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Abstract: In a constantly changing market environment, it is a challenge to construct a sustainable
portfolio. One cannot use too long or too short training data to select the right portfolio of investments.
When analyzing ten types of recent (up to April 2018) extremely high-dimensional time series from
automated trading domains, it was discovered that there is no a priori ‘optimal’ length of training
history that would fit all investment tasks. The optimal history length depends of the specificity
of the data and varies with time. This statement was also confirmed by the analysis of dozens of
multi-dimensional synthetic time series data generated by excitable medium models frequently
considered in studies of chaos. An algorithm for determining the optimal length of training history
to produce a sustainable portfolio is proposed. Monitoring the size of the learning data can be useful
in data mining tasks used in the analysis of sustainability in other research disciplines.

Keywords: sustainable portfolio; length of training data; automated trading

1. Introduction

Changes in social, economic, technical, and political environments are everywhere in today’s
rapidly developing world. Therefore, one of the requirements for modern decision-making systems is
the ability to withstand sudden changes. Terms related to sustainability such as ‘maintain’, ‘support’,
and ‘endure’ have become very important in such circumstances. Sustainability issues influence
business in all industrial sectors and parts of the world, especially in marketing and management [1,2].

Financial portfolio management greatly affects industry, social life, and politics. The nature of
multidimensional time series is determined by the interaction of millions of economic and financial
units. Many unforeseen external consequences of political, environmental, meteorological, and natural
disaster events also affect historical time series.

In the portfolio construction problem, people seek to allocate assets (stocks, bonds) in such a
manner that it would maximize return given a fixed level of risk or reduce risk given a desired return.
Currently, different investors use diverse algorithms for portfolio design. In computerized approaches,
instead of assets, investors use automated trading strategies (ATS) as inputs for their portfolios [3,4].

There are several dozen formulations of what makes an optimal financial portfolio.
Conventionally, a financial portfolio of assets is developed. Trading strategy can have a long, short,
or flat position at any time. The position can change at any time during a day and sometimes even
several times during the day. Typically, we record profit or loss (PnL) at the end of the trading day
when the exchange closes. PnL is the profit difference from the same time in the previous business day.
In US terms, that is at 4:00 p.m. Eastern Time. We use mark-to-market profit calculation methodology
where we include all unrealized profits in our PnL.

In algorithmic trading, portfolio construction seeks to allocate money to different ATSs so that the
resulting risk reward ratio is optimized. The biggest challenge in any portfolio construction is that
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portfolio results in the future or in the unseen data are often worse than was expected from historical
results. This problem is even more acute in algorithmic trading as there is a far greater number of
ATS than assets being traded by ATS, and classic portfolio construction methods are not suitable for
this task.

This paper deals with the selection of a subset of portfolio inputs from a large investment universe.
In the second section of the paper we present definitions and terminology used in the portfolio selection
task and a literature review. In the third section we analyze ten types of recent high-dimensional
financial time series with the aim of discovering which length of the most recent historical data is best to
use for optimal ATSs selection. We discovered that there is no a priori fixed ‘optimal’ length of training
history for all portfolio design tasks. It varies between two and 24 months. The most profitable training
data length (TDL) can be estimated empirically by examining the prior successes of a set of potentially
lucrative lengths. Consequently, we suggested and verified a simple algorithm for determining the
optimal length of training history to produce a sustainable portfolio. The varying training data length
phenomenon was confirmed in the third section’s analysis of a dozen multi-dimensional synthetic
time series generated by an excitable medium model, frequently considered in studies of chaos.

2. Terminology and the Literature Review

The term “portfolio” refers to any combination of financial assets or ATSs. The idea is to put such
ATS together so that if one ATS generates a loss during a day there will be other ATS that generates
a profit and will compensate the loss of the first one. The main objective of developing a financial

portfolio is to determine the N investment proportions, w1, . . . , wN, where the sum
N
∑

j=1
wj = 1, and all

components, wj, are positive. Denote r = [r1, r2, . . . , rN], a N-dimensional vector of returns (profit or
losses) of N investment assets or ATSs. Thus the portfolio profit is expressed as the weighted sum,

P(r,w) =
N
∑

j=1
wjrj. If L vectors, r, are used as a training set, one can seek for the vector’s w, optimal

proportions, where profit and risk are taken into account. We consider the problem of portfolio selection
within the classical Markowitz mean-variance framework. To find the investment proportions, w1,
. . . , wN, we have to maximize selected performance measure of the portfolio. We used standard
mean-variance quality criterion (MVQC) [5–7]

MVQC(r) = mean (P(r))/stdev (P(r)) (1)

where mean and stdev denote a mean and a standard deviation or probability distribution of the returns.
In criterion (1) the profit and risk are taken into account. To evaluate mean and stdev one needs

to know N-dimensional mean vector, and N × N-dimensional covariance matrix composed of N
variances and N × (N − 1)/2 correlations. Criterion (1) is good when probability distribution of
portfolio sums, P(r,w), is Gaussian and one knows the exact values of the means, variances, and
correlations. Moreover, these values must not change in time. These requirements are very restrictive.
In spite of sub-optimality, after more than half a century since the seminal work by Markowitz [5],
the mean-variance framework remains prevalent and represents the most broadly chosen approach in
both industry and academia for portfolio selection (see review [8]).

To mitigate the restrictive requirements, thousands of modifications of the mean/variance rule
appear in the literature [8–10]. A number of papers were aimed to use other criteria than mean/variance
ratio, such as requirements for maximal size of the portfolio, minimum position size, transaction costs,
preferences over assets, management costs, etc. Methods were created to take into account the skewness
and kurtosis of the asset distribution [9]. In an attempt to take into account the variability of data, a
number of papers have been devoted to efficient managing of temporal information [11,12]. Use of
meta-heuristics for increasing the speed of optimization methods of ratio (1) in high-dimensional
situations have been suggested as well [10].
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In analysis of sustainability it is very important to consider learning set size—portfolio
dimensionality effects [13,14]. In a previous paper [14], an expected value of the mean sample
MVQC criterion was investigated in an asymptotic where both the learning set size, L, and portfolio
dimensionality, N, were increasing, however, ratio L/N does remain constant. This approach allowed
for the obtaining of an explicit asymptotic equation to calculate the out-of-sample MVQC criterion

MVQC out−of−sample → δ/
√

Tmean × Tvar. (2)

where δ is a limiting value of ratio (1) when L tends to infinity, however N is fixed;

Tmean = 1 + N/(L × δ2), (3)

Tvar = 1 + N/(L − N). (4)

Term (3) is responsible for the inexact estimation of the mean vector of returns and term for
inexact estimation of correlations. Theoretical and experimental analysis showed [14]:

- Estimation of variances asymptotically does not affect the MVQC out−of−sample value;

- if L < N, we cannot estimate CM.

Term (3) demonstrates that estimation of several thousands of components of the mean vector
makes the learning set-based portfolio ineffective. Suppose, N = 6000, δ = 0.5, and L→∞. If L = 256,
use of term (3) leads to MVQC = 0.052. An extraordinary difference between these values indicates
that in an inexact estimation the mean return values reduce the MVQC criterion almost ten times!

Thus, for situations where learning set size is small and dimensionality is high, the classical
criterion (1) becomes useless. A number of simplifications for estimation of the covariance matrix have
been suggested: regularization, subset resampling, splitting the portfolio inputs matrix into a lot of
parts, etc. [15–18].

A limiting case for simplification of the portfolio construction is a non-trainable 1/N rule where all
N portfolio inputs are weighted equally. In many cases, the 1/N strategy can become the most effective
one [19]. In this rule, the portfolio optimization (training) consists of selecting a subset of assets or the
trading strategies from an investment universe with respect to a given portfolio performance criterion.
Nowadays, the selection problem becomes very important since the number of trading strategies and
stocks listed on stock markets are continuously increasing [20]. A number of algorithms and criteria
for stock screening and ranking are proposed in the literature [21–23].

An important factor in the application of stock screening and ranking algorithms is the size of the
data used to estimate numerical effectiveness values. In a previous paper [24] the authors examined the
financial portfolio inputs’ random selection optimization model. We derived an equation to calculate
an accuracy of the out-of-sample MVQC criterion value in dependence of the number of potential
asset number of portfolio inputs, N0, the desirable portfolio size, N (N0>>N0), the sample size L used
to estimate MVQC criterion and complexity of the random search procedure (a number of times, m,
the portfolio subsets were generated randomly). It was demonstrated that with an increase in portfolio
complexity and complexity of optimization procedure, m, we can observe the over-fitting phenomena
in the selection procedure. For this reason, often one employs simple selection rules such as selection
of the individually most effective inputs [20,23,25,26].

Informative learning set size is closely related to environment changes. If environmental changes
are frequent, only short historical data segments turn out to be reliable. Hence, the small sample
problems are very important in sustainability analysis. To explore and understand the almost chaotic
ceaselessly changing environments in financial portfolio management it is necessary to comprehend
training data length/complexity relations of portfolio design rules.
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To the best of our knowledge, learning set size problems arising in chaotically changing financial
data were not considered in the literature. As an exception we can mention an attempt to determine
training history length using a relatively small number of potential ATSs (N0 = 169) [15]. It was found
that the length should be rather short, 500–600 business days. To cognize sustainability issues one
needs to analyze regularities of financial chaos by considering not a single, but a wide diversity of
real world data sets. In order to better understand stability problems, it is also necessary to use ideas
from chaos theory [27,28], e.g. explore synthetic purely chaotic multi-dimensional time series in which
external unforeseen events do not affect the created time series.

3. The Methodology

Our research is pointed towards designing a sustainable portfolio management strategy that can
endure for a long time in the chaotic, ceaselessly changing environment. An important step in our
research is to find the training data length to be used to design the financial portfolio. Obviously,
it depends on the frequency and magnitude of environmental changes. In Section 2 we reviewed
our earlier analytical results concerning the influence of learning set size on mean-variance principle
designed portfolio [14] and random search based best input selection [24]. These results were obtained
for static situations. For chaotically hanging environments, however, we have no means to perform
analytic investigations. For that reason, we need to perform experiments with a large number of
diverse types of real world financial data stored in financial databases. In order to expand sustainability
issues to wider research disciplines a part of the experiments we performed with synthetic chaotic data.

3.1. Financial Data Used

Automated trading is when a human writes a computer algorithm that can trade in financial
markets automatically, by using predefined rules. These algorithms are called Automated Trading
Strategies (ATS). For example, ATS can buy and sell Apple stock based on stock price changes.
Individual ATS on a given day can make or lose money, though in the long term, the results are
positive. The aim is to put several ATS in a sustainable portfolio in such a way that if one ATS loses
there will be another to make money on that day. The more independent ATS we put together, the
better the result. The problem is to find independent, sustainable, and consistent ATS that do not
change their behavior in the future.

Given ATS, one can execute computer algorithms in simulations and see how well the ATS would
have performed on historical data. The results of this simulation can be recorded, analyzed, and used
to design a portfolio composed of several ATS. Typically, one records daily profit and loss (PnL) of
ATS. That is how much money ATS made or lost during that day. We investigated the daily series of
PnLs of fifteen years, from 2003 to 2018. This data was given to us by trading firm that uses these ATS
in practice.

PnL is the amount of US dollars made or loss during a day. ATS PnL is a series of daily profit and
losses from 2003 to 2018. Portfolio PnL refers to a sum of ATS PnLs—every day, we sum profits and
losses from all ATS in the portfolio and that constitutes portfolio PnL for one day.

ATS can be very different from each other. There are many different rules that can be put into
a computer algorithm. Our data consisted of mainly 3 types of ATS: Mean reversion (MR), Trend
following (TF), and Event-based Trend (ET). In automated trading often one uses ATS strategies where
strategies differ in the investment risk levels that lead to frequent refusal from investments. In the case
of refusal, the next day’s return is equal to zero (see Figure 1a). For more details about the data see
Appendix A.
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3.2. Preparation of the Financial Data and the Experiments’ Design

We consider the algorithmic trading where the number of ATS (a maximal portfolio
dimensionality) can be as high as N0 = 258,000. In such situations we are obliged to reduce the
dimensionality of the portfolio inputs drastically. At the same time, we have to use only the simplest,
the 1/N portfolio rule.

In the investigation of the dynamic portfolio selection scheme, we assigned two years history
data allocated for “comparison of diverse lengths of training data”. The next month is assigned for
out of sample testing, i.e., for calculating the returns of each day. We aimed to determine the best
training data length and to select Nportfolio ATS for the 1/N portfolio design. In the experiments we
moved stepwise the 25 month data segment 1 month forwards until the data history end. During each
single step we estimated the MVQC ratio for all N0 ATSs M = 6 times with 2, 4, 9, 12, 18, and 24 month
training data histories. Then for each training set size we selected Nportfolio = 10 best trading strategies
and used them for calculation profits or losses for all business days of the test month.

Procedure “select the individually best ATSs” is the simplest and fastest one among a many
selection rules used in data mining tasks. One of heuristic procedures employed in the portfolio selection
is a Comgen rule [15,29] where the best ATS, say the j-th one, is selected first, then all N0 (N0 − 1)/2
pairs containing the j-th ATS are compared and then the best pair is selected. The selection process goes
on until Nportfolio ATS are selected. To evaluate performance of the set Nportfolio trading strategies in the
“individual selection” procedure we have to estimate Nportfolio means and Nportfolio standard deviations
of the returns. A simple matrix algebra shows that in the Comgen procedure it is additionally necessary
to estimate N0 × (N0 − 1)/2 correlation coefficients. Therefore, the Comgen procedure is more complex
and requires longer training set sizes. Theoretical and empirical investigations [24] show that in a small
sample size situation simpler procedures like “select individually the best ATS” are more preferable
when sample size is small (two months data, 41 days).

Preliminary experiments showed that often even four month training data can be too long for
portfolio selection in frequently changing situations. Often the ATS selection based on two months of
data outperformed the portfolio based on four months of data. It is a frustrating truth in the situation
when we have 15 years of historical financial data at our disposal. These conclusions prompted us to
devise a new approach to employ lengthy historical data.

In an attempt to use the information contained in the older data, we divided the 15 years of data
sets into two parts. The first part of the data of each dataset (up to 1 January 2011) was assigned for
preliminary subset selection (PSS) used for formation of N1-dimensional subset of the most profitable
trading strategies (typically N1<<N0). The conventional way to select N1 best trading strategies is to
use the first part of the data to estimate the MVQC ratio of all N0 ATS. Then one selects N1 ATS with
the highest MVQC ratio values. This procedure we will name PSS1.
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Our novel stepwise procedure (PSS2) is based on an assumption that due to unexpected
environmental changes, different ATS should be specific to be profitable at various short time
intervals. Contrary, the procedure PSS1 selects nonspecific (indistinct) trading strategies. The procedure
PSS2, however, is more complex. Having 8 years (96 months) of historical data we considered 95
two month-length time series sections to estimate the MVQC ratio of N0 trading strategies and select
n1 = 70 best of them to be included into subset PSS2. We will have to repeat the selection process
many times. Therefore, procedure PSS2 is slower. In columns “Dimension” and “Reduced dim” of
Appendix A, Table A1 we present values of N0 and N1 for ten data sets used in the experiments.
For each data set the number N1 was determined individually using the procedure PP2.

In the experiments with ten data sets we observed high influence of environmental changes on the
“optimal” training history time. Therefore, the investor-practitioner is obliged to find most effective
training period. Possible algorithms will be presented in the subsequent section.

4. The Analysis of Financial Time Series

To make conclusions authoritative, we prepared ten brand new (until April 2018) large scale sets
of the financial data. In the experiments, we examined the successes of M = 6 portfolios based on
the training data of six different lengths (2, 4, 9, 12, 18 and 24 months). We fixed the dimension of
the portfolio, Nportfolio, a priori. The value Nportfolio = 10 was set up after a large number of previous
(2015–2016 years) experiments performed with other sets of financial ATS data.

Figure 2a,b show six curves: “variation of the cumulative sums of portfolio PnL in time”, CS1,
CS2, ..., CS6. Each of them corresponds to a diverse length of the training data. Curves in Figure 2a
correspond to experiment when the best Nportfolio ATS were selected out of N0 = 44,068 original trading
strategies of 44,068–D (dimensional) data set D44. We see that the best learning set size was 2 months
(curve 2 in the figure). Training set sizes of 12, 18, and 24 months in length resulted in the worst
results. Better portfolios were obtained in the situation when, for the final decision making, we selected
dynamically from the pool PSS2 of 3533 specific trading strategies (Figure 1b). The two-month length
training set was among the best up to the year 2017. In this time the four months training history was
unsuccessful. One may guess that the third and fourth backward shifted training months are harmful
for this data. In Figure 1b we see, however, that the 9–18 backward shifted training months were very
useful during the year 2017. These observations lead to the conclusion that the most effective duration
of training depends on time. This conclusion was confirmed in experiments with the rest of the data
sets. Portfolio performances with nonspecific ATSs (pool PSS1) were similar to that as results without
the primary ATS selection.

To design a profitable portfolio for each trading day, we need to know the optimal length of the
training data. To fulfill this requirement for the z-th day we can analyze curves CS1, CS2, . . . , CS6 up to
the z-th day and decide which training data length was the most profitable during the past time period.
To estimate the desirable TDL, we chose the simplest method: we smoothed the return curves with
period Smoothing days, and selected the length corresponding to the highest return value. In practice,
however, the best smoothing interval values are unknown. Hence, the investor is forced to examine
carefully a history of past successes (the set of different smoothing values in the previous history up
to the z-th day). In Figure 2a,b, we depicted a variation of cumulative sums of the 10-dimensional
portfolio returns, when the length of the learning data was determined dynamically according to the
rule described above (bold dark yellow doted curves). We see, in this example the dynamics TSL
determination outperforms remaining six curves obtained for the six definite values of TDL. Thus, that
the novel simple method works. Figure 2a,b demonstrates that the preliminary reduction of data D44
dimensionality performed on the basis of 2003–2010 year data lead to a visible increase in the final
portfolio performance.
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Analyzing the remaining nine arrays of financial data, we found frequent situations in which the
two months’ history used to select the set of the most productive ten ATS were the best. Nevertheless,
for some financial data, we observed a reverse scheme: the most profitable were the long histories of
the training data. In Figure 3a,b we present such example (257,769-dimensional data set D258). Like in
data set (D44) the dimensional reduction method PSS2 was profitable: the portfolio returns increased
more than two times. The use of dynamically changing learning data is superior to portfolios that have
been trained by 18 or 24 month periods. Data for 4 months of training was again less successful than
the data for two months. However, in both cases it was useful to increase the length of the training
data further.
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Figure 3a shows that in period after June 2015 the dynamic control of the TDL stopped being
effective. Recommendation: after observing such a phenomenon in the history of past successes, the
investor must choose another, more profitable data set of financial time series immediately. In this
example the choice is simple: after the 2016, one needs to use the data set D258 with specific 4023
trading strategies (see Figure 3b).



Sustainability 2018, 10, 1911 8 of 14

Due to the random nature of the data, the cumulative sum of the dynamically controlled portfolio
returns, increases in a wavy manner. In the Appendix A, Table A1 we present cumulative sums of the
Nportfolio-dimensional portfolio at its maximum and at the last day of the inspected data. It is done
for the original N0-dimensional data and for the PSS2 reduced dimensionality data. In 50% of cases
primary dimensionality reduction with procedure PSS2 improved the 10-D portfolio selected directly
from original N0-dimensional data (an interested reader can find figures similar to Figures 2 and 3 in a
web page of Vilnius university: https://mif.vu.lt/aistis/2018/sustainability).

We tested the procedure PSS1 to reduce primary dimensionality of the data as well. In all cases,
except D56 data, the method PSS2 outperformed method PSS1. For data D56 the PSS1 method resulted
in cumulative sums of the portfolio returns 60/52 (60,000 at the maximum, and 52,000 for the last day
of the data). It means that the novel stepwise dimensionality reduction procedure, PSS2, is worth
investigating further. The results obtained advocate that efficacy of the dimensionality reduction
algorithm, PSS2, depends on the data. Therefore, instead of the two-month data interval used to
evaluate and select the N1 best trading strategies at each step, shorter or longer time intervals can be
used. Possibly, the go-forwards steps ought to be shorter than one month. Diverse values of N1 should
be investigated. A problem of improvement of the accuracy of training data length determination
procedure is important for future research. One needs to examine the larger number, M, of training
data sizes, L, and the smooth empirical curves according to the L direction.

5. The Analysis of Synthetic Chaotic Multi-Dimensional Time Series

5.1. Generation of Synthetic Chaotic Multi-Dimensional Time Series

To understand sustainability problems better, varying training set’s length phenomenon was
used together with the excitable media model to generate and analyze a number of multi-dimensional
synthetic time series data sets. In financial markets, thousands, if not millions, of active agents interact
with each other. A popular model to simulate some chaotic phenomena is wave propagation in excitable
media [30]; it is the general approach. It has been used in the analysis of the wave propagation in
chemistry, biology, medicine, epidemiology, quantum physics, and astrophysics. The present model’s
version was suggested in a previous paper [31].

In a two-dimensional multi-group model, we have a large amount of agents (nodes of the excitable
media) where each agent can be excited by its neighbor in the group. After starting excitation (e.g.,
appearance of some important novel information, the investment, etc.) and small delay, the central
agent of the group forwards its excitation signal to neighbor agents of the group (see Figure 4a
illustration for two-dimensional hexagonal grid). The signal transmission delay is increased by the
signal power. The delay and power of excitations to adjacent companion nodes depend on the sum of
the strength of the node’s excitation. After transmitting a signal to its neighbors, each node (Agent)
has to take a rest (the refractory period). After this period, the excitation signals are transferred to
further nodes. In this way the excitation signal can start travel backwards as well. Depending on the
model parameters (excitation signal threshold, delay, refractory period, a number of neighbors to be
excited by the single node, excitation signal strengths, etc.) the excitation signal patterns can be circular,
regular, or chaotic. In Figure 1b we see signal propagation pattern in the hexagonal excitable media
model composed of 93,457 nodes, after 456 iterations for a certain set of the model parameters that
ensure the regular signal propagation and a symmetric in six directions ornamentation. The excited
nodes are depicted in black. Nodes in the refractory period are depicted in green. Looking at the
Figure 4b from a distance we can observe replicating geometric patterns (fractals). Observing the
small areas of the large agent excitation pattern, however, we see only chaotic behaviors (Figure 4c,d).
This observation supports Peters [28] affirmation: most natural systems are characterized by the local
randomness and global determinism.

https://mif.vu.lt/aistis/2018/sustainability
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Independence of the model parameters and the waves of signal propagation can cease at the very
beginning, after a moderate number of time steps, or after overstepping the hexagonal borders of
the grid. To avoid the ceasing of the excitation signals in our “chaos generating model” we created a
number of separate groups (grids of nodes), and introduced a restricted level of cooperation between
them. If a sum of node’s excitations in a defined subgroup of nodes (200 adjacent nodes) goes above
a certain threshold, the agents of this group can transmit the excitation signal to the group in which
excitation signals had almost ceased. In this way, the group model mimics a team at work. If the
parameters of such a team are chosen properly, the excitation signals do not fade away. Inside each
group we formed eleven large nonintersecting subgroups of adjacent nodes (agents). Sums of the
excitations of the agents in the single node group were used as the components of the multidimensional
time series, named A. Differences between two adjacent values composed time series B.

For convenience we name these differences as “PnL” and the time moments as “business days”.
Like in above analysis or real world data, in analysis of the synthetic time series we introduced
automatic trading strategies where strategies differ in the investment risk levels that lead to frequent
refusal from investments. In the case of refusal, the next day’s return is equal to zero. This type of the
time series is named as series C. In Figure 1b we show the single synthetic time series, C, measured
during 60 time moments. The return graph is very similar to authentic returns graphs obtained in real
automatic trading systems (see e.g., Figure 1b and Figure 1 in [32]).

5.2. Experimental Results

The main difficulty in creating synthetic datasets is often bifurcations, which can lead to
the cessation of excitations and the loss of stability of individual components of time series.
The experiments were carried out only with sustainable components of the time series. Therefore,
we generated and tested many dozens of the multidimensional time series data sets. The experiments
were carried using the same methodology and software as in examination of the financial data.

While testing numerous diverse synthetic data, generated for 3, 4, or 6 excitable media (diverse
groups of the similar agents) having various sizes and model parameters we obtained families of
graphs similar to curves presented in Figures 2 and 3. The curves obtained showed clearly that
cumulative sums of the “synthetic returns” depend on the length of training data. As an example we
present the simplest model where the generation of high-dimensional chaos time series was composed
of six groups of excitable media differing in size, 15,769, 14,077, 12,481, 10,981, 9,577, and 8,269 nodes
and the parameters of all 71,154 nodes were identical. In Figure 5 we present four curves of cumulative
sums of virtual portfolio returns designed for the synthetic data (black, blue, magenta, and cyan
curves). We see in different time intervals different training data lengths, L, are preferable. Timely
change of TDL from 9 virtual “months” (cyan curve), to 2 months (black) allowed for an improvement
of the sustainability of the portfolio (bold red curve).



Sustainability 2018, 10, 1911 10 of 14

Sustainability 2018, 10, x FOR PEER REVIEW  9 of 13 

of the grid. To avoid the ceasing of the excitation signals in our “chaos generating model” we created 
a number of separate groups (grids of nodes), and introduced a restricted level of cooperation 
between them. If a sum of node’s excitations in a defined subgroup of nodes (200 adjacent nodes) 
goes above a certain threshold, the agents of this group can transmit the excitation signal to the group 
in which excitation signals had almost ceased. In this way, the group model mimics a team at work. 
If the parameters of such a team are chosen properly, the excitation signals do not fade away. Inside 
each group we formed eleven large nonintersecting subgroups of adjacent nodes (agents). Sums of 
the excitations of the agents in the single node group were used as the components of the 
multidimensional time series, named A. Differences between two adjacent values composed time 
series B. 

For convenience we name these differences as “PnL” and the time moments as “business days”. 
Like in above analysis or real world data, in analysis of the synthetic time series we introduced 
automatic trading strategies where strategies differ in the investment risk levels that lead to frequent 
refusal from investments. In the case of refusal, the next day’s return is equal to zero. This type of the 
time series is named as series C. In Figure 1b we show the single synthetic time series, C, measured 
during 60 time moments. The return graph is very similar to authentic returns graphs obtained in 
real automatic trading systems (see e.g., Figure 1b and Figure 1 in [32]).  

5.2. Experimental Results 

The main difficulty in creating synthetic datasets is often bifurcations, which can lead to the 
cessation of excitations and the loss of stability of individual components of time series. The 
experiments were carried out only with sustainable components of the time series. Therefore, we 
generated and tested many dozens of the multidimensional time series data sets. The experiments 
were carried using the same methodology and software as in examination of the financial data.  

While testing numerous diverse synthetic data, generated for 3, 4, or 6 excitable media (diverse 
groups of the similar agents) having various sizes and model parameters we obtained families of 
graphs similar to curves presented in Figures 2 and 3. The curves obtained showed clearly that 
cumulative sums of the “synthetic returns” depend on the length of training data. As an example we 
present the simplest model where the generation of high-dimensional chaos time series was 
composed of six groups of excitable media differing in size, 15,769, 14,077, 12,481, 10,981, 9,577, and 
8,269 nodes and the parameters of all 71,154 nodes were identical. In Figure 5 we present four curves 
of cumulative sums of virtual portfolio returns designed for the synthetic data (black, blue, magenta, 
and cyan curves). We see in different time intervals different training data lengths, L, are preferable. 
Timely change of TDL from 9 virtual “months” (cyan curve), to 2 months (black) allowed for an 
improvement of the sustainability of the portfolio (bold red curve).  

 
Figure 5. Dependence of cumulative sums of the portfolio returns on the training data length. 
Synthetic data. Four lengths of the training data. Red bold curve—an improvement obtained by using 
our adaptive training data length selection algorithm. 
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Similar results were obtained using synthetic time series modeled with dissimilar sets of
parameters. It should be remembered that the generators of chaotic time series were not specifically
aimed at imitating economic and financial phenomena. Nevertheless, simulation experiments confirm
the phenomenon of the different lengths of the training set, observed earlier in the experiments with
real financial data. This means that monitoring the size of the learning data can be useful in the data
mining tasks used in the analysis of sustainability in other research disciplines.

6. Conclusions

In automated trading portfolio construction, we are faced with the task of how to select from
hundreds of thousands of automated trading strategies. This is very important in a frequently changing
environment. Changes in the economy and the financial environment necessitate the use of short
training sets exploited to select a small subset of potentially beneficial ATS. Practitioners want to have
simple empirical rules, such as ‘in daily trading we have to use the data history up to 12 months’.
When analyzing ten large-scale sets of financial data sets and artificially generated multi-dimensional
time series, we came to the following conclusions:

• In situations with a frequently changing economy and financial environment, it is impossible to
develop a simple rule of thumb that would fit all investment tasks. In modern daily trading with
ATS, the length of the training data should vary from two to 24 months.

• The useful training data length (TDL), L, depends on the task, namely the initial set of ATSs and
the method used to reduce their dimensionality. It also depends on the frequency of chaotic and
unexpected changes of the environment. Large-scale experiments have confirmed that a useful
TDL changes over time, and this fact cannot be ignored by an investment practitioner. This is the
main finding of the paper.

• Situations in which the time intervals between two adjacent changes in financial time series are
long are not rare. In such cases, a thorough check of the relative effectiveness of using different
TDLs during the previous period of time allows one to select the correct length of training data
and increase the portfolio return.

• The conclusion regarding the change in profitable TDL was confirmed by numerous experiments
with synthesized multidimensional time series of chaos generated without the inclusion of external
excitation signals. The study of synthetic chaotic time series confirms the fact that monitoring
the size of the learning data can be useful in the tasks of data mining used in the analysis of
sustainability in other research disciplines.
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These conclusions suggest the following recommendations for trading practitioners:

• Select a set of N0 original ATS. Prepare the software that allows for generating lengthy history of
N0 returns, say, for the last 10–15 years.

• Prepare user-friendly software designed to pre-select a smaller subset of the most efficient ATS.
The selection should be based on the history of the data for several years, as was done in the
experiments described above. To estimate the effective TDL, use previous data histories to verify
the efficacy of such procedures for the investor’s data set.

• Prepare the software aimed at performing the secondary selection of Nportfolio-dimensional subset
of ATSs to be used for subsequent day trading. This time the ATS selection is performed according
to L days of training data.

• These steps can be performed for each business day M times for each of training set size, L1, L2,
. . . , LM. In our experiments we considered M = 6 sizes of learning sets. We advise using the larger
number in practical work.

• In practical trading, we need to smooth out the results of the M-series, analyze their behavior
during the previous period, and then choose the most promising TDL for the day’s trade.

The procedure just described does not guarantee perfect and profitable investments for all types
of data. When frequent environmental changes follow each other, all training set sizes can lead to
losses. In such a situation, the investor is recommended to avoid trading with this particular type of
data. To make one’s investments sustainable, one needs to choose a different set of ATSs. We see an
example of this in Figure 2b, where data D44 is considered. In the portfolio governed by dynamically
controlled TDL, the cumulative profit curve fell during period November 2015–May 2016. Looking at
Figure 3b, where data D258 are considered, we see an increase in the cumulative sum of returns of
dynamically controlled portfolio in the same period.
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Appendix A. Diversity of the Financial Time Series

In this section we will explain the similarity and diversity of the financial time series used in the
experiments. Systematic trading CTA (commodity trading advisor) provided us with multiple types
of real-life trading strategy data. CTA is a type of hedge fund trading only futures. These trading
strategies are used in live trading. The aim was to improve existing portfolio construction for better out
of sample results. CTA type hedge funds typically trade futures using a variety of methods. Technical
trading, where decisions are based on past price movements is quite popular. In our research we used
technical trading strategies as well. No fundamental factors we used to make trading decisions here.
Among CTAs, trend following is the most popular strategy. Dr. Jessica James from Citigroup noted
that “85% of CTA returns are explained by simple trend following”. Investigated trading strategies
are intraday/short term type and hold their position from intraday to a few days. This is the main
difference from typical trend following CTA that usually employ longer term trading strategies.

We have 3 types of core trading strategies:
MR. Short term mean reversion—the main idea is that if market moves in one direction too fast

for too much or too long and that there should be a correction in the opposition direction. So the
strategy will take a position opposite to the current market direction and will try to close this position
on correction.
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ET. Event driven short term trend following—the rationale of such a strategy depends on if there
was some event in the market that would trigger market movement in one direction.

TM. Momentum short term trend following—this quite typical trend following strategy where
one monitors trend strength or momentum of the market and anticipates that market movement in the
same direction will persist for a while. This way one can take the position on the same direction and
hold until trend finishes.

Each strategy can have some differences, like a strategy can have stop-loss or not, one can have a
take-profit or not and so on. Each trading strategy has number of parameters that influence trading
decisions. These parameters are various periods of moving averages, buy sell trigger levels, stop loss
and take profit amounts, volatility measuring methods, or similar. The variety of parameters creates a
variety of trading logics, though some trading strategies can be very similar.

If one has trading strategy logic written in some programming language, they can test the
performance of such a strategy in a simulation. One can use historical price data and feed them to the
trading strategy, get historical buy/sell signals and calculate trading profits; all in simulation. This is a
cheap way to verify the profitability of some trading strategy. One can also test multiple combinations
of parameters and select the best trading strategies. This is called an optimization process. The problem
is that past performance is not guaranteeing good results in the future. Thus data is divided into
training and testing sets and the aim is get the best results on testing set. Trading one strategy is
rather risky as one can pick one that was lucky on training data and will not be so lucky on testing
data. So many people aim to trade portfolio of several (or hundreds, thousands) training strategies to
diversify and reduce the risk. The Table A1 summarizes ten datasets used in the analysis and presents
resume of the results.

Table A1. Description of the real world data used in this study.

No Date Type Dimension Reduced
Dimens.

All ATS
Max/End

Reduced, SS2
Max/End Abr.

1 20180319 MRS 50,194 4681 63/51 99/82 D50
2 20180320 MRS 257,769 4023 38/32 98/97 D258
3 20180320 MR 44,068 3533 66/66 102/97 D44
4 20180326 MR 104,204 3751 85/85 67/67 D104
5 20180329 ET 56,197 4641 38/38 35/26 D56
6 20180412 TM 66,897 2769 93/79 81/69 D67
7 20180415 MR 49,622 1927 27/27 44/41 D49
8 20180401 ET 18,703 4448 182/162 135/78 D19
9 20180412 MRS 178,602 3422 97/88 142/104 D178

10 20180421 MRS 102,251 3379 52/52 46/46 D102

Datasets D178 and D102 are quite similar but position sizing is different. D178 uses a dynamic
position based on recent market volatility. D50, D258, D178, and D102 uses stop loss while D104 and
D49 does not use stop loss. So, daily losses and wins can be different. D56 and D19 use the trend
following method but are triggered based on fast market movements. D67 is based on momentum
trend following.
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