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Abstract: This paper investigates the approximated arbitrage bounds of option prices in an incomplete
market setting and draws implications for option pricing and risk management. It gives consideration
to periods of global financial crisis and European sovereign debt crisis. To this end, we employ the
gain-loss ratio method combined with the market-implied risk-neutral distribution calculated by
binomial tree to investigate the options price bounds. Our implied gain-loss bounds of option prices
are preference-free and parametric-free to avoid the misspecification error of subjective choice on
the benchmark model of gain-loss ratio, and consequently, greatly reduce model risk and market
risk. The empirical results show that there are option prices breaking the gain-loss bounds, even after
taking into account the market information. This means that a good risk management technique and
good-deal investment opportunities exist if the implied binomial tree is used as a benchmark model
in the gain-loss bounds.

Keywords: S&P 500 index options; gain-loss ratio; risk-neutral distribution; binomial tree;
risk management

1. Introduction

Asset pricing is an essential issue in financial economics. There are two main fundamental ideas
that are explored in asset pricing: “equilibrium valuation” and “arbitrage-free valuation”. If markets
are complete, we can directly derive the equilibrium state prices by solving the individual agent’s
optimization problem, which maximizes the individual’s utility function subjected to the wealth
constraints. Following the equilibrium arguments, the Black–Scholes options pricing formula can be
derived in a discrete-time economy [1,2], and the literature calls this an equilibrium valuation or a
model-based pricing model. On the other hand, the arbitrage-free valuation, known as no-arbitrage
pricing, says that a securities market price is arbitrage-free if there are no arbitrage opportunities [3].
A bundle of basis assets with given prices and an absence of arbitrage opportunity restricts the
admissible set of pricing kernels. If the markets are complete, there is only one strictly positive vector
of pricing kernel that correctly prices the basis assets. However, if the number of basis assets is
fewer than the states of nature, the admissible set contains many pricing kernels that yield a range
of asset prices [4]. For market participants, the main problem is that the prices obtained from the
Black-Scholes model differ significantly from observed prices which have serious consequences for
market participants measuring the market risk [5].

Two classical models, the good-deal bound model [6] and the gain–loss ratio model [7], propose a
framework to unify the model-based model and no-arbitrage pricing model and tighten the pricing
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bounds by introducing additional restrictions. The good-deal bounds model [6] is developed by
imposing a restriction on Sharpe ratio of pricing kernel’s variance and strengthened the option price
“semi-arbitrage” bounds. The gain-loss ratio model [7] imposes a restriction on the pricing kernel with
respect to the gain-loss ratio on the expected gains to expected losses to limit the possibility of the
pricing kernel deviating from a reference benchmark pricing model. This method also has a more stable
result in pricing the deep out-of-money options comparing to good-deal bound [7]. When restricting
the variance of pricing kernel smaller than the level of Sharpe ratio, the good-deal bound model [6]
is equal to the gain-loss ratio model [7]. In order to achieve robustness, the gain-loss ratio model is
utilized in this paper. However, one limitation of the gain-loss ratio model is that the model builder
has to subjectively choice the reference pricing kernel or benchmarked model to construct the gain-loss
bounds. This exposes the price bounds to various types of model risk.

Many researchers use option prices to infer a state price vector for further applications in financial
studies [8,9]. Breeden and Litzenberger [10] derived the prices of elementary contingent claims from
options, and they call this an “inverse problem”, which is the process of calculating from a set of
observations to get the causal factors that produced them. By means of a state price vector, we can
construct the risk-neutral probability to obtain the asset price as its expected present value which greatly
eases systematic valuation errors and market risk. Several methods have been developed to extract the
risk-neutral probability distribution form option prices [11–14]. In the literature, the inverse problem
can be classified into two categories. One is a parametric method that uses a set of parameters for
prior risk-neutral probability distribution and calculates option prices by varying the parameters to
minimize the pricing error, such as expansion methods [15], generalized distribution methods [16–18],
and mixture methods [19,20]. The other category is nonparametric methods, which search the
risk-neutral probability distribution without a prior assumption of a specific distribution, such as
maximum entropy methods [21,22], kernel methods [23] and curve-fitting methods [24–27]. The implied
binomial tree of Rubinstein [11], hereinafter referred to as “IBT model”, is a classical model of the
nonparametric approach. As one of the basket options, the pricing and hedging of S&P 500 index option
widely uses implied binomial trees [28,29]. Therefore, we follow this method.

In this article, we employ the IBT model to back out the risk-neutral probability and use the
probability to replace the log-normal assumption (i.e., the normal distribution assumption for rate of
returns) of the gain-loss bound. In other words, we use the market-implied distribution to calculate the
option benchmark price and build up the gain-loss bounds, instead of using Black-Scholes log-normal
assumption, which avoids the pricing errors resulting from the unrealistic assumption and gives a
new idea of measuring market risk. To the best of our knowledge, it is the first attempt to employ
the gain-loss ratio method combined with the market-implied risk neutral distribution which is
calculated by a binomial tree setting. Using the S&P 500 index option for the period from January
2008 to December 2014, we estimate or update the market-implied distribution every 30 min to
refresh the price bounds and review the trading opportunities. Specifically, the sampling period gives
consideration to periods of global financial crisis and European sovereign debt crisis. Our empirical
results show that there are option prices breaking the gain-loss bounds, even after taking into
account the market information, which means that a good risk management technique and good-deal
investment opportunities exist if the implied binomial tree is used as a benchmark model in the
gain-loss bounds.

It is noteworthy that there are several particular features in our market-implied risk-neutral
distribution. First, we avoid a subjective assumption on the underlying distribution in building
up the gain-loss bounds. Second, with the modification of the benchmark model, the model risk
of our gain-loss ratio bounds can be greatly reduced. Third, we have a better exploitation of
the deep-out-of-money option prices by market-implied option prices that are not explained well
in previous models [6,7]. Fourth, by employing the gain-loss ratio method combined with the
market-implied risk neutral distribution calculated by binomial tree, we reduce the risk of distributional
misspecification. According to Rubinstein’s study [11], there are many violations of Black-Scholes
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assumptions which are serious, difficult to remedy, and may destroy the arbitrage foundations of
the Black-Scholes model. Our method provides an effective way to capture well the tail effects of
the underlying asset distribution for both sides, which can provide market participants with a better
model for option pricing and risk management.

The remainder of this paper is organized as follows: Section 2 presents the model based on a
risk-neutral pricing kernel and sets the IBT method that can be employed to derive market-implied
probability from the option data. Section 3 describes the selected S&P 500 index option data and
shows the estimated market-implied gain-loss option price bounds. Section 4 offers several conclusive
considerations and implications.

2. Methodology: Gain-Loss Pricing Bounds

2.1. The Properties of Gain–Loss Ratio

Gain-loss ratio is a very appealing, interesting model with many advantages [30]. We briefly
review the result of the gain-loss ratio and its application for the valuation of uncertain payoffs that
were developed by Bernardo and Ledoit [7]. Let z̃ = [z̃1, . . . , z̃s] ∈ Z be the random payoffs and
x̃ = z̃− (1 + r f )π(z̃) be the excess payoffs where π(z̃) is payoff function. We define x̃+ = max(x̃, 0)
as the positive part and x̃− = max(−x̃, 0) as the negative part. b̃ is the basis assets portfolio which
payoff comes close to z̃ from below and above, and B represents the space for basis assets. We define
two subsets for B, A1 and A2, which can be expressed as

A1 =

b̃ :
E∗
[(

z̃− b̃ )+
]

E∗
[(

z̃− b̃ )−
] ≥ L

, A2 =

b̃ :
E∗
[(

b̃− z̃ )+
]

E∗
[(

b̃− z̃ )−
] ≥ L

, (1)

where E∗[•] denotes the expectation value under the risk-adjusted probability measure. E∗[x̃+]/E∗[x̃−]
is the gain-loss ratio, hereinafter referred to as L. And the gain-loss price bounds of a contingent claim
are ∀z̃ ∈ Z subject to z̃ /∈ B

max
b̃∈B∩A1

πB(b̃) ≤ π(z̃) ≤ min
b̃∈B∩A2

πB(b̃). (2)

As L increases, the bounds become wider; when L decreases, the bounds become narrower. In the
limit, as L increases to infinity, the bounds converge to the no-arbitrage bounds; as L goes to unit,
the bounds converge to the benchmark model price.

2.2. The Implied Risk-Neutral Probability and IBT Model

Rubenstein’s IBT method [11] is introduced as follows. Firstly, assuming Sj for j = 0, . . . , n are the
underlying asset prices at the end of the tree from lowest to highest. We denote the terminal ending
nodal risk-neutral probabilities as P′ j and ΣjP′ j = 1.P′ j can be inferred from the riskless interest rate,
concurrent market prices of the underlying asset and its associated otherwise identical European
options with different striking prices. Assuming the risk-neutral probability of one up-move over
each period is p′, then P′ j = n!p′ j(1− p′)n−j/j!(n− j)! can be obtained from the binomial distribution.
As n increases, this probability distribution will approximately be log-normal. Let γ and δ be the
riskless interest return and the underlying asset payout return over each period, respectively. Finally,
assuming Sb to be the current bid price of the underlying asset adjusted with dividend payouts and Sa

to be the current ask price of the underlying asset adjusted with dividend payouts. Cb
i for i = 1, . . . , m

is the bid price at the end of the tree and Ca
i for i = 1, . . . , m is the ask price at the end of the tree.

The implied posterior risk-neutral probabilities,Pj, can be obtained from the following quadratic
minimizing problem:
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min
Pj

∑j (Pj − P′ j)
2 subject to

∑j Pj = 1 and Pj ≥ 0 for j = 0, . . . , n
Sb ≤ S ≤ Sa where S = ∑j PjSj/rn

Cb
i ≤ Ci ≤ Ca

i where Ci = ∑j Pjmax[0, Sj − Ki]/rn for i = 1, . . . , m

, (3)

where Ki is the strike price for the option traded in the market. The sum of posterior risk-neutral
probabilities Pj is 1 and comes closest to a prior log-normal guessing. Pj makes the present values of
all observed options fall between the bid and ask prices. Although we adopted a specific minimization
function and a specific prior, the optimization method is quite flexible. As long as a solution exists and
the number of probabilities n is greater than the number of options m, the solution will depend on
the prior and minimization function chosen. The least squares form of the minimization function is
just one of a number of candidates [11] (For instance, the Hellinger Distance is also a good candidate.
The Hellinger Distance is defined in terms of the Hellinger integral, which is used to quantify the
similarity between two probability distributions. In practice, the quadratic programming is much easier
to perform than minimizing Hellinger Distance). Since our purpose is to employ the implied binomial
trees model into the framework of gain-loss price bounds, we will remain on our focus. Besides, it is
well known that none of the asset-pricing models can perfectly fit the real fluctuation of options,
even the IBT model. A lot of factors cannot be adopted by the model, such as significant transactions
costs or restrictions on short selling. However, in comparison to the BS model, IBT model has huge
improvements in parameter risk control and market simulating, and it is the optimal benchmark model
when you try to fit a basket option [28,29].

2.3. Our Methodology: Implied Gain-Loss Option Pricing Bounds

In the numerical example of Bernardo and Ledoit [7], the authors used the Black-Scholes risk-adjusted
probability as the risk-neutral probability. Our model replaces the benchmark pricing kernel by an
objective market-implied density abstracting from option transaction data. Here, we apply IBT’s implied
risk-neutral distribution. We define two subsets for B, B1 and B2, which can be expressed as

B1 =

[
bi :

∑I
i=1 Pi(bi − Ci)

+

∑I
i=1 Pi(bi − Ci)

− ≥ L

]
, B2 =

[
bi :

∑I
i=1 Pi(Ci − bi)

+

∑I
i=1 Pi(Ci − bi)

− ≥ L

]
, (4)

where bi is the payoff in the ith simulation of the replicating portfolio of basis assets with weight w0

on the risk-free bond and weight w1 on the option on the traded asset. And the IBT gain-loss price
bounds of a contingent claim are

max
w0, w1 ∈ R

bi = w0 + w1Si
bi ∈ B1

w0e−rt + w1S ≤ C ≤ min
w0, w1 ∈ R

bi = w0 + w1Si
bi ∈ B2

w0e−rt + w1S. (5)

And the benchmark call options price can be calculated as

C =
I

∑
i=1

Pi(Si − K)+e−rt. (6)

As we can see, the study of Bernardo and Ledoit [7] proposed their price bounds under the
Black-Scholes risk-adjusted probabilities, which involves many restricted assumptions that have been
violated in the real world. Since the implied binomial trees model can provide a computationally
effective way to value options even in the presence of various violations of assumptions [11],
our modification incorporates more information which can greatly reduce the model risk of gain-loss
pricing bounds. The advantages of this modification are (a) the implied gain-loss pricing bounds are
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parameter-free that directly conform to market data and avoid an incorrect model specification and
(b) the market price of options incorporates the investor’s preference and sentiments on the current
market. By applying a market-implied pricing kernel, we can capture the investor’s risk-taking attitude
more sensitively than the pricing kernel of model-based approaches, and the extreme case is more
likely to occur in the market-implied distribution which greatly reduces the market risk.

It is noticeable that, even after using the market-implied distribution, there still exits a pricing gap
between the benchmark prices and market prices. First, in the above programming program, the IBT
method tries to obtain an “average probability” over all strike prices at one time. This means that,
in Equation (3), Pj is an “average result” over various strike price Ki. The risk-neutral probability Pj has
to coordinate the pricing errors of all the market prices with various strike prices. Therefore, when we
use one market-implied probability to calculate option prices, there exists estimate errors or pricing
biases across options with different strike prices. (This issue is similar to using a flat volatility curve
to price all options, instead of using a volatility smile curve). In other words, we may have various
risk-neutral probabilities, Pj, for options with different strike prices. Here we use one risk-neutral
probability, Pj so that there exists some pricing gaps between real transaction prices and benchmark
prices. Second, our model indeed suffers a small downside risk. Based on our model and the reality,
the downside risk comes from the severe deviations from the mean-variance framework, which may
result from market imperfections such as significant transactions costs, restrictions, and margins on
short selling, taxes, non-competitive pricing, and other non-controllable events. Third, owing to the
computational time, it is impossible to continuously calculate the market-implied density in practice.
We therefore estimate the market-implied density every 30 min. There are two reasons that we update
our market-implied distributions every 30 min. First, price fluctuations are quite normal in index
option markets. If we update the distribution too frequently, it may incorporate too much redundant
information. Second, nowadays, as we can gather the information from a more distant place than
ever, the market prices of the index option may have different patterns even in a single day [31],
and that is why Rubinstein [11] updated his model three times a day in his paper. To conduct analyses
of S&P 500 index options markets, some researchers updated average volume every 30 min [32],
some researchers reported autocorrelations for changes in the mean and the standard deviation of risk
neutral density measured over different time intervals, from 1 min to 30 min [33], and some researchers
studied the relationship between information and price change by applying the 30 min interval [34].
Considering the tradeoff between robustness and effectiveness, the update frequency has to be set as
neither too short nor too long. Following the previous literature, we chose 30 min as our model update
frequency. Distinguishing volatility estimating, our method uses past or lag market data to estimate
the whole distribution instead of estimating only one parameter. Therefore, we have a priori estimate
on the distribution, and we then process the out-of-sample test every 30 min. The details are described
in Section 3.

3. Data and Estimated Risk-Neutral Distribution

This section describes how the implied risk-neutral probabilities are obtained from the market
trading data. The market trading data of the S&P 500 index options for both the call and put options
listed in the Chicago Board Options Exchange are collected from 2 January 2008 to 30 December 2014.
Most of previous literature concerning gain-loss ratio used simulated data [35,36]. Few researchers
adopt the real trading data which are low frequency and single variety [37]. Comparing to these
studies, our data are quite rich and varied by using as many as a hundred simultaneously traded
options on the S&P 500 index, all differing in strike price and time to expiration. We employ the
MATLAB optimization procedure to perform the programming problem in Equation (3). We calculate
the risk-neutral probabilities Pj of the S&P 500 index options for 200, 400, and 800 steps.
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3.1. Market-Implied Distributions

The market-implied distributions are estimated every 30 min during the sample period.
We plot two examples of the risk-neutral probabilities distribution of the S&P 500 index options
on 5 August 2011 (maturing in 17 March 2012) and 5 August 2008 (maturing in 21 March 2009) in
Figures 1 and 2, respectively. The distributions estimated from call options are depicted on the left
side, and the distributions estimated from put options are depicted in the right side. These implied
probabilities are plotted using 200, 400, and 800-step binomial trees. As we can see, in Figure 1,
the choice of step of binomial tree does not greatly affect the distribution shapes. However, there is a
sharp distinction between the risk-neutral initial guess (normal distribution) and the market-implied
risk-neutral probability distribution. The risk-neutral implied distribution is more skewed and
leptokurtic. Besides, the left tail is non-smooth, which means the extreme case is more likely to occur in
market-implied distribution. Nowadays, black swan events appear more than ever, such as Snowden
case, fiscal cliff, government shut down and so on. So, the left tail of the distribution tends to be thicker.
Rubinstein [11] also found the same phenomenon too. He argued that the risk-neutral implied posterior
distribution is slightly bimodal and more highly skewed and kurtotic and the bimodality coming from
the lower tail (“crash-o-phobia”) is quite common during the post-crash period. Recently, the market
risk has become a focus of market participants due to spectacular bankruptcies like the Baring’s Bank
or the investment bank Lehman Brothers. As a result, the risk-neutral implied distribution has less
market risk than the normal distribution. Figure 2 plots similar results for the S&P 500 options on
5 August 2008.
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3.2. Market-Implied Option Pricing Bounds

In Section 2, we propose the gain-loss price bounds. The option prices must lie between the
bounds of Equation (5) to avoid a semi-arbitrage opportunity. This section shows how to find the
option price bounds under given L. Before calculating the gain-loss ratio bound, two subjective
decisions have to be made. First is choosing a benchmark model to build up the theoretical prices.
We employ both the Black-Scholes model (log-normal distribution) and the IBT model (market-implied
distribution) to calculate benchmark prices. The other decision is to choose the value of gain-loss ratio,
L, to set up the gain-loss bounds under an incomplete market. We use L= 3, 5, and 10, respectively.

Figure 3 plots the gain-loss price bounds of call and put options using the Black–Scholes model as
the benchmark model under L = 1, 2, . . . , 10 and L = 200, respectively. These options have a time to
maturity of 225 days, a risk-free interest rate of 0.11%, a strike price of $1100, and a volatility of 25.38%.
The values of price bounds are reported in Appendix A Table A1. Different from Figure 3, Figure 4
plots the price bounds of call and put options using the IBT model as a benchmark model. The values
of price bounds are reported in Appendix A Table A2.

As shown in both figures, the smaller the L, the tighter the price bounds. As L is 1, the upper
bounds and lower bounds converge to the benchmark prices, and as L is 200, they converge to
the no-arbitrage bounds. There are two main fundamental ideas that are explored in asset pricing:
model-based pricing and no-arbitrage pricing. Model-based pricing can derive the exact price of the
option and no-arbitrage pricing can derive the range of option price. The gain-loss price bounds
propose a framework to unify the model-based pricing and no-arbitrage pricing by introducing
additional restrictions on gain-loss ratio. It means that if L goes to one (its lower bound), the admissible
set shrinks to model-based pricing containing only the benchmark pricing kernel. If L goes to infinity,
the admissible set grows to no-arbitrage pricing including all pricing kernels consistent with the
absence of arbitrage among the basis assets. Besides, the price bounds get wider for the at-the-money
option because the at-the-money options are the least redundant ones. As shown in Figure 4, we choose
options having a time to maturity of 225 days, which makes the analyses incorporate more price
fluctuations, like deep-out-of-money price. As we can see in Figures 3 and 4, comparing to initial
Black-Scholes gain-loss price bounds, the IBT gain-loss price bounds are narrower for call options
in deep-out-of-money and wider for put options in deep-out-of-money, which shows different price
fluctuations in market-implied distributions and gives investors a total different market trading choice
to avoid risks and get returns. Taking the price of the put option as an example, when the option
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prices are deep-out-of-money, investors will get a lower upper bound if they use Black-Scholes model
as a benchmark model. Consequently, it makes them suffer a great risk generated from the rising
prices of options due to the inaccurate estimate of the gain-loss price bounds. We also see that the
price bounds in Figure 4 are wider than the bounds in Figure 3. The gain-loss price bounds using
market-implied distribution are wider than the bounds of a log-normal distribution. This observation
is consistent with our expectations. Because the market price of options reflects the traders’ opinions
and sentiments, it makes the implied distribution more sensitive than the Black–Scholes’ log-normal
assumption, which makes the implied distribution have less market risk. This phenomenon can also
be explained by the shape differences between the market-implied distributions and the initial guess
in Figures 1 and 2. The market-implied distribution is more skewed and leptokurtic than the normal
distributions. Therefore, the extreme case is more likely to occur in market-implied distribution, and it
results in wider gain-loss bounds.
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Figure 3. The gain-loss price bounds for both call options (a) and put options (b) by using Black-Scholes
model as a benchmark model. The benchmark model is chosen to yield the Black-Scholes price given by
the thick line in black. The thin lines in different colors represent the upper and lower bounds obtained
by ruling out approximate arbitrage. For example, the red thin line represents the price bounds when
gain-loss ratio equals to 2. The orange thin line represents the price bounds when gain-loss ratio equals
to 3 and so on, for other seven thin lines. The dotted line represents the bound obtained by ruling out
pure arbitrage (gain-loss ratio equals to 200).
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Figure 4. The gain-loss price bounds for both call options (a) and put options (b) by using IBT model
as a benchmark model. The benchmark model is chosen to yield the IBT price given by the thick line in
black. The thin lines in different colors represent the upper and lower bounds obtained by ruling out
approximate arbitrage. For example, the red thin line represents the price bounds when gain-loss ratio
equals to 2. The orange thin line represents the price bounds when gain-loss ratio equals to 3 and so on,
for other seven thin lines. The dotted line represents the bound obtained by ruling out pure arbitrage
(gain-loss ratio equals to 200).
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3.3. The Good Deal Trading Strategy

Following the gain-loss bounds in Section 3.2, our trading strategies are selling the options whose
prices are higher than the upper bounds and buying the options whose prices are smaller than the
lower bounds with a complete buy and sell trade transaction cost of 1% [38]. The key parameter in
the Black–Scholes formula, volatility, is updated every 30 min in each trading day. (We use three
models to forecast daily volatility: GARCH, EGARCH, and GJR-GARCH. The choice of volatility
model does not greatly affect the bounds and strategy performances, so we only show the results
of GARCH. Other results can be provided upon request). The market-implied distribution is also
updated or re-estimated at the same frequency. Given the market-implied distribution, the theoretical
price of IBT model can be calculated by Equation (5), and Pj and Sj are obtained from the minimizing
programming in Equation (3). The buying strategy is when the price smaller than the lower bound
implied by L in Equation (5), we buy the option. The selling strategy is when the price is higher than
the upper bound implied by L in Equation (5), we sell the option. The investment period is once the
option purchased or sold, we hold the position to maturity day.

Table 1 shows the annual return of the selling strategy subjected to L = 3, 5, and 10. The benchmark
price is calculated by the Black–Scholes model and the IBT model, respectively. In Table 1, the positive
returns mean that the selling strategy achieves positive returns for both strategies from 2008 to 2014.
Bernardo and Ledoit [7] argued that the attractiveness of an investment opportunity is measured by
the “gain-loss” ratio, which is the expectation of the investment’s positive excess payoffs divided
by the expectation of its negative excess payoffs. When applying our IBT price bounds to the real
world, there is an important thing we need to consider: the trading opportunities. In theory, a bigger
gain-loss ratio causes bigger rates of returns. But a bigger gain-loss ratio means the expectation of the
investment’s positive excess payoffs exceed the expectation of its negative excess payoffs far more,
which appear rarely in the option markets. As a result, there is a tradeoff between the gain-loss ratio and
trading opportunities. We therefore use cumulative returns to show the net returns during the whole
investment period. The cumulative returns are shown in the last row in both Tables 1 and 2. Based on
the empirical results, = 10 has the highest cumulative returns in average. Thus, it is the best in reality.
It means that the IBT model incorporates more market information than the Black-Scholes model which
results in having less market risk and better investment performance. These findings support the
statement that the IBT gain-loss price bounds are more useful than the Black–Scholes gain-loss price
bounds in risk management and return performance. As mentioned above, implied binomial trees
model can provide a computationally effective way to value options even in the presence of violations
of Black-Scholes model’s assumptions. Therefore, our IBT gain-loss price bounds will provide a better
model for option pricing than initial gain-loss pricing bounds.

Table 1. Annual return of the selling strategy subjected to different L using Black–Scholes and IBT as
benchmark models.

Annual Return under BS Bounds Annual Return under IBT Bounds

Year L = 3 L = 5 L = 10 L = 3 L = 5 L = 10
2008 3.41% 4.52% 7.61% 10.06% 13.21% 14.88%
2009 1.45% 1.54% 1.68% 4.50% 4.75% 5.63%
2010 0.55% 1.35% 1.52% 2.66% 3.15% 4.27%
2011 3.75% 4.51% 6.69% 6.99% 6.77% 7.64%
2012 2.75% 3.95% 5.07% 6.71% 5.28% 10.58%
2013 0.19% 0.44% 0.67% 0.71% 0.97% 2.89%
2014 1.41% 2.08% 3.21% 1.71% 3.09% 4.34%

Cumulative returns 14.25% 19.81% 29.38% 38.08% 43.12% 61.68%

Figure 5 shows the return distributions of all selling opportunities under L = 3, 5, and 10 from
2008 to 2014. In Figure 5, as we increase the gain-loss ratio, L, the distribution shifts to the right,
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the returns increase, and the frequency of extreme losses decreases. However, there still exists the
result of some negative returns, which means that this strategy still suffers risk in extreme cases with
very small probabilities.
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Table 2 shows the annual returns of a buying strategy subjected to different L. The benchmark
prices are calculated by the Black–Scholes model and the IBT model, respectively. As shown in Table 2,
there are many blanks in the annual return, which means no trading opportunities are available
from 2008 to 2014. The trading opportunities only exist in the gain-loss bound with L = 3 and L = 5.
No trading opportunity exists in L = 10 for both methods.

Table 2. Annual return of the buying strategy subjected to different L using Black–Scholes and IBT as
benchmark models.

Annual Return under BS Bounds Annual Return under IBT Bounds

Year L = 3 L = 5 L = 3 L = 5
2008 91.19% 51.86% 182.42% 196.10%
2009 −7.09% - 0.58% -
2010 −59.88% - −40.64% -
2011 −44.23% - −23.62% -
2012 −73.01% - −51.93% -
2013 −62.72% −65.38% −55.48% −39.39%
2014 −0.85% - −2.62% -

Cumulative returns −96.03% −47.43% −73.16% 79.47%

Note: - means no trading opportunity exists.

Figure 6 shows the daily returns of a buying strategy subjected to different gain-loss ratios from
2008 to 2014. In Figure 6, on increasing the gain-loss ratio, the distribution shifts to the right, and the
returns increase. However, the trading opportunities decrease sharply. We can also observe that most
of the returns are about −100%, which means that the investor loses all the option premiums in the
buying strategy. In this vein, we cannot confirm that the buying strategy is a good-deal strategy as the
selling strategy dose.
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In addition, there are some concerns when applying IBT price bounds in the real world.
Firstly, the trading strategies in Table 1 are selling the options (put options or call options) whose prices
are higher than the upper bounds and hold the position to the maturity. When applying our IBT price
bounds to the real world, the trading opportunities need to be considered. For instance, if the gain-loss
ratio is identical for various years, the year that the price fluctuates more frequently will have more
trading opportunities, and thus, more returns. As a result, in the year 2008, the market was in more
panic than ever, and the option prices fluctuated more than the following two years, which meant
more trading opportunities and more returns. Besides, during the period of the Financial Crisis in the
year 2008, due to the sheep-flock effect, the deviation of options prices from the benchmark prices
became larger, which made the IBT gain-loss price bounds have more extra returns than the following
two years. Secondly, the market prices of options reflect the traders’ opinions and sentiments, and it
makes the implied distribution more sensitive than the log-normal assumption of Black–Scholes model.
Since IBT bounds are much wider than the BS bounds, some reasonably good option prices based
on BS bounds may not be considered in that way in our IBT bounds. These somewhat good prices
in BS bounds trigger a buying signal for the investors, consequently, causing them to lose money.
For instance, due to more information has been considered in our model, it gives better buying signals
than that of the BS bounds in the year 2009.

In sum, the selling strategy has a good performance on average return and the buying strategy
has fewer trading opportunities but a poor performance on average return. After filtering by the
gain-loss bounds of both strategies, the selling strategy provides a better annual return then the naïve
buy-and-hold strategy. Finally, the gain-loss bounds of IBT method outperform the bounds of the
Black-Scholes method in the sampling period.

4. Conclusions

In this paper, we compute the pricing bounds on the S&P 500 index option based on a
market-implied distribution and a gain-loss restriction. We use the IBT model to refine the
market-implied distribution, which can have less market risk for proceeding in efficient risk
management. The estimated risk-neutral pricing kernel implicitly reflects the investor’s preference
and sentiment, which can reconcile the latest information in the market and reduce the market risk.
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The empirical results show that when we increase the restriction on gain-loss ratio, the return of the
strategies can approximately increase. We also confirm that the gain-loss bounds of the IBT method
outperform the gain-loss bounds of the Black-Scholes model, which means the IBT model incorporates
more market information than the Black-Scholes model; consequently, it results in having less market
risk and better investment performance. Finally, the selling strategy has been evidenced to have a
better performance than the buying strategy.

Several limitations to this study must be mentioned. First, the gain-loss bound we used might
still suffer parameter and model risks. For example, the stochastic process in the stock index involves
jumps that are not directly characterized in our model. We infer the jump probability by the option
data and the implied risk-neutral probability, indirectly. However, the underlying assets in this study
(i.e., S&P 500) are less likely to experience jumps than any of their component equities, and most other
underlying assets such as commodities, currencies, and bonds [11]; how to design an IBT model to
handle jumps; or stochastic volatility would be an interesting agenda and could be left for future
studies. Second, there exists a trade-off between the trading opportunity and rate of return. When we
raise L, the return increases; however, the trading opportunity decreases sharply. When we decrease
L, the return decreases; however, the trading opportunity increases. The optimal trade-off strategy
between absolute return and trading frequency is not explored in this article. Third, as shown in
Figure 5, a small downside risk in the selling strategy still suffers, which cannot be mitigated or
eliminated by the IBT gain-loss bound. To sum up, the IBT model still suffers from misspecification
error but is superior to the BS model, while the no-arbitrary pricing model is robust in asset pricing
but is too imprecise to be economically interesting. In this paper, the IBT gain-loss price bounds can
greatly reduce the weaknesses of IBT model and no-arbitrary pricing model.

On the suggestion for further works, we propose that the objective function in Equation (3)
could be revised. For example, we can minimize the difference of an option’s implied volatility of
Black-Scholes model instead of minimizing the distance of the probability distributions. The implied
volatility can avoid the disturbances of size effects of option prices resulting from different exercise
prices and time to maturities. Finally, a subjective method to decide the ceiling value of L is also
worthwhile for further research. The problem due to the arbitrary chosen ceiling value of L could be
left for future studies.
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Appendix

The appendix illustrates the detailed number of price bound plotted in Figures 3 and 4. We only
show the call option price bounds, and the tables of put option can be provided upon request.
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Table A1. Call Option Price Bounds on 5 August 2011 using Black-Scholes as benchmark model.

S0 Upper Bound

L 800 825 850 875 900 925 950 975 1000 1025 1050 1075 1100 1125 1150 1175 1200

1 4.37 6.42 9.12 12.43 16.51 21.50 27.52 34.66 42.93 52.40 63.09 74.96 87.93 102.00 117.13 133.25 150.36
2 7.92 11.25 15.46 20.47 26.29 33.04 40.75 49.46 59.14 69.80 81.41 93.93 107.28 121.46 136.43 152.16 168.65
3 10.91 15.15 20.32 26.36 33.27 41.00 49.62 59.13 69.49 80.70 92.74 105.55 119.08 133.31 148.22 163.78 180.00
8 21.38 28.06 35.59 43.89 52.95 62.75 73.25 84.41 96.18 108.54 121.45 134.90 148.84 163.26 178.15 193.50 209.31
9 22.94 29.92 37.72 46.28 55.54 65.54 76.22 87.53 99.44 111.90 124.92 138.44 152.42 166.88 181.79 197.13 212.92
10 24.39 31.62 39.68 48.45 57.92 68.08 78.90 90.35 102.36 114.93 128.02 141.60 155.64 170.12 185.05 200.39 216.17

200 81.97 94.18 106.82 119.75 132.98 146.53 160.39 174.53 188.96 203.64 218.57 233.74 249.13 264.74 280.56 296.58 312.80
Inf 800.00 825.00 850.00 875.00 900.00 925.00 950.00 975.00 1000.00 1025.00 1050.00 1075.00 1100.00 1125.00 1150.00 1175.00 1200.00

S0 S0

L 825 850 875 900 925 950 975 1000 1025 1050 1075 1100 1125 1150 1175 1200

1 4.37 6.42 9.12 12.43 16.51 21.50 27.52 34.66 42.93 52.40 63.09 74.96 87.93 102.00 117.13 133.25 150.36
2 2.32 3.49 5.07 7.08 9.70 13.07 17.39 22.84 29.52 37.61 47.21 58.36 70.99 85.11 100.66 117.49 135.58
3 1.58 2.40 3.51 4.96 6.90 9.45 12.85 17.29 22.94 30.08 38.92 49.54 61.92 76.09 91.95 109.31 128.07
8 0.61 0.94 1.39 1.99 2.84 4.00 5.67 8.02 11.30 16.01 22.62 31.62 43.29 57.77 74.81 93.87 114.54
9 0.54 0.84 1.24 1.78 2.54 3.58 5.11 7.25 10.29 14.71 21.03 29.80 41.37 55.91 73.13 92.42 113.35
10 0.49 0.75 1.12 1.61 2.30 3.25 4.64 6.62 9.45 13.62 19.68 28.23 39.71 54.31 71.70 91.20 112.35

200 0.02 0.04 0.06 0.08 0.12 0.17 0.26 0.38 0.58 0.95 1.71 3.63 10.90 29.28 52.60 76.85 101.49
-Inf 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.75 25.75 50.75 75.75 100.75

S0 Upper Bound

L 1225 1250 1275 1300 1325 1350 1375 1400 1425 1450 1475 1500 1525 1550 1575 1600

1 168.37 187.22 206.80 227.06 247.90 269.26 291.15 313.49 336.25 359.35 382.77 406.45 430.34 454.40 478.64 503.01
2 185.85 203.74 222.26 241.38 261.05 281.23 301.96 323.18 344.87 366.99 389.51 412.38 435.54 458.96 482.65 506.56
3 196.84 214.28 232.28 250.83 269.88 289.42 309.48 330.03 351.07 372.55 394.46 416.73 439.34 462.28 485.54 509.07
8 225.57 242.27 259.39 276.95 294.90 313.25 332.03 351.23 370.80 390.77 411.16 431.98 453.19 474.78 496.75 519.08
9 229.14 245.80 262.87 280.34 298.19 316.44 335.10 354.14 373.56 393.38 413.62 434.28 455.33 476.76 498.57 520.72
10 232.37 248.99 266.00 283.40 301.19 319.34 337.89 356.79 376.09 395.78 415.90 436.42 457.33 478.62 500.28 522.27

200 329.21 345.83 362.62 379.59 396.73 414.04 431.55 449.21 467.00 484.96 503.08 521.35 539.78 558.32 577.02 595.99
Inf 1225.00 1250.00 1275.00 1300.00 1325.00 1350.00 1375.00 1400.00 1425.00 1450.00 1475.00 1500.00 1525.00 1550.00 1575.00 1600.00

S0 Lower Bound

L 1225 1250 1275 1300 1325 1350 1375 1400 1425 1450 1475 1500 1525 1550 1575 1600

1 168.37 187.22 206.80 227.06 247.90 269.26 291.15 313.49 336.25 359.35 382.77 406.45 430.34 454.40 478.64 503.01
2 154.74 174.85 195.73 217.30 239.42 261.96 284.95 308.29 331.93 355.81 379.90 404.16 428.56 453.06 477.65 502.32
3 147.98 168.89 190.51 212.80 235.59 258.72 282.22 306.00 330.02 354.23 378.59 403.07 427.66 452.31 477.03 501.81
8 136.35 159.04 182.27 205.91 229.88 254.03 278.36 302.84 327.43 352.11 376.85 401.64 426.48 451.34 476.23 501.15
9 135.37 158.23 181.62 205.38 229.45 253.68 278.08 302.62 327.25 351.96 376.73 401.54 426.40 451.28 476.18 501.10
10 134.55 157.57 181.09 204.95 229.10 253.40 277.86 302.44 327.10 351.84 376.63 401.47 426.33 451.22 476.14 501.07

200 126.27 151.13 176.04 200.97 225.92 250.88 275.86 300.83 325.81 350.80 375.79 400.78 425.78 450.77 475.76 500.76
-Inf 125.75 150.75 175.75 200.75 225.75 250.75 275.75 300.75 325.75 350.75 375.75 400.75 425.75 450.75 475.75 500.75

* The no-arbitrage upper/lower bounds are S̃0 and max(S̃0 − e−rtK, 0) for call option when threshold L = ∞.
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Table A2. Call Option Price Bounds on 5 August 2011 using IBT as benchmark model.

S0 Upper Bound

L 800 825 850 875 900 925 950 975 1000 1025 1050 1075 1100 1125 1150 1175 1200

1 0.15 0.44 1.20 2.84 5.74 10.21 16.43 24.41 34.09 45.35 58.20 72.38 87.78 104.43 122.03 140.60 159.92
2 0.30 0.86 2.29 5.20 9.96 16.68 25.33 35.74 47.58 60.80 75.23 90.68 107.06 124.40 142.46 161.25 180.63
3 0.45 1.26 3.29 7.18 13.33 21.55 31.64 43.30 56.41 70.64 85.92 102.09 119.07 136.86 155.28 174.33 193.90
8 1.15 3.09 7.23 14.48 24.19 35.88 49.25 63.87 79.62 96.10 113.33 131.20 149.64 168.65 188.09 207.98 228.19
9 1.29 3.42 7.90 15.56 25.70 37.72 51.60 66.40 82.44 99.25 116.75 134.83 153.44 172.59 192.16 212.14 232.46
10 1.42 3.74 8.56 16.54 27.05 39.52 53.66 68.83 84.93 101.99 119.72 138.00 156.77 176.05 195.71 215.77 236.14

200 16.08 26.26 40.19 56.78 74.11 93.21 112.69 132.54 153.10 174.27 195.70 217.33 239.13 261.11 283.23 305.48 327.84
Inf 800.00 825.00 850.00 875.00 900.00 925.00 950.00 975.00 1000.00 1025.00 1050.00 1075.00 1100.00 1125.00 1150.00 1175.00 1200.00

S0 Lower Bound

L 800 825 850 875 900 925 950 975 1000 1025 1050 1075 1100 1125 1150 1175 1200

1 0.15 0.44 1.20 2.84 5.74 10.21 16.43 24.41 34.09 45.35 58.20 72.38 87.78 104.43 122.03 140.60 159.92
2 0.08 0.22 0.61 1.49 3.13 5.86 9.90 15.56 22.92 32.06 43.16 56.00 70.44 86.59 104.02 122.70 142.35
3 0.05 0.15 0.41 1.01 2.15 4.11 7.16 11.60 17.60 25.46 35.38 47.38 61.29 77.21 94.66 113.59 133.61
8 0.02 0.06 0.16 0.39 0.84 1.65 3.03 5.20 8.41 13.12 20.21 29.90 42.54 58.22 76.23 96.26 117.55
9 0.02 0.05 0.14 0.34 0.75 1.47 2.71 4.70 7.61 12.00 18.71 28.22 40.56 56.36 74.42 94.64 116.11
10 0.02 0.04 0.12 0.31 0.67 1.33 2.45 4.30 6.96 11.07 17.46 26.67 38.90 54.67 72.91 93.31 114.93

200 0.00 0.00 0.01 0.02 0.03 0.07 0.13 0.24 0.43 0.68 1.40 3.61 10.10 29.62 52.58 77.08 101.64
-Inf 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.75 25.75 50.75 75.75 100.75

S0 Upper Bound

L 1225 1250 1275 1300 1325 1350 1375 1400 1425 1450 1475 1500 1525 1550 1575 1600

1 179.95 200.52 221.61 243.11 265.02 287.28 309.84 332.68 355.78 379.07 402.53 426.14 449.89 473.74 497.69 521.72
2 200.56 220.95 241.78 262.97 284.50 306.36 328.49 350.89 373.53 396.36 419.35 442.50 465.80 489.21 512.72 536.31
3 213.93 234.35 255.16 276.30 297.76 319.51 341.50 363.71 386.14 408.75 431.53 454.45 477.51 500.69 523.94 547.28
8 248.81 269.64 290.73 312.00 333.50 355.20 377.04 399.14 421.39 443.78 466.30 488.93 511.65 534.45 557.35 580.32
9 253.08 273.93 295.04 316.36 337.90 359.64 381.57 403.67 425.94 448.33 470.83 493.40 516.12 538.90 561.78 584.73
10 256.81 277.73 298.90 320.28 341.88 363.67 385.64 407.77 430.04 452.40 474.87 497.46 520.15 542.93 565.80 588.74

200 350.31 372.84 395.46 418.13 440.86 463.64 486.46 509.33 532.23 555.16 578.12 601.11 624.14 647.19 670.27 693.37
Inf 1225.00 1250.00 1275.00 1300.00 1325.00 1350.00 1375.00 1400.00 1425.00 1450.00 1475.00 1500.00 1525.00 1550.00 1575.00 1600.00

S0 Lower Bound

L 1225 1250 1275 1300 1325 1350 1375 1400 1425 1450 1475 1500 1525 1550 1575 1600

1 179.95 200.52 221.61 243.11 265.02 287.28 309.84 332.68 355.78 379.07 402.53 426.14 449.89 473.74 497.69 521.72
2 162.86 183.98 205.69 227.81 250.35 273.24 296.40 319.82 343.46 367.26 391.21 415.28 439.47 463.74 488.08 512.48
3 154.55 176.14 198.31 220.88 243.85 267.14 290.66 314.41 338.36 362.44 386.64 410.94 435.34 459.81 484.32 508.89
8 139.86 162.74 186.13 209.75 233.66 257.78 282.05 306.46 330.96 355.53 380.16 404.85 429.59 454.36 479.16 503.97
9 138.58 161.60 185.12 208.87 232.87 257.07 281.39 305.86 330.42 355.03 379.69 404.41 429.18 453.97 478.79 503.62
10 137.53 160.67 184.28 208.14 232.22 256.48 280.86 305.37 329.98 354.62 379.31 404.05 428.85 453.66 478.50 503.35

200 126.48 151.31 176.23 201.17 226.10 251.06 276.02 300.99 325.97 350.95 375.93 400.92 425.90 450.90 475.89 500.88
-Inf 125.75 150.75 175.75 200.75 225.75 250.75 275.75 300.75 325.75 350.75 375.75 400.75 425.75 450.75 475.75 500.75

* The no-arbitrage upper/lower bounds are S̃0 and max(S̃0 − e−rtK, 0) for call option when threshold L = ∞.
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