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Abstract: Government R&D investments are steadily increasing with the perception that R&D
plays an important role in technological innovation and sustainable economic growth. In particular,
because biotechnology is recognized as one of the next growth engines, the Korean government has
recently increased their investment in biotechnology R&D. However, careful analysis of the efficiency
of government-sponsored R&D projects is still lacking. In this paper, we measured the technical
efficiency and technology gap ratio to investigate the efficiency of Korean government-sponsored
R&D projects of 16 sub-biotechnologies from 2007 to 2013 using a metafrontier Data Envelopment
Analysis approach. There was no improvement in overall efficiency between 2007 and 2013. Biochip
development technology has been the most efficient sub-biotechnology field and the least efficient
fields have been biotechnology product safety and efficacy assessment technology. Medical science
and engineering is the closest to optimal production technology among sub-biotechnologies. The
efficiency of universities and government-funded research institutes is high, while the efficiency
of companies is relatively low. The results suggest that the government should improve the
R&D planning process and establish a customized R&D investment strategy that considers the
characteristics of technologies and the seven organization types of R&D conductors to increase
R&D efficiency.

Keywords: R&D project efficiency; technical efficiency; technology gap ratio; data envelopment
analysis; metafrontier approach

1. Introduction

Government investment in R&D is an important factor in technological innovation. If the R&D
investment of a private enterprise is not done properly, the importance is higher. R&D is also one of
the key factors contributing to sustainable economic growth. Therefore, implementing a technology
innovation strategy to accelerate R&D has become one of the government’s most important industrial
policies. Since R&D generally involves market failure, government funding could increase R&D
activities and move them closer to the social optimum [1]. In addition, R&D intensity and subsidies
have positive correlations with the probability of innovation [2], and government-sponsored R&D
creates additional innovations for beneficiaries [3–5]. Thus, government grants that encourage private
R&D activities are common in many OECD countries [6]. The Korean government has continuously
increased its R&D investment. Korea’s R&D expenditure as a percent of gross domestic product (GDP)
has increased from 2.26% in 1996 to 4.22% in 2015, the highest level in the world [7]. As a result, the
quantitative growth of R&D investment and the socioeconomic impact and efficiency of R&D activities
are attracting great attention. If it is difficult to increase the investment quantitatively because of
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realistic reasons, such as resource constraints, further efforts to improve R&D efficiency are required.
Understanding the nature of the efficiency of R&D is important for the establishment of policies to
improve resource allocation [8]. The Korean government considers biotechnology to be one of the
next growth engines and has been increasing its investment in recent years. Thus, the efficiency of
government-funded R&D is becoming increasingly important in Korea.

Although there have been some studies on the efficiency of government-sponsored R&D projects,
in-depth analyses of government-sponsored biotechnology R&D projects are difficult to find. Therefore,
this study attempts to analyze the overall efficiency of government-sponsored biotechnology R&D
projects in Korea. Efficiency analysis methodologies typically include Data Envelopment Analysis
(DEA), a nonparametric approach, and stochastic frontier analysis (SFA), a parametric approach. DEA
does not need to explicitly assume a functional relationship between inputs and outputs, but rather,
empirically estimates efficient boundaries based on actual input and output data and then measures
efficiency based on distances from the boundaries. DEA is also advantageous in dealing with multiple
inputs and outputs. One of the most notable DEA study fields in recent years is the metafrontier DEA
approach. Basically, the production frontier is used to measure the efficiency level of decision-making
units (DMUs). The metaproduction frontier is the envelope of the production frontier of different
groups [9]. Therefore, the metafrontier approach is widely used for efficiency analyses between groups
operating under different technologies [10–13]. Generally, in the metafrontier approach, the group
frontier and the metafrontier are obtained, and the technology gap ratio (TGR) is calculated as the
distance between the group frontier and the metafrontier. TGR represents the efficiency gap between
the metafrontier and the specific group frontier.

Therefore, our research question is to obtain the efficiencies of the government-sponsored R&D
projects under the group frontier and metafrontier, respectively, and to make efficiency comparisons
across groups of R&D projects. In this paper, we apply a metafrontier DEA approach to estimate
the efficiency of Korean government-sponsored biotechnology R&D projects between 2007 and
2013. We obtain the efficiency scores of the R&D projects of 16 sub-biotechnologies under different
group frontiers and the metafrontier and calculate TGRs. The resulting TGR values provide an
opportunity to recognize which sub-biotechnology R&D field is relatively efficient. It is also meaningful
to understand the changes in efficiency during this period, because the Korean government’s
investment in biotechnology R&D has increased significantly. We present the efficiency results of 16
sub-biotechnologies by time series and by R&D organization type. This shows the efficiency trends
of 16 sub-biotechnologies and the differences in efficiency by R&D organization type. Based on the
analysis results, our study has implications for government R&D policy. To improve the efficiency of
government-sponsored R&D projects, careful monitoring, clear outcome goal setting, and customized
R&D investment planning are needed. Our study is the first application of a metafrontier DEA
approach to evaluate the technical efficiency of government-sponsored biotechnology R&D projects
and so, provides a novel framework for identifying the relative efficiency of R&D projects of 16
sub-biotechnologies. Thus, this paper enriches the DEA theory and its applications.

The rest of this paper is structured as follows. In Section 2, we review the literature regarding the
efficiency of R&D activities and the metafrontier DEA approach. We describe the data, variables, and
analytic model used in the empirical analysis in Section 3, which is followed by the presentation of
results in Section 4. We discuss the empirical results and methodology in Section 5. Finally, in Section 6,
we conclude the study with the implications, limitations, and future research recommendations of
the study.

2. Literature Review

2.1. Efficiency of R&D Activities

As the number of government R&D investments increase, resource allocation causes increased
attention on government R&D policies [14]. Thus, it is important to understand the characteristics of
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R&D efficiency when establishing policies to improve resource allocation [8]. Efficiency can generally
be defined as the ratio of output to input, which is a concept of technical efficiency that is often used in
a narrow sense. When we compare efficiency and effectiveness, effectiveness is a concept that focuses
on how much we have achieved a planned goal with a given input, whereas efficiency is a measure
of how well the input resources are used to achieve a given goal, that is, the concept related to cost
reduction. If a DMU achieves a given goal with minimal resource input, it can be considered to be a
DMU that achieves technical efficiency. In this context, research regarding R&D efficiency using DEA
has been carried out on various levels, including the project, program, company, government-funded
research institutes (GRIs), and country level. Each level provides various implications. At the national
level, Rousseau and Rousseau [15] used DEA to analyze the efficiency of 14 European countries. The
inputs were GDP, active population, and R&D expenditure, and the outputs were publications and
patents. Lee and Park [16] measured the R&D efficiency of 27 Asian countries using DEA instead of
TFP. Their results showed that Singapore had relatively high efficiency and that China, Korea, and
Taiwan were relatively inefficient. Wang and Huang [8] compared the R&D efficiency of 30 countries
using a three-step DEA approach. The inputs were R&D investment and manpower, and the outputs
were publications and patents. The analysis showed that more than half of the countries’ R&D activities
were not efficient. Sharma and Thomas [17] estimated the relative efficiency of R&D processes in 22
developed and developing countries using DEA. Under the constant returns to scale (CRS) model,
Japan, Korea, and China were efficient, but Japan, Korea, China, India, Slovenia, and Hungary were
efficient under the variable returns to scale (VRS) model. The improvement of inefficiency of using
R&D resources implies the potential for national development and growth.

At the organizational level, such as the company or GRI level, Hashimoto and Haneda [18] used
DEA and the Malmquist index to analyze the R&D efficiency of 10 Japanese pharmaceutical companies
between 1983 and 1992. They showed that the efficiency of Japanese pharmaceutical companies
continued to deteriorate during this period. Lee and Lee [19] analyzed the efficiency of 10 Korean
GRIs, which played an important role in national R&D. They used a bottom-up DEA approach. Their
findings confirmed that the proposed method can be used to establish and implement national R&D
policies by effectively assessing GRI performance. Jang et al. [20] investigated the changes in efficiency
of the world’s 49 leading R&D companies between 2007 and 2013 using DEA and the Malmquist
index. During the analysis period, the overall R&D efficiency of the companies declined slightly.
Han et al. [21] estimated the R&D efficiency of China’s high-tech industry between 1998 and 2009
using DEA. The R&D efficiency did not increase from 1998 to 2009 despite a rapid increase in R&D
expenditure. This study suggests that inefficiency of the technology commercialization process may be
the cause.

On the other hand, at the program or project level, Hsu and Hsueh [22] investigated the efficiency
of 110 government-sponsored R&D projects in Taiwan through a three-step DEA approach including
Tobit regression. Their findings showed that public subsidy of R&D affects the technical efficiency
of government-sponsored R&D projects. The implication of their result is that a subsidy cap on the
R&D budget of a receiving company must be set to avoid inefficient use of public funds. Lee et al. [23]
measured the efficiency of six Korean national R&D programs using DEA and compared the efficiency
results. Park and Choi [24] used DEA to measure the efficiency of biotechnology and nanotechnology
projects included in the four different programs supported by the Korean government. The average
efficiency of nanotechnology was higher than that of biotechnology. Park [25] analyzed the change in
efficiency and productivity of government grant recipients for 6990 Korean national R&D programs
from 2010 to 2012 using DEA and the Malmquist index. Productivity continued to increase during
this period, but the rate of growth declined every year. Lee and Cho [26] analyzed the efficiency of the
translational research program among health technologies between 2005 and 2009 using DEA and the
Malmquist index. They found that the productivity of six disease groups increased and that of the
remaining six disease groups decreased. As above, there are many existing studies on R&D efficiency,
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but most of the R&D efficiency studies have been conducted under the assumption of a group frontier,
and research regarding R&D efficiency using a metafrontier approach is hard to find.

2.2. Metafrontier DEA Approach

Since Hayami and Ruttan [27] introduced the meta-production function, there have been studies
on the metafrontier approach for efficiency and productivity analysis [9,11,12,28–32]. Previously,
efficiency was usually analyzed by independently estimating each group production frontier without
taking differences in environmental factors, such as technology, economies of scale and region, etc. into
account. However, this approach can cause estimated efficiency results to be biased by not considering
the environmental heterogeneity among the groups. The metafrontier can be considered to cover
all possible frontiers that can simply arise from heterogeneity between groups [33,34]. Therefore,
O’Donnell, Rao and Battese [9] introduced a metafrontier approach that allows heterogeneous groups
to be evaluated based on their distance from a common frontier to settle the heterogeneity in different
production opportunities.

The major studies of efficiency analysis using the metafrontier DEA approach are as follows.
O’Donnell, Rao and Battese [9] introduced a metafrontier SFA and DEA approach to compare the
efficiencies of firms which were classified into different groups. As an empirical study, they presented
the estimated technical efficiency of 97 countries which were classified into four different regional
groups using agricultural sector data. Sala-Garrido, Molinos-Senante and Hernández-Sancho [29]
used a metafrontier DEA approach to analyze the efficiency of 99 Spanish wastewater treatment
plants (WWTPs) which were divided into four different alternative technology groups. A comparison
of the calculated TGRs revealed that efficiency was optimal for WWTPs operating with activated
sludge compared to other technologies. Tiedemann, Francksen and Latacz-Lohmann [30] used a
nonparametric metafrontier approach to evaluate the efficiency score of field players in football.
An analysis of German Bundesliga football player data from 2002/2003 to 2008/2009 showed that
the metafrontier approach can be used to identify the optimal play position of a football player
and to quantify the performance improvement from moving to that position. Assaf, Barros and
Josiassen [11] measured the efficiency of 78 hotels in Taiwan between 2004 and 2008 using a metafrontier
bootstrap method. Their findings showed that there are significant differences in hotel efficiency
depending on classifications, such as size and ownership. Chen, Lai and Piboonrungroj [12] adopted
a metafrontier DEA approach to compare efficiency differences between private and public airports
using 24 Taiwanese airports’ data between 2001 and 2013. Their analysis showed that privately owned
airports had better technological efficiency than public airports.

This study has two main contributions. First, we obtain technical efficiencies under a group
frontier and under a metafrontier and compare them with each other. Second, although there have been
many studies of metafrontier DEA approaches, there are still few studies that have used metafrontier
approaches to analyze R&D efficiency. In this study, we apply the metafrontier DEA to evaluate the
efficiency of Korean government-sponsored biotechnology R&D projects.

3. Methodology

In this section, we describe the metafrontier DEA model, a nonparametric approach. Additionally,
we apply it to an efficiency analysis of government-sponsored biotechnology R&D projects. First, the
data collection is explained, and selected variables used for analysis are described.

3.1. Analytic Model

A typical efficiency measurement methodology can be roughly divided into DEA (as a
nonparametric approach) and SFA (as a parametric approach). SFA is a method of measuring the
production efficiency by estimating a frontier function using a quantitative econometric method. DEA
is a kind of linear programming method used for evaluating the relative efficiency of comparable
DMUs. Charnes et al. [35] first introduced DEA as a measure of technical efficiency derived from
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linear programming. Since then, DEA has become one of the most widely used methods for measuring
efficiency. DEA has the advantage of being able to handle multiple input and output elements
without requiring the assumption of a functional relationship between input and output. Additionally,
input and output elements can have different units of measurement in DEA. Since R&D is generally
associated with a large number of inputs and outputs, DEA is more appropriate for measuring the
efficiency of R&D. Charnes, Cooper and Rhodes [35] used the BCC model which assumes CRS. Banker
et al. [36] extended this to the CCR model which takes VRS into account. The CCR model under
CRS is used with the assumption that the DMU is operating at the optimal production scale, and the
BCC model under VRS is a suitable model when the optimal production activity is not performed
under incomplete competition due to various constraints. In this study, we used the BCC model
because it is appropriate to consider that government-sponsored R&D projects are in VRS. DEA
models are divided into input-oriented models and output-oriented models depending on the purpose.
Input-oriented models minimize the input while keeping the output constant, while output-oriented
models maximize the output while keeping the input constant. It is desirable to use output-oriented
models for R&D projects, because R&D projects intend to increase the output using limited resources.
Therefore, in this study, we used the output-oriented BCC model to measure the relative efficiency of
government-sponsored R&D projects.

In the analysis of the efficiency of government-sponsored R&D projects, most of the studies so far
have been analyzed under the same technical conditions. However, efficient frontiers of R&D projects
in groups with different characteristics of technology may have different characteristics [9,34,37]. Thus,
the technical efficiency of an R&D project under a specific technology cannot be directly compared with
one existing under another technology. This is because efficiency is a relative score for each frontier
in each group. In other words, existing studies comparing production efficiencies do not distinguish
between the various technologies covered by R&D projects. Therefore, we applied the concept of
a metafrontier production function, as proposed by O’Donnell, Rao and Battese [9], to measure the
efficiency of government-sponsored R&D projects dealing with various technologies. The Malmquist
and Hicks-Moorsteen indexes as well as metafrontier DEA can be used to measure and compare
efficiency across different technology groups [38]. The Malmquist and Hicks-Moorsteen indexes
usually represent a dynamic change in the increment of inputs relative to the increase in outputs.
However, in this paper, we are interested in the efficiency of government-sponsored R&D projects.
That is, the goal of this paper is to estimate the technical efficiency scores and technology gap ratio for
the sub-technologies and then to compare the efficiency across sub-technologies. Therefore, we used
the metafrontier DEA approach in our study.

The production frontier refers to the maximum achievable output from the input level which
reflects the current level of technology. If a DMU is technically efficient, it operates on the production
frontier, and if it is technically ineffective, it operates below the production frontier. If the technology
can be divided into K sub-technologies, the kth group frontier means the boundary of the kth
sub-technology group’s output sets [9]. The metafrontier refers to the frontier which envelops the
group of frontiers, as shown in Figure 1. In this study, we analyzed the efficiency difference between
16 different sub-technology groups of Korean government-sponsored biotechnology R&D projects as a
case study. To estimate the metafrontier for government-sponsored biotechnology R&D projects, we
pooled project data across all sub-biotechnologies. In this way, the convex metafrontier (M–M∗) was
obtained, as shown in Figure 1. As shown in Figure 1, when two separate DEA efficiency analyses
were performed, the group frontiers (G1–G1∗. and G2–G2∗. ) were obtained. Each group frontier
represented a frontier specific to a certain technology. A metafrontier was obtained by pooling the data
of the two technologies and repeating the standard DEA. As shown in Figure 1, if DMU P belongs to
Technology 1, the output-oriented technical efficiency of the DMU P obtained in terms of group frontier
is determined by the ratio of the distances XpP and XpP′. On the other hand, the output-oriented
technical efficiency obtained in terms of the metafrontier is determined by the ratio of the distances
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XpP and XpP′′ . Even if the level of input is the same, DMU P may produce different outputs when
operated under different technologies.Sustainability 2018, 10, x FOR PEER REVIEW  6 of 18 
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To find the efficiency score of all individual government-sponsored R&D project P, the linear
programming problem of Equation (1) must be solved.

max
∅,λ

∅

s.t.
J

∑
j=1

λjxmj ≤ xm(P) m = 1, 2, · · · , M

J
∑

j=1
λjynj ≤ φyn(P) n = 1, 2, · · · , N

J
∑

j=1
λj = 1

λj ≥ 0 j = 1, 2, · · · , J

(1)

where the variables xmj and ynj indicate the amount of input (m = 1, 2, · · · , M) and output
(n = 1, 2, · · · , N) for each R&D project (j = 1, 2, · · · , J ; P ∈ {1, 2, · · · , J}), respectively. N,
M, and J are the number of output variables, the number of input variables, and the number of R&D
projects used in the analysis, respectively. The objective function of this optimization problem was
to optimize the output improvement potential, ∅, in all outputs. The value 1/∅ is a value between
zero and one and can be interpreted as the technical efficiency, TE [30]. TGR is an indicator of the gap
between group technology and common production technology [9,39]. TGR can be described in terms
of the way the group frontier approaches the metafrontier. Thus, TGR was obtained by dividing the
TE, which is the efficiency score obtained under the metafrontier, by TEk, the efficiency score obtained
under the group frontier, and is defined as Equation (2) [9,29,40]:

TGRk =
TE
TEk (2)

where TGRk, TE, and TEk represent the TGR of technology k (k = 1, 2, · · · , K), the technical efficiency
of metatechnology, and the technical efficiency of the Group k technology, respectively.

k is the number of groups corresponding to different technologies. If TE is 0.4, it means that
output ynj is 40% of the maximum output that an R&D project can produce using input xmj with the
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metatechnology. If TEk is 0.5, output ynj is 50% of the maximum output that can be produced by an
R&D project using input xmj and Group k technology. The technical efficiency of each group technology
cannot be lower than the technical efficiency of the metatechnology, because the constraints to problems
in different groups are a subset of the constraints of the metafrontier problem [12]. Therefore, TGR has
a value between zero and one. If the gap between the group frontier and the metafrontier increases,
the TGR decreases, and when the gap decreases, the TGR approaches one. In this paper, we used the
metafrontier approach to measure the efficiency scores of government-sponsored biotechnology R&D
projects. Then, TGRs were calculated using the obtained efficiency scores

3.2. Data

In this study, we analyzed the efficiencies of Korean government-sponsored biotechnology R&D
projects under the group frontier and metafrontier. Each R&D project was considered to be a DMU,
an efficiency analysis unit. If a DMU is set to the program level, individual project data must be
aggregated into one program unit. This creates the problem that the analysis results vary depending
on how the data are added together. Additionally, data loss can occur during the aggregation process;
thus, the discriminatory power decreases relatively. Therefore, it is desirable to set an R&D project as
the DMU [23].

The data of R&D projects were extracted from the National Science and Technology Information
Service (NTIS) of the Korean government. The NTIS collects and provides information on inputs
and outputs of government-sponsored projects. The data period was from 2007 to 2013. Because the
output data of the NTIS has been collected reliably since 2007, projects after 2007 were used in the
empirical analysis. In addition, in the existing R&D productivity and efficiency analysis study, it was
reported that the time lag between the input and output of R&D was three years [8,41,42]. Therefore,
we analyzed projects up to 2013, considering the time lag. The NTIS collects data by classifying R&D
and non-R&D projects. Because we measured the efficiency of R&D projects, non-R&D projects were
excluded from the analysis. The NTIS also classifies projects by technology. Biotechnology includes 16
sub-biotechnologies, as shown in Table 1. To analyze the differences in efficiency between the group
frontier and the metafrontier, this paper analyzed R&D projects belonging to the 16 sub-biotechnologies.
On the other hand, institutions that conduct R&D have various organizational types. In addition, the
characteristics of an organization type influence the efficiency of an R&D project. The NTIS classifies
the types of R&D conductors into eight categories: (1) university, (2) large enterprise (LE), (3) small
and medium-sized enterprises (SME), (4) GRI, (5) national research institute (NRI), (6) government
ministry (GM), and (7) other. This study also examined the efficiency differences according to the eight
different organization types of R&D project conductors.

Projects with missing and outlier values and incorrect information were excluded from the
analysis. For the output variables, each was divided by the total amount of investment, and the
projects outside of ±3σ were removed. It is desirable to exclude outliers, because they reduce the
discriminative power of the model, because they make the efficiency of most DMUs low in the DEA
analysis. Therefore, the number of government-sponsored biotechnology R&D projects from 2007 to
2013 used in the analysis of this paper was 50,597.
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Table 1. Description of sub-biotechnologies.

Sub-Biotechnology Description

T1 Genomic infrastructure technology
T2 Proteome research
T3 Bioinformatics technology
T4 Life phenomenon and function research
T5 Neuroscience research
T6 Bioprocess technology
T7 Biotechnology product safety and efficacy assessment technology
T8 Biochip development technology
T9 Other basic and infrastructure technology

T10 Biopharmaceutical development technology
T11 Intractable disease treatment technology
T12 Biological tissue regeneration technology
T13 Gene therapy technology
T14 Functional biomaterial-based technology
T15 Medical science and engineering
T16 Other healthcare application technology

3.3. Variables

The variables used in the empirical analysis comprised three input variables and four output
variables. In previous studies, investment, time, and personnel have usually been considered as the
inputs of R&D activities [8,21,23–25,43,44]. Therefore, this study used R&D investment, R&D personnel,
and R&D time as input variables. R&D investment is the sum of funding from various sources of
a project, including government funding. R&D investment reflects the technological capabilities of
R&D performers [45]. R&D personnel is the sum of all staff who participated in the project during
the project period. The personnel involved in an R&D project have expertise and skills. The input of
this personnel can be considered to grant knowledge and skills to the project. Another reason to set
R&D personnel as an input is that knowledge creation, accumulation, and reproduction are due to the
knowledge, experience, and interactions among personnel [46]. The R&D project period refers to the
period of the project, and the output from R&D activities during this period is collected as the output
of the project.

The representative measures of the output of R&D projects are papers and patents [47]. A paper
published in a journal is used most widely as a measure of the outputs of R&D projects and
researchers [8,48]. Patents are also commonly used to measure the outputs of R&D activities [22,26,45].
The number of patents is one of the most important indicators of innovation capability [49,50]. In this
study, both applied patents and granted patents were used. The advantage of the applied patent is
that it reflects more quantitative aspects of R&D innovation performance. A granted patent can take
into account the qualitative aspects of the patent [51]. Therefore, science citation index (SCI) papers,
non-SCI papers, applied patents, and granted patents provided by NTIS were used as R&D output
variables. Meanwhile, we adjusted the price of R&D investment for all years to 2010 prices with
the GDP deflator of the Bank of Korea to account for the impact of inflation. The input and output
variables used in this study are summarized in Table 2.

Table 2. Definitions of input and output variables.

Variable Definition

Inputs
Investment Total amount of funds allocated to an R&D project (unit: 1000 KRW)
Time Duration of an R&D project (unit: years)
Personnel Number of researchers involved in an R&D project

Outputs

SCI papers Number of SCI papers
Non-SCI papers Number of non-SCI papers
Applied patents Number of applied patents
Granted patents Number of granted patents
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4. Results

This section presents the estimated efficiency results of government-sponsored biotechnology
R&D projects under the group frontier and metafrontier and provides a discussion of the results.
Table 3 shows the descriptive statistics of variables for all government-sponsored biotechnology R&D
projects used in the analysis. The statistics shows that for Korean government-sponsored biotechnology
R&D projects, the number of SCI papers was 2.9 times that of non-SCI papers, and the number of
applied patents was about 2.1 times that of granted patents. The correlation matrix between variables
is shown in Table 4. Although the correlation coefficients were not so high, there were significant
correlations between investment and personnel and all output variables. This is in line with the
common sense that R&D projects with more investment will input more personnel and make more
outputs. There is also a significant correlation between output variables.

Table 3. Descriptive statistics of input and output variables.

Variables Mean SD Min Max

Inputs
Investment 175,743 390,509 34 20,676,190

Time 0.960 0.139 0.093 1.997
Personnel 8.199 13.116 1.000 699.000

Outputs

SCI papers 1.0489 2.722 0.000 115.000
Non-SCI papers 0.364 2.177 0.000 184.000
Applied patents 0.378 1.296 0.000 42.000
Granted patents 0.184 0.850 0.000 36.000

Table 4. Correlation analysis of variables.

Investment Time Personnel SCI Papers Non-SCI Papers Applied Patents Granted Patents

1.00
Time 0.05 1.00

Personnel 0.49 *** 0.01 ** 1.00
SCI papers 0.31 *** 0.06 *** 0.31 *** 1.00

Non-SCI papers 0.19 *** 0.02 *** 0.20 *** 0.29 *** 1.00
Applied patents 0.31 *** 0.05 *** 0.26 *** 0.33 *** 0.23 *** 1.00
Granted patents 0.26 *** 0.04 *** 0.20 *** 0.29 *** 0.19 *** 0.5 *** 1.00

*** p < 0.01, ** p < 0.05.

The descriptive statistics of variables for the 16 sub-biotechnologies are shown in Table 5. T10
(biopharmaceutical development technology) was the technology field with the highest average
investment and personnel per project. T2 (proteome research) had the highest number of SCI papers
per project. T8 (biochip development technology) had the highest number of applied and granted
patents per project. Before estimating the metafrontier, we verified whether statistically significant
differences existed among the 16 sub-technologies for each variable. To do this, we performed the
Kruskal–Wallis test, an extension of the Mann–Whitney U-test. The null-hypothesis that there is no
difference between sub-technologies was rejected at the significance level of 0.01 for all input and
output variables, as shown in Table A1. Therefore, R&D projects classified by sub-technologies are
quite different from each other. The results support the previous research finding that a single product
frontier cannot be used to compare the efficiency of R&D projects using different technologies [29].
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Table 5. Descriptive statistics of variables by technology.

Technology Observation
Investment Time Personnel SCI Papers Non-SCI Papers Applied Patents Granted Patents

Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD

T1 2783 163,147 289,896 0.965 0.131 7.304 9.201 1.237 2.523 0.274 0.902 0.329 1.070 0.145 0.644
T2 1799 162,854 298,494 0.972 0.121 6.636 7.735 1.508 2.867 0.228 1.054 0.359 1.105 0.193 0.830
T3 869 166,069 328,041 0.961 0.161 7.871 11.057 1.486 2.956 0.325 1.097 0.247 0.936 0.132 0.547
T4 10,226 105,426 225,783 0.975 0.102 5.061 5.649 1.037 2.475 0.197 2.245 0.190 0.741 0.083 0.480
T5 2847 160,028 494,710 0.972 0.104 8.159 19.535 1.300 2.671 0.373 2.349 0.215 0.861 0.120 0.763
T6 1356 186,221 316,344 0.966 0.124 7.883 10.178 1.204 3.679 0.330 1.585 0.633 1.701 0.279 1.106
T7 1130 157,959 247,987 0.896 0.180 9.683 11.196 0.458 1.402 0.373 1.289 0.205 0.920 0.074 0.395
T8 1125 208,855 312,527 0.957 0.141 9.089 11.093 1.460 2.665 0.436 2.007 0.716 1.594 0.349 1.059
T9 4815 166,510 322,519 0.962 0.135 9.045 10.044 0.994 2.789 0.423 1.481 0.449 1.350 0.210 0.823

T10 3817 295,363 542,799 0.956 0.148 10.582 16.345 1.249 3.392 0.305 2.425 0.498 1.500 0.284 1.161
T11 2220 190,806 568,651 0.972 0.124 7.860 11.004 1.048 2.330 0.254 0.956 0.332 1.078 0.137 0.668
T12 1587 180,609 335,966 0.966 0.114 9.777 17.069 1.390 3.571 0.393 2.186 0.390 1.128 0.202 0.752
T13 784 163,900 231,507 0.972 0.143 7.348 8.144 1.191 2.489 0.209 0.788 0.297 0.859 0.182 0.814
T14 3528 171,688 259,325 0.964 0.137 8.754 10.975 0.683 1.839 0.408 2.032 0.559 1.366 0.240 0.909
T15 5895 203,663 377,799 0.969 0.157 10.051 19.450 1.179 3.198 0.646 3.434 0.601 1.918 0.321 1.239
T16 5901 210,450 574,222 0.916 0.181 9.626 14.957 0.549 2.230 0.464 2.241 0.299 1.395 0.138 0.796
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After verifying that the 16 sub-biotechnology groups operate under different technological
frontiers, we estimated the technical efficiency under the group frontier and metafrontier, respectively.
The TGR was calculated with the results. As mentioned in the previous section, this study used an
output-oriented BCC model under the assumption of VRS. Table 6 and Figure 2 show the average
efficiency results associated with the group frontier and metafrontier models. You can also see the
TGRs in Table 6 and Figure 2. The efficiencies under the group frontier were between 0.097 and 0.257
for each sub-technology. On the other hand, the efficiencies under the metafrontier were between
0.057 and 0.163 for each sub-technology. These results show that the overall efficiency was low. This
is because the number of papers and patents produced by the biotechnology R&D projects was low,
as you can see in Tables 3 and 5. Moreover, there were also many projects that did not produce
any papers or patents. As shown in Figure 2, the technical efficiency under the metafrontier was
lower than the technical efficiency under the group frontier in all of the sub-technologies. These are
similar results to those found in previous studies [9,11,39,52]. This result is due to the fact that the
metafrontier is composed of all government-sponsored biotechnology R&D project data, whereas the
group frontier is composed of R&D project data belonging to an individual sub-biotechnology. The
rankings of the group frontier and metafrontier are different from each other, as shown in Table 6. For
example, in the case of T5 and T13, under the group frontier, the efficiency of T13 is higher than that
of T5, whereas under the metafrontier, the efficiency of T5 is higher than that of T13. Therefore, it
is inappropriate to compare the efficiencies of the sub-technology groups with the efficiency scores
obtained under the group frontier. As a result, it is possible to make a more accurate comparison with
the efficiency scores obtained under the metafrontier. T8 (biochip development technology) was the
most efficient sub-biotechnology field under the metafrontier, followed by T2 (proteome research), T3
(bioinformatics technology), and T5 (neuroscience research). In the case of T8, a significant factor of
high efficiency was the relatively higher value of average applied and granted patents per project than
in other sub-biotechnology field. The least efficient technology was T7 (biotechnology product safety
and efficacy assessment technology), followed by T16 (other healthcare application technology) and
T14 (functional biomaterial-based technology). In the case of T7, the average number of papers and
patents was lower than in other fields.

Table 6. Technical efficiencies and technology gap ratios (TGR).

Technology
Group Frontier Technical

Efficiency
Metafrontier Technical

Efficiency TGR

Mean SD Min Max Mean SD Min Max Mean SD Min Max

T1 0.161 0.221 0.000 1.000 0.130 0.190 0.000 1.000 0.795 0.224 0.077 1.000
T2 0.215 0.274 0.000 1.000 0.147 0.202 0.000 1.000 0.685 0.238 0.108 1.000
T3 0.212 0.271 0.000 1.000 0.144 0.203 0.000 1.000 0.693 0.281 0.124 1.000
T4 0.150 0.210 0.000 1.000 0.129 0.188 0.000 1.000 0.851 0.178 0.120 1.000
T5 0.176 0.240 0.000 1.000 0.142 0.202 0.000 1.000 0.803 0.199 0.151 1.000
T6 0.179 0.252 0.000 1.000 0.115 0.179 0.000 1.000 0.626 0.189 0.197 1.000
T7 0.146 0.268 0.000 1.000 0.057 0.123 0.000 1.000 0.401 0.239 0.096 1.000
T8 0.257 0.304 0.000 1.000 0.163 0.217 0.000 1.000 0.623 0.236 0.122 1.000
T9 0.149 0.226 0.000 1.000 0.107 0.175 0.000 1.000 0.703 0.225 0.108 1.000

T10 0.153 0.226 0.000 1.000 0.121 0.191 0.000 1.000 0.773 0.198 0.229 1.000
T11 0.166 0.246 0.000 1.000 0.121 0.195 0.000 1.000 0.722 0.244 0.098 1.000
T12 0.184 0.246 0.000 1.000 0.122 0.174 0.000 1.000 0.678 0.234 0.164 1.000
T13 0.198 0.271 0.000 1.000 0.119 0.180 0.000 1.000 0.618 0.252 0.046 1.000
T14 0.146 0.222 0.000 1.000 0.099 0.164 0.000 1.000 0.671 0.202 0.168 1.000
T15 0.148 0.216 0.000 1.000 0.130 0.196 0.000 1.000 0.857 0.150 0.296 1.000
T16 0.097 0.186 0.000 1.000 0.074 0.153 0.000 1.000 0.733 0.186 0.239 1.000
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Figure 2. Technical efficiency (TE) and TGR plot.

We next obtained TGRs using Equation (2), as shown in Table 6. The calculated TGRs for each
sub-technology had values between 0.401 and 0.857. As shown in Figure 1, the closer the TGR is to
one, the more the group technology approaches optimal production technology. On the other hand,
the closer the TGR is to zero, the more the group technology lags behind the optimal production
technology. T15 (medical science and engineering) had the highest TGR, indicating that T15 is the
closest to optimal production technology among the sub-technologies.

Table 7 shows the efficiency under the metafrontier over time. While the number of
government-sponsored biotechnology R&D projects increased from 2007 to 2013 and the investment
size increased, the efficiency was the highest in 2007 and had not recovered as of 2013. Thus, while
Korea’s biotechnology sector is catching up in terms of the size of its investment, it is not catching
up in terms of its efficiency. Looking at the sub-technologies, we can see that the efficiency of T7
(biotechnology product safety and efficacy assessment technology) more than doubled from 2007
to 2013. On the other hand, the efficiency of T13 (gene therapy technology) reduced by about half.
Therefore, it is necessary to closely monitor the R&D activities of each sub-technology, because the
trend of efficiency change varies according to each sub-technology.

Table 8 shows the efficiencies under the metafrontier by the type of organization conducting
the R&D project. The efficiency of universities was found to be the highest across all the
sub-biotechnologies, and the efficiency of GRIs was almost as high. However, the efficiency of LEs
and SMEs was lower than that of universities and GRIs. In the case of T3 (bioinformatics technology),
though, the efficiency of a LE was the highest, indicating that the most efficient organization type can
differ among sub-biotechnologies.
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Table 7. Technical efficiency by technology and year under the metafrontier.

Technology 2007 2008 2009 2010 2011 2012 2013

T1 0.138 0.125 0.105 0.135 0.151 0.132 0.123
T2 0.144 0.151 0.110 0.141 0.174 0.178 0.130
T3 0.119 0.134 0.113 0.138 0.181 0.164 0.134
T4 0.143 0.129 0.122 0.116 0.134 0.147 0.118
T5 0.172 0.134 0.147 0.133 0.142 0.145 0.136
T6 0.125 0.097 0.076 0.113 0.139 0.131 0.121
T7 0.033 0.033 0.074 0.085 0.083 0.067 0.072
T8 0.130 0.148 0.152 0.166 0.180 0.201 0.146
T9 0.118 0.070 0.076 0.120 0.136 0.105 0.104
T10 0.134 0.100 0.128 0.102 0.130 0.127 0.122
T11 0.205 0.166 0.079 0.111 0.124 0.110 0.120
T12 0.115 0.091 0.137 0.114 0.155 0.117 0.125
T13 0.148 0.103 0.100 0.149 0.142 0.130 0.081
T14 0.094 0.080 0.105 0.107 0.122 0.085 0.102
T15 0.119 0.102 0.131 0.129 0.157 0.152 0.118
T16 0.082 0.063 0.068 0.061 0.064 0.091 0.083
All 0.125 0.100 0.110 0.114 0.130 0.125 0.113

Table 8. Technical efficiency by technology and organization type under the metafrontier.

Technology University LE SME GRI NRI GM Other

T1 0.141 0.091 0.050 0.128 0.101 0.036 0.088
T2 0.153 0.000 0.051 0.138 0.092 0.000 0.115
T3 0.161 0.175 0.048 0.107 0.124 0.026 0.058
T4 0.131 0.083 0.045 0.130 0.092 0.116 0.097
T5 0.146 0.073 0.035 0.137 0.060 0.000 0.132
T6 0.148 0.065 0.038 0.118 0.082 0.000 0.010
T7 0.070 0.003 0.034 0.077 0.064 0.016 0.008
T8 0.204 0.066 0.042 0.169 0.096 n/a 0.048
T9 0.130 0.044 0.035 0.125 0.072 0.014 0.049
T10 0.149 0.052 0.041 0.136 0.097 0.000 0.051
T11 0.125 0.047 0.047 0.152 0.136 n/a 0.091
T12 0.132 0.048 0.046 0.119 0.037 0.000 0.055
T13 0.136 0.061 0.029 0.076 0.095 n/a 0.056
T14 0.127 0.046 0.047 0.157 0.102 n/a 0.073
T15 0.149 0.101 0.051 0.166 0.126 0.004 0.097
T16 0.095 0.065 0.038 0.092 0.041 0.015 0.029
All 0.134 0.058 0.043 0.130 0.080 0.016 0.062

5. Discussion of Results

In this paper, we investigated the efficiency of Korean government-sponsored biotechnology R&D
projects between 2007 and 2013 using a metafrontier DEA approach. Park and Choi [24] analyzed
the efficiency of nanotechnology and biotechnology projects in four specific programs using DEA
and compared the results. Lee and Cho [26] analyzed the efficiency and productivity of projects
that corresponded to translational research among biotechnologies using DEA and the Malmquist
productivity index. Thus far, however, it has been difficult to find any study that covers all sub-fields of
biotechnology R&D projects. The contribution of this paper is the analysis of all areas of biotechnology
R&D projects in Korea and to observe the efficiency trend during a period in which there was a
significant increase in investment. The analysis showed that there was no improvement in efficiency
relative to the increase in investment.

Moreover, previous studies used efficiency scores obtained under a single frontier to compare
different groups [24]. However, it is not desirable to compare the efficiency of different technology
groups with the results under each group technology frontier. No studies have analyzed
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the efficiency of government-sponsored R&D projects from the viewpoint of the metafrontier
and showed related TGRs. This study estimated efficiency scores for the R&D projects of 16
sub-biotechnology groups under the metafrontier and contributed to making a more accurate
comparison between sub-technologies. The TGRs obtained also provide an opportunity to investigate
which sub-biotechnology R&D projects are relatively more efficient.

Additionally, this study presented the efficiency results of sub-biotechnology fields by time series
and by R&D organization type. In terms of time, there was no increase in efficiency between 2007
and 2013, and the efficiency of universities and GRIs was high, while the efficiency of companies was
relatively low.

Finally, in the methodology, the sample sizes of R&D projects in 16 sub-biotechnology groups
used in our empirical analysis were different. According to De Witte and Marques [53], this can make
the comparison of efficiency inaccurate. Therefore, it is necessary for future studies to consider using
an order-m model or sub-sampling method to improve the accuracy of efficiency comparison across
sub-technology groups.

6. Conclusions

In this study, we estimated the technical efficiency of Korean government-sponsored
biotechnology R&D projects between 2007 and 2013 under the group frontier and metafrontier. We
obtained efficiency scores for 16 sub-biotechnologies and TGRs. Then, the resulting efficiencies of
sub-biotechnologies were compared by time series and by organization types of R&D performer.
The results showed that the efficiency scores of sub-biotechnologies under the group frontier were
between 0.097 and 0.257 and those under the metafrontier were between 0.057 and 0.163 (i.e., the
efficiency score under the group frontier were greater than those under the metafrontier). This
result supports the previous studies and theory. T8 (biochip development technology) was the most
efficient sub-biotechnology field under the metafrontier, and the least efficient sub-biotechnology field
was T7 (biotechnology product safety and efficacy assessment technology). T15 (medical science
and engineering) had the highest TGR, indicating that T15 is the closest to optimal production
technology among the sub-biotechnologies. In addition, there was no improvement in overall efficiency
of government-sponsored biotechnology R&D projects between 2007 and 2013. The efficiency of
universities and GRIs was high, while the efficiency of companies was relatively low. This paper
is the first study to adopt a metafrontier DEA approach to evaluate the technical efficiency of
government-sponsored biotechnology R&D projects. Our study gives a novel way of identifying
the relative efficiency of R&D projects of 16 sub-biotechnologies.

This study provides some policy implications. First, measures used to evaluate
government-sponsored R&D projects must be diversified, and the progress of R&D should be more
carefully monitored. The overall efficiency of government-sponsored biotechnology R&D projects
was low. The reason for the low efficiency is that the overall project output was small. Although the
outcomes of R&D are mainly based on papers and patents, there may be other measures, such as
acquiring skills, performing tasks, market sales, and other nonpatented and nonpublished performance
indicators. In addition, there may be differences in outcomes depending on the characteristics of each
technology and the stage of R&D. Therefore, it is necessary to collect more diverse output indicators to
reveal the R&D performance more fully.

Second, to improve the efficiency of R&D and ensure the sustainability of R&D, it is necessary
to clarify and define the outcome goals of R&D projects, beginning at the planning stage. Currently,
many government-funded R&D projects have no innovation outputs, such as papers and patents. This
is because, in many cases, there is a lack of strategic definition of target outcomes of R&D projects.
Therefore, it would be helpful to improve the efficiency of R&D by making patent and publication
analyses mandatory at the technological feasibility evaluating stage of new government-sponsored
R&D projects.
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Third, customized R&D planning is needed. There are significant differences in efficiency among
the sub-biotechnologies and organization types of R&D performers. In some sub-biotechnology fields,
it is more efficient for universities to conduct R&D projects, while in others, companies are more
efficient. Therefore, more efficient R&D outcomes can be obtained if customized R&D planning
according to the characteristics of technologies and organization types is taken into consideration.

There are some limitations to this study. First, this study did not include output data such as sales,
technology transfer, and job creation. The lack of these various output data limits the measurement
of full efficiency. Second, in the time series analysis, the analysis period was limited to seven years
because of the available data period. Therefore, it was impossible to examine more long-term changes
in R&D efficiency. Third, we could not consider the qualitative aspect of paper outputs. We used
the number of published papers as an output variable. However, depending on the impact factor of
the journal in which a paper is published, the paper has a significantly different quality. Therefore,
it is desirable to adjust the number of papers with the impact factors of journals. However, in this
study, due to the lack of relevant data, we could not adjust the number of papers. In the future, if
more diverse output data are gathered for government-sponsored R&D projects and long-term data is
obtained, more accurate efficiency measurements and efficiency trend analyses will be possible.
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Appendix A

Table A1. Kruskal–Wallis test statistics of variables for differences in the 16 sub-biotechnologies.

Variables Chi-Squared p-Value

Inputs
Investment 1579.80 0.000
Time 861.27 0.000
Personnel 2033.90 0.000

Outputs

SCI papers 1610.80 0.000
Non-SCI papers 416.16 0.000
Applied patents 1292.00 0.000
Granted patents 745.93 0.000
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