Next Article in Journal
Roadmap to Rebound: How to Address Rebound Effects from Resource Efficiency Policy
Previous Article in Journal
The Impact of Green Lending on Credit Risk in China
Previous Article in Special Issue
Assessing Nature-Based Coastal Protection against Disasters Derived from Extreme Hydrometeorological Events in Mexico
Article Menu

Export Article

Open AccessArticle
Sustainability 2018, 10(6), 2010; https://doi.org/10.3390/su10062010

Re-Evaluation of the Impacts of Dietary Preferences on Macroinvertebrate Trophic Sources: An Analysis of Seaweed Bed Habitats Using the Integration of Stable Isotope and Observational Data

College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai 201306, China
*
Authors to whom correspondence should be addressed.
Received: 10 May 2018 / Revised: 30 May 2018 / Accepted: 5 June 2018 / Published: 14 June 2018
View Full-Text   |   Download PDF [2014 KB, uploaded 14 June 2018]   |  

Abstract

Stable isotope analyses of food webs have been used in previous decades to determine trophic sources and food web structures. The use of stable isotope models to estimate consumption contributions is based on a type of multivariate beta distribution called the Dirichlet distribution. The Dirichlet distribution does not conclude the pi = 0 and pi = 1 situation. Thus, scientists have previously assumed that every potential trophic source contributes to consumption in stable isotope models. However, animals have dietary preferences and some trophic resources may not contribute to consumption. Less is known about the effects of species-specific dietary processes on stable isotope analyses, especially in regard to trophic contribution estimation. In this study, we develop methods to determine consumers’ “real potential trophic sources” and “discrimination factors” using lab-based observations and lab-based discrimination experiments. We describe a dietary process-based stable isotope mixing model (D-SIMM) that integrates lab-based dietary preference observations and the stable isotope mixing model (SIMM) to estimate trophic contributions. Then, we present the application of D-SIMM on three representative macroinvertebrate species in our study area (sea urchin: Anthocidaris crassispina (A. crassispina); gastropod: Turbo cornutus (T. cornutus); and mussel: Septifer virgatus (S. virgatus)) to re-evaluate source-consumer contributions. Thus, we compare the differences between the source contribution estimation results of SIMM and D-SIMM by calculating the standardized convex hull area (TA) of species-specific trophic sources and the consumer standard ellipses area (SEA) of the potential trophic source group. Three examples illustrate significant differences in species-specific dietary preferences between consumers, resulting in systematic difference for TA, SEA and trophic source contribution estimation results between SIMM and D-SIMM. As such, D-SIMM explains pi = 0 of certain trophic sources, which often causes uncertainty and is ignored in previous SIMM research. In addition, species-specific discrimination factors should be noticed during trophic source estimation. For estimation of the trophic contribution of source-consumers, our findings imply that the dietary preferences of consumers should be fully considered before SIMM analysis, and that D-SIMM is a more ecological process and robust measure. Additionally, we found high macroalgae (MAC) coverage in seaweed beds and a high detritus contribution of MAC to sedimentary organic matter (SOM). These findings, combined with the high contributions of MAC and SOM to consumers, suggest that MAC and its debris are the basal trophic sources for gastropods, sea urchins and mussels in seaweed bed habitats. The conservation of seaweed beds should be fully considered to ensure sustainable utilization of shellfish. View Full-Text
Keywords: dietary preference; lab-based observation; SIMM; dietary process-based SIMM; seaweed bed habitat; trophic source estimation dietary preference; lab-based observation; SIMM; dietary process-based SIMM; seaweed bed habitat; trophic source estimation
Figures

Figure 1

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. (CC BY 4.0).
SciFeed

Share & Cite This Article

MDPI and ACS Style

Zhou, X.; Liu, Y.; Wang, K.; Zhao, J.; Zhao, X.; Zhang, S. Re-Evaluation of the Impacts of Dietary Preferences on Macroinvertebrate Trophic Sources: An Analysis of Seaweed Bed Habitats Using the Integration of Stable Isotope and Observational Data. Sustainability 2018, 10, 2010.

Show more citation formats Show less citations formats

Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Related Articles

Article Metrics

Article Access Statistics

1

Comments

[Return to top]
Sustainability EISSN 2071-1050 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top