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Abstract: As hacking techniques become more sophisticated, vulnerabilities have been gradually
increasing. Between 2010 and 2015, around 80,000 vulnerabilities were newly registered in the
CVE (Common Vulnerability Enumeration), and the number of vulnerabilities has continued to
rise. While the number of vulnerabilities is increasing rapidly, the response to them relies on
manual analysis, resulting in a slow response speed. It is necessary to develop techniques that
can detect and patch vulnerabilities automatically. This paper introduces a trend of techniques
and tools related to automated vulnerability detection and remediation. We propose an automated
vulnerability detection method based on binary complexity analysis to prevent a zero-day attack.
We also introduce an automatic patch generation method through PLT/GOT table modification to
respond to zero-day vulnerabilities.
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1. Introduction

The number of vulnerabilities is increasing rapidly due to the development of new hacking
techniques. Between 2010 and 2015, around 80,000 vulnerabilities were newly registered in the major
database known as the CVE (Common Vulnerability Enumeration) [1]. In recent years, the scope
of security threats has also been expanded; i.e., IoT [2], Cloud [3], etc. The number of zero-day
vulnerabilities has soared to the point that specialists can no longer be relied upon to respond to
vulnerabilities. In order to respond quickly to a zero-day attack, automated vulnerability detection
and automatic patching processes are necessary. In this paper, we propose a technology that performs
fuzzing and symbolic execution based on binary complexity to automatically detect vulnerabilities.
In addition, we propose an automatic patching technique to modify the GOT/PLT table to patch binary
for a quick response to the attack of an automated vulnerability detection. In Section 2, we analyze
trends and techniques for automated vulnerability detection and automated vulnerability remediation.
In Section 3, we introduce our method that automatically detects vulnerability using a hybrid fuzzing
based on binary complexity analysis and automatic patch vulnerability by loading a safe library
through the GOT/PLT table modification. In Section 4, our experimental results are presented. Finally,
in Section 5, we discuss our conclusion and future work.

2. Related Works

2.1. Automated Vulnerability Detection

2.1.1. Fuzzing

Fuzzing is a testing method that causes the target software to crash by generating random
inputs. Fuzzing was first introduced by the University of Wisconsin’s Professor Miller Project in
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1988 [4]. The project was promoted to test the reliability of Unix utilities by generating random inputs.
The professor in this project confirmed that arbitrary input values were delivered to the computer
under the influence of the storm while trying to login remotely to his computer. The program was
terminated due to the unintended input value and this experience evolved into the concept of fuzzing,
which injects random input values into software and causes errors.

Fuzzing is divided into dumb fuzzing and smart fuzzing, and is dependent on input modeling
and divided into Mutation Fuzzing and Generation Fuzzing according to the test case generation
method. Dumb fuzzing is the simplest form of fuzzing technology because it generates defects by
randomly changing the input values to the target software [5]. The test case creation speed is fast
because it is simple to change the input value; however, it is difficult to find a valid crash because
the code coverage is narrow. Smart Fuzzing is a technology that generates input values suitable for
the format through target software analysis and the generation of errors [6–9]. Smart fuzzing has
the advantage of knowing where errors can occur through a software analysis. A tester can create
a test case for that point to extend code coverage and generate a valid crash. However, there is
a disadvantage in that it requires expert knowledge to analyze the target software, and it takes a long
time to generate a template suitable for software input. Mutation fuzzing is a test technique to modify
the data samples to enter the target software. Generation fuzzing is a technology that models the
format of the input values to be applied to the target software and creates a new test case for that
format. Recently, an evolutionary fuzzing technique has been introduced that generates new input
values by providing feedback on the target software’s response [10,11].

2.1.2. Symbolic Execution

Symbolic execution is a technique that explores feasible paths by setting an input value to
a symbol rather than a real value. The symbolic execution was first published in King’s paper in
1975 [12]. This test technique was developed to verify that a particular area of software may be
violated by the input values. The symbolic execution is largely divided into the offline symbolic
execution and the online symbolic execution. The offline symbol execution solves by choosing only
one path to create a new input value by resolving the path predicate [13]. The program must be
executed from the beginning to explore other paths, so there are disadvantages because it causes
overhead due to re-execution. The online symbolic execution is the way in which states are replicated
and path predicates are generated at every point where the symbol executor encounters the branch
statement [14,15]. There is no overhead associated with reissuing using the online method, but the
downside is that it requires the storage of all status information and the simultaneous processing of
multiple states, leading to significant resource consumption. In order to solve this problem, the hybrid
form symbol is suggested.

The hybrid symbolic execution saves state information through online symbolic execution
whenever a branch statement is executed and proceeds until memory is exhausted [16]. When there is
no more space to save, a switch to the offline symbolic execution occurs and a path search is performed.
We have solved the memory overflow problem of the online symbolic execution by applying the
method of saving the state information and using it later through the hybrid symbolic execution.
In addition, it solves the overhead of the offline symbolic execution because it does not need to be
executed again from the beginning. In recent years, the concolic execution, which is a method of testing
by substituting an actual value (Concrete Value) and testing a mixture of symbolic executions, has been
proposed. This technique is a technique of actually assigning a concrete input value and generating
a new input value by solving the path expression when the actual input value meets the branching
statement. The reason for executing the actual value is that if the symbolic executor encounters
a difficult problem and it takes a long time or does not solve the problem, the test can no longer be
performed. However, if the actual value is substituted, a deeper path search becomes possible.
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2.1.3. Hybrid Fuzzing

The hybrid fuzzing method is a technique where the automatic exploitation of vulnerabilities
combines the advantages of fuzzing to generate random input values with the concolic execution
to track the program execution path. The hybrid fuzzing solves the fuzzer incompleteness and the
path explosion problem of the concolic execution. Driller is a typical tool for hybrid fuzzing [17].
The driller uses the fuzzer to search for the initial segment of the program. If the process is stopped by
the conditional statement, the concolic engine is used to guide the next section and the fuzzer takes
over again and searches for vulnerabilities in the deep path more quickly. Driller is a hybrid fuzzing
tool using AFL (American Fuzzy Lop) [9] and Angr [18]. AFL is a fuzzer that generates and transforms
input values through a genetic algorithm and Angr is an engine that performs symbol execution by
converting binary codes into Valgrind’s VEX IR, which is also known by Mayhem and S2E [19] as
the most optimized symbol execution engine. The driller performs fuzzing through the AFL and
calls the concolic execution engine Angr for the purpose of finding a new state transition path, if the
fuzzer is no longer able to find additional state transitions. In this case, the main reason that the fuzzer
cannot find the additional state transition path is that it cannot generate specific input values to satisfy
complex conditional statements in the software. The concolic execution engine that receives the control
right at that point generates the input value, satisfying the complex condition by using the constraint
solver. The generated value is passed to the fuzzer’s queue and the control is also passed to the fuzzer
to perform the fuzzing. The driller can perform this process repeatedly to search for a fast and deep
path. An important factor in determining efficiency in this analytical flow is the avoidance of the path
explosion, which is a limiting point inherent in the concolic execution. This is because the limited
execution path is analyzed by the input value generated through the fuzzing. The tools and features
related to automated vulnerability detection techniques are shown in the Table 1.

Table 1. Automated Vulnerability Detection Tool Comparison.

Technique Tool Testing Input Generation Strategy

Fuzzing
Zzuf Blackbox Mutation Algorithm
AFL Blackbox Genetic Algorithm

Peach Blackbox Format Modeling

Symbolic Execution

Angr Whitebox Stepping
KLEE Whitebox Random Path
S2E Whitebox Search Heuristics

Mayhem Whitebox Hybrid

Hybrid Fuzzing Driller Greybox Selective

2.2. Automated Vulnerability Remediation

2.2.1. Binary Hardening

Binary Hardening can be divided into OS-level memory hardening technologies and
Compiler-level binary reinforcement technologies. First, OS-level memory-enhancing technologies
include ASLR (Address Space Layout Randomization), DEP (Data Execution Prevention/Not
Executable), and ASCII—Armor. The ASLR is a technique that provides an Image Base value randomly
when a program is mapped to a virtual memory. It is a security technique that prevents attacks by
making it difficult for attackers to figure out the memory structure of the target programs. DEP/NX
is a technology to prevent code from being executed in data areas such as stacks and heaps. It limits
the execution authority over the stack or heap area, thereby preventing attacks. ASCII—Armor
is a technology that protects a shared library space from the buffer overflow attacks by inserting
NULL(\x00) bytes in the top of its address. The inserted NULL bytes make it impossible to reach
the address.
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The technologies that are applicable to the compilers are PIE (Position Independent Executable),
SSP (Stack Smashing Protector), and RELRO (Relocation Read-Only. First, PIE is a technology that
is similar to the ASLR provided by the operating system to apply the logical addresses during the
compilation so that the addresses mapped to the virtual memory are random each execution time.
The difference with ASLR is that the ASLR applies the random address to the stack, heap, and shared
library space of the memory area and the PIE applies the logical addresses in binary to randomization.
A SSP is a technique to prevent an attack that can overwrite SFP (Saved Frame Pointer) by inserting
a specific value (Canary) for monitoring into the stack, especially between the buffer and SFP. In case
of a buffer overflow attack, to overwrite the SFP, an attacker also overwrites the canary so that the
monitoring modulated canary detects the buffer overflow attack. Finally, the RELRO is a technology to
protect memory from being changed by making the ELF binary or data area of the process read-only.
There are two types of methods, partial RELRO and full RELRO, depending on the state of the GOT
domain. Although partial RELRO with a writable GOT domain can consume less resources and
execute faster than full RELRO, it is vulnerable to attacks such as a GOT overwrite. On the other hand,
full RELRO with a read-only GOT domain consumes more resources and is slower than the partial
RELRO, but it could prevent the attack using the GOT domain. Features related to binary hardening
techniques are shown in the Table 2.

Table 2. Binary Hardening technique comparison.

Hardening Level Hardening Technique Protected Area Hardening Method

OS-Level Hardening
ASLR Stack, Heap, Library Randomize image base
DEP Stack, Heap Prevent code execution

ASCII-Armor Library Insert Null byte

Compiler-Level Hardening
PIE All Randomize logical address
SSP Stack Insert value detecting overflow

RELRO GOT Create read-only data area

2.2.2. Automatic Patch Generation

A major technology for automatic patch generation is generating patches using genetic algorithms.
Genprog, announced in 2009, is the technology that has had the biggest impact on studies on
automated patching [20]. Genprog a technique to automatically patch C language-based programs.
After converting the source code structure of the target software to AST (Abstract Syntax Tree),
it patches the anomaly node with three modifications; delete, add, and replace. To modify nodes,
it uses templates for each error. According to the study, 55 of the 105 common bugs were modified,
and vulnerabilities such as Heap Buffer Overflow, Non-Overflow Dos, Integer Overflow, and Format
String vulnerability were patched.

Another technology for automatic patch generation is automated patch generation using error
report information. R2Fix is the typical tool for generating a patch automatically using error report
information, it is based on the fact that there are many errors in the developed software that have not
been modified due to a lack of resources to correct the already known errors [21]. R2Fix automatically
performs patches by combining error correction patterns, machine learning, and patch generation
techniques. R2Fix consists of three modules: Classifiers, Extractor, and Patch Generator. Classifiers
apply machine learning to collect error information from error reports and automatically categorize,
Extractors extract the general parameters (file name, version, etc.) and detailed information parameters
(buffer name, size, bound check condition, etc.) for each type of error, and lastly, the Patch Generator
generates and applies patch codes using modification patterns. According to the study, R2Fix
performed a vulnerability patch for buffer overflow, null pointer reference, and memory leakage
in Linux kernels, Mozilla, and Apache. It also created 57 patches for common errors, five of them were
patches for new errors not expected by the developer.
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Among the automatic patch generation technologies, there is a technique using patch information
written by experts. PAR is a representative tool for generating patches by automatically using patch
information written by experts [22]. It manually analyzes more than 60,000 patches to find several
common patterns, and automatically generates patches based on those patterns. PAR creates patches
through a total of three steps: Fault Localization, Template-based Patch Candidate Generation,
and Patch Evaluation. The Fault Localization phase uses a statistical fault positioning algorithm
that assign weights to each running syntax based on a Positive/Negative test case. In this step,
the key assumption is that the syntax on which the Negative test case is executed is likely to be
faulty. First, it runs both test cases and records the route. The route is then divided into four groups,
(1) execution syntax visited by both groups; (2) execution syntax for visiting Positive only; (3) execution
syntax for visiting Negative only and (4) execution syntax not visited by both groups, and assigned
weights. The weights are 1.0 for (3), 0.1 for (1), and 0 for others. Depending on the weights assigned,
this creates a candidate patch on that position. During the Template-based Patch Candidate Generation
phase, a total of 10 modification templates are applied, including Parameter Replacer, Method Replacer,
and Expression Replacer, for each fault location and each candidate patch. The generation of candidate
patches is carried out in three stages: (1) AST Analysis; (2) Context Check; and; (3) Program Edition.
Step (1), AST scan of the target program occurs and it analyzes the location of the error and its proximity.
Step (2) examine whether it is possible to modify the location with the modification template and,
if applicable, create a candidate patch by rewriting the AST for the target program based on the script
that is predefined in the modify template in Step (3). Finally, the Patch Evaluation phase evaluates
the suitability of the candidate patches created using the various test cases collected from the issue
trackers (Bugziila, JIRA, etc.) of the target program. For each candidate patch, the candidate patch
carrying out all test cases are selected and applied as final patches.

3. Automated Vulnerability Detection and Remediation Method

Fuzzing works much faster than symbolic execution and is capable of exploring a deeper range
of code depths. However, it is difficult for a fuzzer to explore widespread code. Symbolic execution
can discover possible paths of the program, but exploring is limited due to path explosion with
an explosive number of paths. Many types of hybrid fuzzers are available to complement these mutual
strengths and weaknesses. However, most hybrid fuzzers choose a vulnerability detection engine
without analyzing the target program. A program has complex parts such as loops and recursions that
are hard to explore, but some parts of the program are simply reachable. Accordingly, it is possible to
identify which parts are advantageous for fuzzing or symbolic execution. In this paper, we introduce
a binary analysis method to identify the advantageous areas for fuzzing and symbolic execution,
as shown in Figure 1.
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Hybrid fuzzing based on binary analysis selects fuzzing and symbolic execution through binary
complexity metrics. Using the selected vulnerability search engine, it creates a new seed that causes
a state transition. The newly created seed is used to analyze the binary complexity again and repeats
the same process. Hybrid fuzzing based on a binary analysis will then proceed to the next five steps:

1. Seed Selection: Seed selection is a step to select the input value to be used for vulnerability
detection. In a first iteration, a seed scheduler selects a seed defined by the user to detect
vulnerability. From a second iteration, a new seed created by the seed generation engine is
selected for the next step.

2. Binary Analysis: A binary analysis module executes the target binary in an instrumentation
environment. As a binary is executed, disassembly code and function call information are
extracted through binary instrumentation. Binary complexity and vulnerability scores are
analyzed using the extracted information. The results of the complexity analysis determine
whether to run a fuzzer or symbolic executor to detect vulnerabilities. The results of the
vulnerability score will be used to determine whether a detected crash is exploitable in
future research.

3. Engine Selection: The engine selection module chooses one of the fuzzing and symbolic execution
engines according to the result of the complexity analysis. The symbolic execution engine
is executed if the complexity analysis result is smaller than a specific threshold; otherwise,
the fuzzing engine is selected.

4. Seed Generation: The fuzzer or symbolic executor is executed to generate seeds to be used in the
next iteration. The seed generation process is performed until a state transition occurs. When
a state transition occurs, the seed value that caused the state transition is stored in the seed DB.

5. Repeat.

For automated vulnerability remediation, the vulnerable function-based patch technique is
utilized to create a weak function list and modify the PLT/GOT with respect to the corresponding
functions, to induce a call to a safe function. This is an application of the mechanism of lazy binding
that the binary performs as a dynamic linking method to use a shared library. In addition, as shown in
Table 3, the vulnerable function list is composed of 50 functions that can cause each of the four types of
vulnerability, such as buffer overflow, format string, race condition, and multiple command execution.

Table 3. List of Vulnerable Functions by Vulnerability Type.

Vulnerability Type Vulnerable Functions

Buffer Overflow
strcpy, wcscpy, stpcpy, wcpcpy, strecpy, memcpy, strcat, wcscat, streadd,
strtrns, sprintf, vsprintf, vprintf, vfprintf, gets, scanf, fscanf, vscanf, vsscanf,
sscanf, vfscanf, getwd, realpath

Format String syslog, vsyslog, fprintf, printf, sprintf, vfprintf, vprintf, vsprintf, snprintf,
vsnprintf, vasprintf, asprintf, vdprintf, dprintf

Race Condition tmpnam, tmpnam_r, mktemp

Multiple Command Execution system, popen, execve, fexecve, execv, execle, execl, execvp, execlp, execvpe

3.1. Binary Analysis

3.1.1. Instrumentation

To extract binary information, we leveraged a QEMU instrumentation tool [23]. QEMU is
a virtualization tool that is often used for binary dynamic analysis. QEMU produces a TCG (tiny code
generator) that converts binary code to IL (intermediate language). After converting, QEMU inserts
a shadow value at the IL to extract the information we want to analyze. We utilize this instrumentation
function to obtain disassembly code information and function call information.
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3.1.2. Complexity Analysis

We utilized the Halstead complexity metrics to analyze binary complexity. The metrics were
published in 1977 by Maurice Howard Halstead [24]. The metrics are intended to determine the
relationship between measurable properties and Software Complexity. The metrics were originally
developed to measure the complexity of the source code, but we applied it to measure the complexity
of the assembly code. We analyzed the binary complexity by measuring the number of operators and
operands in the assembly code using the metrics in Table 4.

Table 4. Halstead Complexity Metrics.

Classification Variable Description

Variable

n1 Number of Operators
n2 Number of Operands
N1 Total Operators
N2 Total Operands
n n1 + n2
N N1 + N2

Complexity Formula

V = N × log2n Program Volume

D = n1
2 ×

N2
n2 Program Difficulty

E = D×V Effort

B = E
2
3

3000
Estimated Bugs

3.1.3. Vulnerability Scoring

When executing the binary, it traces all the function calls of the executed path. In the traced
function calls, we check whether a function from the vulnerable functions shown in Table 5 is called.
We assigned a vulnerability score separately for dangerous functions and banned functions as shown
in Table 5. The number of a called function, which is defined as a dangerous function, is shown in
Table 5. We accumulate scores whenever a dangerous function or a banned function is called. We refer
to research on detecting vulnerabilities through software complexity and vulnerability scoring [25].
We are planning to extend this research to automatic exploit generation and automatic patch generation.

Table 5. Functions for Vulnerability Scoring.

Vulnerability Score Functions

0.5 (Dangerous) scanf, fscanf, vscanf, vsscanf, sscanf, vfscanf, snprintf, vsnprintf, strtok, wcstok, itoa

1.0 (Banned)
strcpy, wcscpy, stpcpy, wcpcpy, strecpy, memcpy, strcat, wcscat, streadd, strtrns,
sprintf, vsprintf, vprintf, vfprintf, gets, getwd, realpath, syslog, vsyslog, fprintf,
printf, sprintf, vfprintf, vprintf, vsprintf, vasprintf, asprintf, vdprintf, dprintf

3.2. Engine Selection

The Engine Selection Module choose between the fuzzing and symbolic execution engine through
a complexity analysis of the target binary. For the complexity analysis, the user defined the threshold
value and put this value as an input of the engine selection. The number of operators, number of
operands, total operators, and total operands extracted from dynamic binary instrumentation are
used to measure program difficulty. If the program difficulty is lower than the threshold, the engine
selection module chooses the symbolic executor. If not, the fuzzer is selected. The algorithm for the
vulnerability detection engine selection is as follows.
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Algorithm: Selection of Vulnerability Detection Engine

Input: Threshold T
Data: Difficulty D, n1, n2, N1, N2

Result: Seed S
function Engine Selection(T);
begin

D← Complexity (n1, n2, N1, N2);
if D < T then

S← Symbolic Executor();
else

S← Fuzzer();
end
return S;
end

3.3. Fuzzing

We used AFL (American Fuzzy Lop), which is an evolutionary fuzzer using a genetic algorithm.
AFL performs fuzzing in three main steps. First, the AFL mutates the seed value with various bit
mutation strategies (e.g., interest bit flip, subtract/add bit flip). Second, the AFL continues to monitor
the execution status and records the state transition to expand code coverage. Third, the AFL trims
parts that do not affect the state transition to minimize the range of mutation. By repeating the above
three steps, the input value is developed in the direction of the state transition. We did not modify
the core engine of the AFL Fuzzer and considered only its coordination with the symbolic executor.
The Fuzzer operates when the binary analysis result is greater than the threshold.

3.4. Symbolic Execution

The Angr tool was used for Symbolic Execution. Angr utilizes Valgrind’s VEX IR to build
a symbolic execution environment. SimuVEX, which is a VEX IR emulator, produces an environment to
execute a symbolic state translated from binary through VEX IR. If the branch statement is encountered
while executing binary, the path predicate for the branch is generated and the z3 solver tries to solve
the constraint in the path predicate. Angr also provides various functions for analyzing the control
flow graph. The main function is backward slicing, which helps to locate the source of a variable on
a program slice. We will develop this backward slicing function to find the root cause of a vulnerability.
It produces two methods to recover the control flow graph. We did not modify the symbolic execution
engine. The symbolic executor operates when the binary analysis result is less than the threshold.

3.5. Automatic Binary Patch

The execution file of the Linux environment is the ELF (Executable and Linkable File) format.
The structure of the ELF file is briefly shown in Figure 2, of which the text section contains the code
necessary for execution. In this section, the code is the main () function and is the initialization for
configuring the execution environment, consisting of argc/argv argument processing, stack setting,
library loading for normal execution of the main () function, and the termination processing code.
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Replacing the constructor area of the binary with the secure library loader (secure_libs_loader)
ensures that GOT can be changed before the main () function calls the weak function. The role of the
loader is to ultimately load libsecu.so, which is a safe library in the same memory space as binary.
The loader finds the address of the first dlopen () function as shown in Figure 3, and loads libsecu.so in
the memory. After libsecu.so is loaded, the loader calls a function that performs a PLT/GOT patch
within the library.
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All processes occur before the main () function is executed. Therefore, the patch process accesses
the GOT via the PLT of the vulnerability function to which the actual address is not yet bound. Since it
has never been called, the patch is executed by overwriting the GOT of the vulnerable function with
the address for the binding (usually PLT + 6 location) with the address of the safe function.

This technique is aimed at minimizing binary modification and indirectly replacing vulnerable
functions with safe functions. In other words, it is necessary to modify the constructor in order to load
the library of the binary circle, but there is no need to worry about the side-effects, such as destroying
the original program without touching other code parts. In addition, since the loaded library is in the
form of a shared library, it can be maintained and repaired independently. IoT devices such as smart
phones and smart TVs based on Linux are more likely to be applied as targets, therefore flexibility and
scalability can be expected.

4. Experimental Results

4.1. CFG Recovery Analysis

CFG recovery analysis is often used for the static analysis of vulnerabilities. Among the CFG
recovery techniques, backward slicing is useful for root cause analysis because it extracts the only
path information in which the binary is executed. We have a plan to utilize this analysis method to
analyze the root cause of vulnerability. For benchmarking, we compared CFG recovery speed with the
following tools, shown in Table 6, targeting 131 species of CGC challenge binaries [26]. We compared
these tools on a server with a 3.60 GHz Intel Core i7-4960X 2 CPU and 4 GB of RAM. The backward
slicing tool was slowest because of resource consumption, and the fastest tool was BAP with 1.63 s.

Table 6. CFG Recovery speed comparison.

Tool CFG Size (kb) Min. Binary (s) Max. Binary (s) Average Speed (s)

Angr (Backward Slicing) 14,641 10.39 93.74 79.46
Angr (CFG Fast) 105,007 0.87 12.037 5.12

IDA 104,779 0.18 2.33 1.82
BARF 7,367,244 1.60 192.23 63.08
BAP 323,891 0.56 36.50 1.63



Sustainability 2018, 10, 1652 10 of 12

4.2. Binary Patch Result

We used a Peach Fuzzer to trigger crashes of the open source software and compared the number
of crashes before and after applying the patches in order to evaluate how many crashes we can
eliminate through the automatic patch method. We chose eight open sources that were selected in
descending order of the number of published vulnerability reports. We evaluated our method on
a server with a 2.30 GHz Intel (R) Xeon E5-2650v3 CPU and 64 GB of RAM. The vulnerable functions
shown in Table 7 were converted to safe functions by safe library loading. Let B be the number of
crashes before the patch, and A be the number of crashes after the patch. The method of measuring
the crash removal rate was evaluated as R as shown in the following equation.

R(%) = (B − A)/B × 100 (1)

As a result, the average vulnerability removal rate was 59%, and the vulnerabilities of 25% binaries
were completely removed by automatic patch.

Table 7. Comparison before and after patch.

Binary Test Cases Crash (Before Patch) Crash (After Patch) Removal Rate

Lighthttpd 300 13 0 100%
Libhttpd 420 39 6 85%

Abyss 300 18 0 100%
Wsmp3d (low) 400 223 30 87%

Shttpd 500 18 15 17%
Pserv 300 0 0 -

Wsmp3d (high) 400 119 113 6%
kritton 300 38 31 19%

5. Conclusions

The number of vulnerabilities is increasing rapidly due to the development of new hacking
techniques. However, time-consuming software analysis depending on a vulnerability analyst make
it difficult to respond to attacks immediately. We proposed a method of Hybrid Fuzzing based on
a binary complexity analysis. We also introduced an automated patch technique that modifies the
PLT/GOT table to translate vulnerable functions into safe functions. The proposed model removed
an average of 59% of crashes in eight open-source binaries, and 100% in two binaries. Because a 100%
removal rate of crashes means that they are not exploitable, the result is significant, which means that
a hacker cannot attack any more. With these results, we can respond more quickly to hacker attacks
without the help of experts.

As a subject of future study, we will study automatic exploit generation to verify the patched
binary and root cause analysis of vulnerability to patch vulnerable parts directly. We will also research
the automatic classification of vulnerabilities by modeling various data mining techniques [27,28] and
machine learning techniques [29,30].
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