed
Capacity

Annual
Electricity

Generation

Coal
Saving

CO2
Emission

Reduction

Units MJ/m2 Hours m2 W KWh t t

Mountain Max 2433 3247 10,091 350,028,000 51,981 166,000 400,900
Plant Min 1087 1167 323 9,856,000 1375 4400 8900

(n = 38) Ave 1562 2518 1292 40,270,743 5345 16,892 43,240
S.D. 215 516 1558 54,005,910 8162 25,488 61,954

Desert Max 2197 3398 3700 108,885,000 17,800 60,000 150,957
Plant Min 1399 2100 264 1,019,520 1381 4419 10,000

(n = 37) Ave 1752 2995 1281 29,359,101 4784 15,882 40,479
S.D. 165 284 924 23,864,936 3696 11,997 30,555

Rooftop Max 1606 2898 1500 50,000,000 6268 22,755 62,660
Plant Min 1056 1465 1 200,200 20 65 171

(n = 15) Ave 1360 2297 517 18,402,623 2263 7993 21,322
S.D. 135 440 409 14,486,200 1807 6343 16752

Complementary Max 1804 2808 4044 357,330,930 32,521 42,400 93,300
Plant Min 1135 1449 45 865,260 273 873 2365

(n = 28) Ave 1402 2169 1013 42,522,029 4601 12,494 32,338
S.D. 168 325 814 64,583,083 5933 9801 23,671

The average efficiency scores of different PV plant types are shown in Table 9. The four types of
PV power plants have similar PTEs, although the complementary power plants are slightly lower than
the other three types; the rooftop power plant has the highest SE, and the SE of the complementary
power plant is significantly lower than the other three types; accordingly, the rooftop power plant has
the highest TE, while the complementary power plant has the lowest TE.
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Table 9. Average Efficiency of Different Types.

Types PTE SE TE

Mountain 0.940502 0.776683 0.730472
Desert 0.945301 0.833817 0.788208

Rooftop 0.941435 0.902736 0.848162
Complementary 0.910514 0.676253 0.615738

The specific results are shown in Figure 4, 40% TEs of Mountain plants are range from 0.6 to 0.8,
50% TEs of desert plants are above 0.8, while 50% of the rooftop’s TEs are 0.6–0.8, and 50% TEs of the
complementary power plants are lower than 0.6. The PTEs of the majority PV plants are higher than
0.8, and it is worth mentioning that this proportion of mountain plants and desert plants both reached
95%. Seventy percent of SEs of mountain plants and 60% of SEs of desert plants have a range between
0.6 and 1, while the proportion of desert plants which are in the stages of scale efficiency is slightly
higher than mountain plants. Rooftop plants performed best in SE among the four types, 30% SEs
achieve scale efficiency, while for the worst performer, complementary plants, about 50% are lower
than 0.6, which contributed to its lowest TE.

Figure 4. (a) TE of mountain PV stations; (b) PTE of mountain PV stations; (c) SE of mountain PV
stations; (d) TE of desert PV stations; (e) PTE of desert PV stations; (f) SE of desert PV stations;
(g) TE of rooftop PV stations; (h) PTE of rooftop PV stations; (i) SE of rooftop PV stations; (j) TE of
complementary PV stations; (k) PTE of complementary PV stations; (l) SE of complementary PV.
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There are several factors that may lead to differences in the efficiency of different types of plants.
Rooftop PV power plants not only can increase the amount of power generation, but also effectively
solves the problem of power loss during booster step and long-distance transportation, which improve
the efficiencies of rooftop PV plants. Complementary PV plants have several advantages, which can
save the land resources and satisfy different crop demands of lighting by different light transmittance
of panels. However, this type of PV plant has the lowest efficiency of PTE, SE, and TE. Inevitably,
there are often high temperatures caused by thermal dissipation and heat preservation during the
power-generation process of the complementary PV plants [35]. Both the electrical efficiency and the
power output of a PV module will decrease with the increase in the operating temperature [36,37].

It is beyond the scope of this paper to clarify the impact of these factors on the performance of
environmental protection. In general, DEA-based economic zones and types analysis can help solar
installers and decision makers to determine the best locations and appropriate types.

5. Discussions and Conclusions

In this research, we applied the traditional nonparametric DEA method to study the performance
of 118 PV power plants in China. This approach provides us with a measure of environmental
performance of PV plants by modeling these plants as a multi-input multi-output process. The DEA
method overcomes some of the limitations and inconsistencies of PV power plants distributed in
different economic regions and types. In the implementation process, the model takes one discretionary
input to capture the design of power plants, and two non-discretionary inputs to capture the climatic
factors. Two of these outputs are capacity and electricity generation, which are two major achievements
of PV power plants. The other two outputs are the environmental protection achievements of emission
reduction and resource conservation, representing the ecological benefits of PV power plants.

The results manifest widespread inefficient environmental performance of approximately 94%
of PV plants in China. There are huge gaps between the actual outputs and the optimal outputs for
representative PV plants. This implies that PV plants should try to come up with a better design of
the PV system to increase environmental benefits. However, the current DEA cannot determine the
fundamental cause of universal inefficiency; more accurate methods need to be utilized to scrutinize
the PV plants.

The relationship between combined performance and economic zones, and the relationship
between combined performance and the types of plants are also examined in this paper.
The performance of economic zones and types of PV plants are quite different. We find those PV
plants in western China are the best performers among the three economic zones, while the samples
of eastern China are unsatisfied performers. The dispersion of performance is most likely caused
by serious aerosol pollution and a high urbanization rate in eastern China. We also find rooftop PV
plants have the highest efficiencies among the four types of PV plants due to very little power loss,
whereas complementary PV plants have the lowest efficiencies because of high operating temperatures
during the process of power generation.

Since the data of many PV power plants in China cannot be obtained directly, the amount of data
in this study is limited. Therefore, the results of this study only provides the performance evaluation
for the selected samples, and currently cannot represent the overall efficiency level of PV power
generation projects in China. For future research, further improvement of the data is needed to get
more sophisticated evaluation results.

Traditional DEA models have some drawbacks. At first, the classical DEA models treat each DMU
as a “black box” and the internal interactions are disregarded. On the contrary, the internal interactions
of a PV power plant should be regarded. Besides, traditional DEA models make an attempt to optimize
DMUs efficiency in a single-period condition. However, in the present problem, some inputs and
outputs such as insolation and sunshine duration are time-dependent factors. Future study can extend
to longer period.
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