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Abstract: Many countries in the world have implemented many price support policies to promote the
development of renewable energy, and there are evolutionary processes between different policies
at different stages of national development. Existing literature has less research on the internal
mechanism and alternative process of renewable energy price policies’ evolution process. In view
of this, this paper innovatively introduces the classic model of innovation diffusion theory, the Bass
model, into the renewable energy price mechanism, and improves it on the basis of the traditional
Bass model, and then proposes a system dynamics (SD) simulation based on the improved Bass model
to study the evolution process of the renewable energy price policies. This paper mainly studies
the evolution process of the policies from feed-in tariff (FIT) to renewable portfolio standard (RPS),
and takes China’s wind power industry as an example to simulate the model. The results show that
FIT can effectively and quickly evolve to RPS based on the internal influence of the interaction among
power generation enterprises and the external influence of government behaviors. All the power
generation enterprises will implement RPS, and the amount of green power enterprises eventually
grows steadily and slowly. In addition, increasing the decline rate of FIT subsidy and RPS unit fine
can effectively promote the evolution of RPS policy, and also improve the amount of green power
enterprises and the activity of the tradable green certificates (TGC) trading market.

Keywords: renewable energy; feed-in tariff; renewable portfolio standard; bass model;
system dynamics

1. Introduction

Many countries in the world have implemented a number of price support policies to promote
the development of renewable energy. They have made institutional choices according to their energy
policy goals and actual national conditions [1]. The policies and regulations of various countries
are varied. The evaluation of these policies focuses on the strategic choice and social responsibility
of the renewable energy industry. At present, all the renewable energy price support policies can be
roughly divided into two categories, which are feed-in tariff (FIT) mechanism and renewable portfolio
standard (RPS) [2]. The economic strength and resource conditions of a certain country are different
at different stages of national development, thus, the renewable energy price policies will change,
and there will be an evolutionary process between the policies. For example, China’s renewable energy
is currently implementing FIT, and it will begin to implement RPS in 2018 according to the provisions
of China’s power system reform [3]. The implementation and evolution of renewable energy price
policies in typical countries and regions are shown in Figure 1.
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The studies on the evolution of renewable energy price policies are not rich at present.
Dong et al. [4] studied the evolution from RPS to FIT for the deployment of renewable energy in Japan
by employing a dominant firm-competitive fringe model. They found that nonrenewable firms will
suffer a reduction in revenue under both schemes, and the renewable producers behave competitively
and act as price takers. Dong [5] examined the relative effectiveness of FI and RPS in promoting wind
capacity development using panel data, and he founds that FIT increases total wind capacity more than
RPS. Ming et al. [6] introduced the current development situation of renewable energy, analyzed the
evolution and implementation effect of the renewable energy tariff policy, and discussed the problems
of the renewable energy tariff policy in China. Pyrgou et al. [7] examined the regulatory and policy
framework of FIT scheme, specifically its effect on both the electricity pricing as well as the local and
European renewable energy sources market, and accordingly the definition of its feasibility as a scheme
for the further development and promotion of renewable energy technologies. Boomsma et al. [1]
studied the market and policy risk under different renewable electricity support schemes, and they
found that the differences in market risk between support schemes like FIT and RPS are less than
commonly believed due to price diversification. Schallenberg-Rodriguez [8] assessed the performance
of RPS system and FIT system, and analyzed their advantages and disadvantages, thereby contributing
to the worldwide debate on the suitability of the different renewable energy sources support
systems. Aquila et al. [9] overviewed and discuss some long-term policies that have been applied
in several countries, such as FIT and RPS, and the main advantages and disadvantages of these
incentive strategies are emphasized, focusing on applications. Xu et al. [10] focused on the evolution,
implementation status and problems of the wind power tariff policy in China. Shahnazari et al. [11]
reported insights gained from an integrated real options and portfolio optimization model of electricity
generation investment behaviur under political uncertainty over the futures of interacting carbon
pricing and RPS instruments. Chang et al. [12] investigated the policy system in China which aims to
facilitate the transition to sustainable construction, and the results show that the behaviors of various
participants in the construction industry, including the government, developers, builders, suppliers,
and designers, are regulated and controlled by these laws and regulations.
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It can be seen that most of the existing literature has studied the influence of different renewable
energy price policies on the electricity market’s development and the trading entities’ behaviors.
Few scholars pay attention to the internal mechanism and logical relationship of the policy evolution
and the replacement process between the original and new mechanisms. In view of this, this paper aims
to fill this gap. This paper innovatively introduces the classic model of innovation diffusion theory,
the Bass model, into the renewable energy price mechanism, and improves it on the basis of the
traditional Bass model, and then proposes a system dynamics (SD) simulation based on the improved
Bass model to study the evolution process of the renewable energy price policies. The SD model of
the evolution of renewable energy price policies based on the improved Bass model proposed in this
paper not only clearly reflects the internal mechanism and alternative process of policy evolution,
but also effectively simulates the development trend of the electricity market under the change of the
price mechanism, which has important theoretical research value and practical reference significance.
The organization of the paper is as follows. Section 2 illustrates the improvements of traditional
Bass model, and proposes the SD model of policies’ evolution. Section 3 provides the case study with
China’s wind power. Section 4 discusses the impact of the change of the two endogenous variables on
the results. The conclusion is given in Section 5.

2. Methodology

The Bass model was proposed by Bass in 1969. Its basic usage is used to describe the process of
innovation diffusion. After the continuous research by scholars, it is used in various fields, such as
product replacement and technological innovation. The basic principle of the Bass model is to
integrate the external and internal influences on the technology from the overall market response. It is
consistent with the characteristics of the evolutionary process of the renewable energy price policies,
which are the government behaviors (external) and interactions among power generation enterprises
(internal). This section firstly improves the Bass model, and then proposes the SD simulation model
of price policies’ evolution. SD is a systems modeling and dynamic simulation methodology for
the analysis of dynamic complexities in socio-economic and biophysical systems with long-term,
cyclical, and low-precision requirements [13,14]. Some scholars have combined the Bass model with
the SD simulation to study the innovation diffusion. Lucia et al. [15] combine the Bass model and
SD simulation to develop a model of the German photovoltaic market for small plants on private
houses and tests public policies. L.L.C. et al. [16] use the SD technique in conjunction with the Bass
model to foresee the diffusion of photovoltaic systems in residential consumers throughout time.
Benvenutti et al. [17] develop a SD model based on Bass model to investigate the impact of public
policies in the long-term diffusion dynamics of alternative fuel vehicles in Brazil. It can be seen that
SD provides an effective aid for studying the process of innovation diffusion.

2.1. Improved Bass Model

Fourt and Woodlock (1960) thought that diffusion patterns of technological innovation in potential
markets could be described by Formula (1) through the study of some diffusion phenomena:

dN
dt

= p×
[
N − N(t)

]
(1)

where, N(t) is the amount of companies accumulating technology innovations up to time t. N is
the market potential. p is the external influence coefficient (p > 0). dN

dt is the amount of companies
adopting technological innovation at time t. This model only considers the effect of external influences
on adopters, and the coefficient p can be understood as the unit effect of external influences.
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Mansfield (1961) considered that the diffusion law of technological innovations in the potential
market can be described by Formula (2) by studying the diffusion process of more than a dozen
industrial technological innovations:

dN
dt

=
q
N
× N(t)×

[
N − N(t)

]
(2)

where, q is the internal influence coefficient (q > 0). This model only considers the effects of
internal influences on potential adopters. The imitative coefficient q reflects the interaction strength
between adopters N(t) and non-users N − N(t), and q

N
can be understood as the unit effect of

internal influences.
In 1969, Bass combined the models of external influence and internal influence, and put forward

the famous Bass model shown as Formula (3):

dN
dt

= p×
[
N − N(t)

]
+

q
N
× N(t)×

[
N − N(t)

]
(3)

The proposed Bass model is based on a series of assumptions, which include: (1) The market
potential remains unchanged over time; (2) the adopters are indifferent or homogeneous; (3) the
innovative diffusion is not affected by marketing strategy; (4) the product performance remains
unchanged over time; (5) the geographical boundaries of social systems do not change with the
diffusion process; (6) the diffusion process is divided into two stages: no adoption and adoption;
(7) there are no supply constraints; (8) the interaction among adopters plays a constant role in the
diffusion of innovation; (9) a diffusion of innovation is independent of other innovations’ diffusion.

Some of the assumptions of the Bass model make inadequacies in practical applications. This study
improves these deficiencies as follows:

The Bass model simply divides technological innovation into two stages in the diffusion process,
which are adoption and no adoption. In fact, while digesting, absorbing, and utilizing technological
innovation knowledge, the whole diffusion process should adopt a three-phase analysis mode of “do
not adopt-await to adopt-adopt”, and the three phases are continuation in time and have time-delayed.

The Bass model assumes that the market potential remains the same over time. In reality,
companies should consider entering and exiting behaviors in the technological innovation process.
This study assumes that companies enter or exit the market within a certain range of probability,
which means that market potential fluctuates within a certain range.

Since the market potential is not constant, the impact of the interaction among adopters on
innovation diffusion should also be changed.

The key to the successful adoption of technological innovation by enterprises is the transfer and
utilization of innovative knowledge. This is not analyzed in the Bass model. Actually, the absorption,
digestion, and utilization of innovative knowledge are accompanied and play a decisive role in the
whole process of technological innovation.

The Bass model only embodies the process of innovation and diffusion of new technologies,
and does not reflect the replacement and evolution between new and original technologies.

Based on the above five improvements, the logic framework of improved Bass model in this study
is shown in Figure 2.
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2.2. The SD Model of Policies’ Evolution

As mentioned in the introduction, the evolution of renewable energy price policies in different
countries or regions is different, but its principles are basically the same. This study uses the evolution
process of China’s current renewable energy price policy as an example, that is, the evolution from
FIT to RPS. FIT is a scheme designed to accelerate investment in renewable energy technologies. It is
a government-led regulatory mechanism that requires power grid enterprises to buy electricity from
renewable energy producers at government-specified prices [18]. To encourage the development of
the renewable energy power industry under FIT, the government subsidizes the electricity price of
renewable energy power. RPS is a main promotion scheme of a quota obligation based on tradable
green certificates (TGC) trading market. It is structured as a quantity regulation, letting the market
determine a reasonable price for renewable energy power [19]. In this approach, governments set
targets or quotas to ensure that power grid enterprises purchase a certain market share of capacity or
generation of electricity coming from renewable energy sources [20]. To ensure the implementation
of RPS, the government will punish power generation enterprises who do not fulfill their quota
obligations by setting a fine.

To clearly represent the dynamic evolution of price policies, we establish a stock and flow diagram
(SFD) of evolution process from FIT to RPS using Vensim based on the logic framework of the
improved Bass model above, as shown in Figure 3. The SFD is a good tool for modeling the cause and
effect relationships between various components of the SD model [21]. The SFD is divided into two
modules, which are the price policies’ evolution process module and the TGC trading market module.
The specific analysis is as follows.
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portfolio standard (RPS).

2.2.1. The Price Policies’ Evolution Process Module

The internal influence in the evolution of the price policy is mainly the interactions among power
generation enterprises:

q1 = E1 ×Q×M1 (4)

q2 = E2 ×Q×M2 (5)

E1 =
N

N + M1
(6)

E2 =
N

N + M2
(7)

Q = TGCap × η (8)
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The speed of internal influence q1 and q2 is determined by the interactions among power
generation enterprises that implement FIT or RPS, and the internal influence coefficient Q.
Where, the interactions of FIT enterprises are represented by the interactive frequency N + M1 between
RPS-enabled power generation enterprises (hereinafter referred to as green power enterprises) N and
FIT-enabled power generation enterprises M1, and E1 indicates the success rate of their interactions.
Similarly, the interactions of RPS enterprises are represented by the interactive frequency N + M2

between green power enterprises and potential power generation enterprises in the market M2, and E2

indicates the success rate of their interactions. The reason that annual average price of TGC (TGCap)
affects Q is that the power generation enterprises will choose to implement different policy mechanisms
according to the changes of TGCap. If TGCap is high, the power generation enterprises believe that
trading TGC is profitable, which will promote the implementation of RPS. Therefore, Q and TGCap are
positive correlation, η is the economic parameter and greater than 0.

The external influence in the evolution process is mainly government behaviors. The government
promotes the implementation of the RPS policy mainly through two strategies: on the one hand,
it reduces the FIT subsidy to promote the FIT-enabled power generation enterprises to implement RPS;
on the other hand, it sets a RPS fine to promote the market potential enterprises to implement RPS.

p1 = P1 ×M1 (9)

p2 = P2 ×M2 (10)

P1 = Decline rate o f FIT subsidy× δ (11)

P2 = RPS unit f ine× ϕ (12)

The speed of external influence p1 and p2 is determined jointly by M1 and M2, and external
influence coefficients P1 and P2, respectively. Where, P1 is affected by the decline rate of FIT subsidy,
and P2 is affected by RPS unit fine. δ and ϕ are economic parameters.

In the process of price policies’ evolution, the RPS policy conversion speed s1 and RPS
implementation speed s2 are determined jointly by explicit knowledge and tacit knowledge that
can be used by the power generation enterprises. From the perspective of knowledge accumulation,
the essence of technological innovation is the integration, activation, innovation and utilization
of existing knowledge bases. The activation, circulation and utilization of explicit knowledge are
relatively easy, and that of tacit knowledge are relatively difficult. Tacit knowledge can be divided into
internal tacit knowledge and external tacit knowledge. We use tacit knowledge stock tk to represent
internal tacit knowledge, and use E1 and E2 to express the impact of external tacit knowledge, so that
the utilization degree of tacit knowledge flow Tk can be obtained as:

Tk1 = E1 × tk× β (13)

Tk2 = E2 × tk× β (14)

where, β is the coefficient of successful utilization of tacit knowledge flow. Similarly, the utilization
degree of explicit knowledge flow Ek can be obtained as:

Ek1 = P1 × ek× α (15)

Ek2 = P2 × ek× α (16)

where, ek is the explicit knowledge stock. α is the coefficient of successful utilization of explicit
knowledge flow.

There are two processes passed from M2 to N, which are M2 → M1 →W1 → N and
M2 →W2 → N . Both of these two processes are continuous, which means that there is a delay
in time, that is, N lags behind W1 and W2, W1 lags behind M1, and W2 lags behind M2. This type of



Sustainability 2018, 10, 1748 8 of 20

lag time can be expressed as a DELAY function in SD simulation. In addition, when considering the
non-independence of the policies’ evolution process, we use the probability of enterprises entering
or leaving the market I1, I2, O1, and O2 to represent non-independent behaviors, which will cause
fluctuations in market potential. In summary, the amounts of power generation enterprises in each
phase are as follows:

M1 =
∫

(FIT implementation speed− q1 − p1)× dt + M10 (17)

M2 =
∫
(−FIT implementation speed− q2 − p2 + I1 ×M2)× dt + M20 (18)

W1 =
∫
(DELAY(q1 + p1 − s1, time))× dt + W10 (19)

W2 =
∫
(DELAY(q2 + p2 − s2, time) + (I2 −O1)×W2)× dt + W20 (20)

N =
∫
(DELAY(s1 + s2, time)−O2 × N)× dt + N0 (21)

FIT implementation speed = −TGCap × λ (22)

where, M10, M20, W10, W20, and N0 are the initial values of the amount of power generation enterprises
in each phase. time is the delayed time. To facilitate readers’ better understanding, we use a simple
numerical example to illustrate Formulas (17)–(21). It is assumed that p1 = p2 = q1 = q2 = 0.5t,
s1 = s2 = 0.8t, FIT implementation speed = 0.2t, I1 = I2 = 0.05, O1 = O2 = 0.03, time = 6,
M10 = M20 = 100, W10 = W20 = N0 = 0, and the total time is 20, and then, M1 =∫ 20

0 (0.2t− 0.5t− 0.5t)dt + 100 = −52, M2 =
∫ 20

0 (−0.2t− 0.5t− 0.5t + 0.05×M2)dt + 100 =− 48.25,

W1 =
∫ 20

0 (DELAY(0.2t, 6))dt + 0 =21, W2 =
∫ 20

0 (DELAY(0.2t, 6) + 0.02×W2)dt + 0 = 23.2,

N =
∫ 20

0 (DELAY(1.6t, 6)− 0.03× N)dt + 0 = 146. We use Vensim to test their change processes,
and the results are shown as Figures 4 and 5. The reason that FIT implementation speed is affected by
TGCap is because if TGCap is high, the power generation enterprises believe that the TGC transaction
is profitable, which will promote RPS implementation and be harmful to FIT implementation.
Thus, FIT implementation speed and TGCap are negative correlation. λ is the economic parameter
and greater than 0.

2.2.2. TGC Trading Market Module

The authors of this paper have studied and analyzed the TGC market transaction process under
RPS in detail in the previous research. The main describes of TGC market are provided here. Interested
readers can refer to the literature [18–21] for more detailed information.

TGC is a freely tradeable certificate similar to currency, which represents renewable energy power
generation. In general, one unit TGC represents 1 kWh renewable energy power generation. The TGC
trading market is a competitive market. The TGC trading volumes of the market is a certain percentage
of electricity demand. This percentage is the RPS quota ratio set by the government, which can reflect
the government’s policy objectives. In the TGC market, TGC demanders (such as power grid company)
and TGC suppliers (such as green power enterprises) purchase and sell TGCs, respectively.
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The expected amount of TGC sales (TGCsales) is based on TGC held by green power
enterprises (TGChp), and changes with the change of TGC price (TGCp), that is the green power
enterprises plan the sales amount by taking the ratio of the current TGCp to TGC initial price (TGCp0 )
as a reference [22]. When based on marginal cost price, TGCp0 is the difference between the long
run marginal cost of renewable energy and that of traditional power. Thus, TGCsales is shown as
Formula (23). Similarly, the expected amount of TGC purchases (TGCpurchases) is shown as Formula (24).
TGC held by a power grid company (TGChd) is the difference between TGC sold to a power grid
company (TGCsold) and TGC turned in for RPS (TGCt). According to Refs. [18–21], the TGC has
a valid period, that is, TGC can be stored. When the quota meets the requirements, the TGC price is
at a low level. At this time, the grid power company can trade with the green power enterprises at
a lower price, and purchase the TGC. The stored TGC can be used in the next turn-in period. The green
power enterprises need to sell TGCs, and the grid power company needs to turn TGCs in RPS before
expiration. Thus, TGC valid period affects the amount of TGCsold, which is shown by using extremal
function as Formula (25) in Vensim, where TGCed is the amount of expired TGC of grid power company,
and TGCes is the amount of expired TGC of green power enterprises. TGCt is determined by electricity
demand and RPS quota ratio each year. In the competitive market, TGCp is directly determined
by the trading volumes between the TGC demanders and the suppliers, and the greater the supply
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of TGC, the higher the TGC price. Thus, TGC price fluctuation (TGCp f ) is negatively correlated with
TGC oversupply (TGCo), as shown in Formula (26) [23]. σ is the adjustment coefficient. In addition,
TGCap is the annual average value of TGCp, which is expressed as a smooth function in Vensim.
The meaning of TGCap parameter is that the impact of the TGC price on the FIT implementation speed
and the internal influence coefficient cannot be instantaneous, that is, the power generation enterprises
need a certain reaction (delay) time to make a decision based on the change of TGC price, as shown in
Formula (27). Where, time′ is the delay time.

To facilitate readers’ better understanding, we use a simple numerical example to illustrate
Formulas (23)–(27). It is assumed that TGCp = 0.25, TGCp0 = 0.1, and TGChp = 30, and then
TGCsales = 0.25/0.1 × 30 = 75. If TGChd = 40 and TGCt = 20, and then TGCpurchases = 0;
if TGChd = 20 and TGCt = 40, and then TGCpurchases = 0.1/0.25× (40− 20) = 8. It is assumed
that TGCed = 10, TGCpurchases = 8, TGCes = 5, and TGCsales = 12, and then TGCsold =

MIN(MAX(10, 8), MAX(5, 12)) = 10. It is assumed that TGCo = 120 and σ = 2× 10−3, and then
TGCp f = −120 × 2 × 10−3 = −0.24. It is assumed that TGCp changes with time changes,
and time′ = 12, the total time is 120, and then the test result of TGCap is shown as Figure 6.
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TGCsales = TGCp/TGCp0 × TGChp (23)

TGCpurchases =

{
0 , i f TGChd > TGCt

TGCp0
/TGCp × (TGCt − TGChd) , i f TGChd ≤ TGCt

(24)

TGCsold = MIN
(

MAX
(

TGCed, TGCpurchases

)
, MAX(TGCes, TGCsales)

)
(25)

TGCp f = −TGCo × σ (26)

TGCap = SMOOTH
(
TGCp, time′

)
(27)

3. Case Study

3.1. Data

This study uses China’s wind power as an example for simulation. On the one hand, wind power
is currently a relatively mature industry with large installed capacity, low cost and mature technology
in all renewable energy sources in China [24]. By the end of 2017, China’s wind power installed
capacity ranked first in the world [25]. On the other hand, the wind power market is the first to start
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the implementation of RPS in China [3], and it has a certain representativeness. The initial time of the
study was January 2016. The unit of time is month. The step size is one month. The total simulation
time is 120 months (10 years).

According to Refs. [26,27], the current amount of FIT-enabled wind power enterprises is 150,
that is, M10 = 150. We assume that the initial value of potential wind power enterprises in the
market is 150, that is, M20 = 150. The initial value of the amount of wind power enterprises in other
phases is 0, that is, W10 = 0, W20 = 0, and N0 = 0. According to Refs. [27,28], the decline rate of
FIT subsidy of China’s wind power industry is 0.35% per month. According to Ref. [29],ek = 0.4,
tk = 0.6, α = 0.5, and β = 0.5. All the initial values of TGC trading market is the same with Ref. [19],
where, RPS unit fine is 1 yuan/kWh, TGCp0 is 0.1 yuan/kWh, the unit power generation of green
power enterprise is 4.5 × 106 kWh per month, the RPS quota growth rate is 0.0126 per month, and the
electricity demand growth rate is 0.0025 per month. All the amounts and speeds in this study only
represent numerical values, and there are no units for them.

3.2. Results and Analysis

The simulation results are shown in Figure 7. By contrast, we find that the amount of potential
wind power enterprises and speed of external influence in our simulation gradually decrease, and the
speed of internal influence rises first and then declines, which are consistent with the results in Ref. [29].
The TGC price in our simulation rises first, then falls, and continues to fluctuate, which is consistent
with the results in Refs. [18–21]. This proves that our simulation results are consistent with those of
other scholars. In addition, we compare the simulation results of our study with China’s 13th Five-Year
Plan data (Table 1), and find that the error is within a reasonable range (less than 5%), indicating that
the model in this paper is reasonable.

Table 1. The comparison of simulation results with planning data.

13th Five-Year Plan Simulation Results Error

The installed capacity of wind power 2.1 × 108 kW 2.03 × 108 kW 3.33%
The power generation of wind power 4.2 × 1011 kWh 4.01 × 1011 kWh 4.52%

We can see from Figure 7a that, the potential wind power enterprises in the market and the
FIT-enabled power enterprises gradually decrease to 0, which means that FIT policy gradually evolves
into RPS policy, and all the potential wind power enterprises and the FIT-enabled power enterprises
eventually tend to implement RPS. We can see from Figure 7b–g that in the initial stage of RPS
implementation (0 ≤ t ≤ 20), TGC demand is greater than supply, and TGC oversupply is less than
zero and gradually decreases, and TGC price gradually increases. This affects the speed of internal
influence q1 and q2, and at this time, wind power enterprises believe that trading TGC is profitable,
thus, there are frequent interactions among power generation enterprises, and the success rate of
interaction is high. q1 and q2 show a rapid upward trend, and s1 and s2 also increase. The green
power enterprises grow slowly in the initial stage is due to the effects of time delays in the evolution
of policies. With the orderly implementation of RPS (21 ≤ t ≤ 120), the installed capacity of wind
power gradually improves, and TGC supply increase. The TGC oversupply turns from falling to rising,
and gradually becomes excess demand. At this time, TGC price begins to gradually decline after
rising to the peak value of 0.22 yuan/kWh, resulting in the decrease of q1, q2, s1, and s2. Due to
the time delays, the green power enterprises continue to grow rapidly, and then start to decline.
As the growth of wind power installed capacity slows down and electricity demand continues to
increase, TGC oversupply gradually declines again, and TGC price fluctuate accordingly. In the whole
simulation time, the external influence p1 and p2 is continuously declining. Combined with internal
and external influences, s1 and s2 continue to fluctuate and eventually stabilized, and the amount
of green power enterprises fluctuates for a period of time and eventually grows steadily and slowly.
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(Note: B in the ordinate of Figure 7f is the counting unit automatically generated by Vensim software,
and 1B = 1 × 109).

Sustainability 2018, 10, x FOR PEER REVIEW  12 of 20 

Table 1. The comparison of simulation results with planning data. 

 13th Five-Year Plan Simulation Results Error 

The installed capacity of wind power 2.1 × 108 kW 2.03 × 108 kW 3.33% 

The power generation of wind power 4.2 × 1011 kWh 4.01 × 1011 kWh 4.52% 

We can see from Figure 7a that, the potential wind power enterprises in the market and the 

FIT-enabled power enterprises gradually decrease to 0, which means that FIT policy gradually 

evolves into RPS policy, and all the potential wind power enterprises and the FIT-enabled power 

enterprises eventually tend to implement RPS. We can see from Figure 7b–g that in the initial stage 

of RPS implementation ( 200  t ), TGC demand is greater than supply, and TGC oversupply is 

less than zero and gradually decreases, and TGC price gradually increases. This affects the speed of 

internal influence 
1q  and 

2q , and at this time, wind power enterprises believe that trading TGC is 

profitable, thus, there are frequent interactions among power generation enterprises, and the success 

rate of interaction is high. 
1q  and 

2q  show a rapid upward trend, and 
1s  and 

2s  also increase. 

The green power enterprises grow slowly in the initial stage is due to the effects of time delays in the 

evolution of policies. With the orderly implementation of RPS ( 12021  t ), the installed capacity 

of wind power gradually improves, and TGC supply increase. The TGC oversupply turns from 

falling to rising, and gradually becomes excess demand. At this time, TGC price begins to gradually 

decline after rising to the peak value of 0.22 yuan/kWh, resulting in the decrease of 
1q , 

2q , 
1s , and 

2s . Due to the time delays, the green power enterprises continue to grow rapidly, and then start to 

decline. As the growth of wind power installed capacity slows down and electricity demand 

continues to increase, TGC oversupply gradually declines again, and TGC price fluctuate 

accordingly. In the whole simulation time, the external influence 
1p  and 

2p  is continuously 

declining. Combined with internal and external influences, 1s  and 2s  continue to fluctuate and 

eventually stabilized, and the amount of green power enterprises fluctuates for a period of time and 

eventually grows steadily and slowly. (Note: B in the ordinate of Figure 7f is the counting unit 

automatically generated by Vensim software, and 1B = 1 × 109). 

 

(a)  

选择的变量

200

150

100

50

0

0 12 24 36 48 60 72 84 96 108 120

Time (Month)

D
m

n
l

"FIT-enabled power generation enterprises (M1)" : Current

"potential power generation enterprises in the market (M2)" : Current

Sustainability 2018, 10, x FOR PEER REVIEW  13 of 20 

 

(b) 

 

(c) 

 

(d) 

选择的变量

8

6

4

2

0

0 12 24 36 48 60 72 84 96 108 120

Time (Month)

D
m

n
l

"speed of external influence (p1)" : Current

"speed of internal influence (q1)" : Current

选择的变量

8

6

4

2

0

0 12 24 36 48 60 72 84 96 108 120

Time (Month)

D
m

n
l

"speed of external influence (p2)" : Current

"speed of internal influence (q2)" : Current

选择的变量

40

20

0

-20

-40

0 12 24 36 48 60 72 84 96 108 120

Time (Month)

D
m

n
l

"RPS implementation speed (s2)" : Current

"RPS policy conversion speed (s1)" : Current



Sustainability 2018, 10, 1748 13 of 20

Sustainability 2018, 10, x FOR PEER REVIEW  13 of 20 

 

(b) 

 

(c) 

 

(d) 

选择的变量

8

6

4

2

0

0 12 24 36 48 60 72 84 96 108 120

Time (Month)

D
m

n
l

"speed of external influence (p1)" : Current

"speed of internal influence (q1)" : Current

选择的变量

8

6

4

2

0

0 12 24 36 48 60 72 84 96 108 120

Time (Month)

D
m

n
l

"speed of external influence (p2)" : Current

"speed of internal influence (q2)" : Current

选择的变量

40

20

0

-20

-40

0 12 24 36 48 60 72 84 96 108 120

Time (Month)

D
m

n
l

"RPS implementation speed (s2)" : Current

"RPS policy conversion speed (s1)" : Current

Sustainability 2018, 10, x FOR PEER REVIEW  14 of 20 

 

(e) 

 

(f) 

 

(g) 

RPS-enabled power generation enterprises (green power enterprises) (N)

600

450

300

150

0

0 12 24 36 48 60 72 84 96 108 120

Time (Month)
"RPS-enabled power generation enterprises (green power enterprises) (N)" : Current

TGC oversupply

20 B

10 B

0

-10 B

-20 B

0 12 24 36 48 60 72 84 96 108 120

Time (Month)

M
W

TGC oversupply : Current

TGC price

0.4

0.3

0.2

0.1

0

0 12 24 36 48 60 72 84 96 108 120

Time (Month)

y
u
an

/k
W

h

TGC price : Current

Sustainability 2018, 10, x FOR PEER REVIEW  14 of 20 

 

(e) 

 

(f) 

 

(g) 

RPS-enabled power generation enterprises (green power enterprises) (N)

600

450

300

150

0

0 12 24 36 48 60 72 84 96 108 120

Time (Month)
"RPS-enabled power generation enterprises (green power enterprises) (N)" : Current

TGC oversupply

20 B

10 B

0

-10 B

-20 B

0 12 24 36 48 60 72 84 96 108 120

Time (Month)

M
W

TGC oversupply : Current

TGC price

0.4

0.3

0.2

0.1

0

0 12 24 36 48 60 72 84 96 108 120

Time (Month)

y
u
an

/k
W

h

TGC price : Current



Sustainability 2018, 10, 1748 14 of 20

Sustainability 2018, 10, x FOR PEER REVIEW  14 of 20 

 

(e) 

 

(f) 

 

(g) 

RPS-enabled power generation enterprises (green power enterprises) (N)

600

450

300

150

0

0 12 24 36 48 60 72 84 96 108 120

Time (Month)
"RPS-enabled power generation enterprises (green power enterprises) (N)" : Current

TGC oversupply

20 B

10 B

0

-10 B

-20 B

0 12 24 36 48 60 72 84 96 108 120

Time (Month)

M
W

TGC oversupply : Current

TGC price

0.4

0.3

0.2

0.1

0

0 12 24 36 48 60 72 84 96 108 120

Time (Month)

y
u
an

/k
W

h

TGC price : Current

Figure 7. The simulation results of policies’ evolution. (a) The change of M1 and; (b) The change of p1

and q1; (c) The change of p2 and q2; (d) The change of s1 and s2; (e) The change of N; (f) The change of
TGC oversupply; (g) The change of TGC price.

4. Discussion

As mentioned above, the external influences in the model are mainly government behaviors,
which are the decline of FIT subsidy and RPS unit fine. These two parameters are controllable by
the government, and appear as exogenous variables in the model. The government can control the
speed of RPS implementation by changing the decline rate of FIT subsidy and the size of RPS unit fine.
Therefore, we will discuss the impact of changes in these two exogenous variables on policy evolution
and the development of the TGC market in this section.

4.1. Decline Rate of FIT Subsidy

We set three scenarios of the decline rate of FIT subsidy as 0.25%, 0.35%, and 0.45% per month,
respectively, and the results are shown as Figure 8. It shows that the higher the decline rate of
FIT subsidy, the faster the amount of FIT-enabled wind power enterprises declines, and the faster the
policy evolves (in Figure 8a); the greater the fluctuation of RPS policy conversion speed, indicating
that the higher the utilization degree of knowledge flow, and the better the RPS policy evolution effect
(in Figure 8b); the faster and more the green power enterprises grow (in Figure 8c); the greater the
fluctuation of TGC price, and the more active the TGC trading market (in Figure 8d). Thus, it can be
seen that increasing the decline rate of FIT subsidy contributes to the policies’ evolution, which can
increase the amount of green power enterprises and the activity of the TGC trading market.
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Figure 8. The simulation results under various decline rates of FIT subsidy.(a) The change of M1 under
various decline rates of FIT subsidy; (b) The change of s1 under various decline rates of FIT subsidy;
(c) The change of N under various decline rates of FIT subsidy; (d) The change of TGC price under
various decline rates of FIT subsidy.

4.2. RPS Unit Fine

We set three scenarios of the RPS unit fine as 0.8 yuan/kWh, 1 yuan/kWh, and 1.2 yuan/kWh,
respectively, and the results are shown as Figure 9. It shows that the higher the RPS unit fine, the faster
the amount of potential wind power enterprises in the market declines, and the faster the policy
evolves (in Figure 9a); the greater the fluctuation of RPS implementation speed, indicating that the
higher the utilization degree of knowledge flow, and the better the RPS policy evolution effect (in
Figure 9b); the faster and more the amount of green power enterprises grow (in Figure 9c); the greater
the fluctuation of TGC price, and the more active the TGC trading market (in Figure 9d). Thus, it can
be seen that increasing the RPS unit fine contributes to the policies’ evolution, which can increase the
amount of green power enterprises and the activity of the TGC trading market.
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5. Conclusions

This paper improves the traditional Bass model and proposes an evolutionary SD model of
renewable energy price mechanism based on the improved Bass model. This study mainly improves
the Bass model from the following aspects: (1) We divide the diffusion of technological innovation into
three phases, and there is a delay effect between each phase. (2) We introduce the random probability
of enterprises entering or leaving the market, and assume that the market potential fluctuates within
a certain range. (3) We introduce the knowledge stock and consider its impact on the adoption speed
of technological innovation. (4) We combine the original technology with the new technology to build
the development system and consider the evolution process between them.

This paper mainly studies the evolution process of the policies from FIT to RPS, and takes China’s
wind power industry as an example to simulate the model. The model and case study proposed
in this paper are in good agreement with the Chinese government’s decisions. On the one hand,
the external influences considered in our study are all mechanisms that the Chinese government
is implementing or will implement. On the other hand, by comparing the simulation data of our
study with the planning data of the Chinese government, it is found that the simulation results are in
line with the development trend of China’s wind power in the future. The results show that, on the
one hand, the power generation enterprises judge whether they are willing to implement RPS and
communicate with each other by observing the fluctuation of TGC price, which forms the internal
influence in the process of policy evolution. On the other hand, the government has an external
influence on the evolution process by reducing FIT subsidies and setting RPS fine. Both of the internal
and external influences affect the degree and speed of knowledge flow, thereby promoting policies’
evolution. The results of the evolution is that FIT can effectively and quickly evolve to RPS, and all
the power generation enterprises will implement RPS, and the amount of green power enterprises
eventually grows steadily and slowly. In addition, increasing the decline rate of FIT subsidy and RPS
unit fine can effectively promote the evolution of RPS policy, and also improve the amount of green
power enterprises and the activity of the TGC trading market.

This paper notes some limitations that are still to be improved upon. Many existing literature
have studied the impact of FIT and RPS on the profits and risks of the renewable energy industry and
produced different perspectives [30–32]. However, our study does not consider the role of profits and
risks in the process of policies’ evolution. Future studies can comprehensively consider these factors,
so that the research results will be more consistent with the actual situations.
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