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Abstract: Conventional environmental-economic power dispatch methods constrain the total amount
of emissions of power plants, and they succeed in reducing emissions from the power sector. However,
they fail to address the mismatch between emission reductions and the resulting changes in regional
air quality. This paper proposes an ecology- and security-constrained unit commitment (Eco-SCUC)
model considering the differentiated impacts of generation-associated emissions on regional air
quality. A Gaussian puff dispersion model is applied to capture the temporal-spatial transport of air
pollutants. Additionally, an air pollutant intensity (API) index is defined for assessing the impacts
of emissions on the air quality in regions with differentiated atmospheric environmental capacities.
Then the API constraints are formulated based on air quality forecast and included in SCUC model.
Moreover, the stochastic optimization is employed to accommodate wind power uncertainty, and
the Benders decomposition technique is used to solve the formulated mixed-integer quadratic
programming (MIQP) problem. Case studies demonstrate that the Eco-SCUC can cost-effectively
improve air quality for densely-populated regions via shifting generation among units and can
significantly reduce the person-hours exposed to severe air pollution. Furthermore, the benefits of
wind power for air quality control are investigated.

Keywords: unit commitment; power dispatch; regional air quality; air pollutant dispersion;
threshold concentration

1. Introduction

Air quality issues arouse wide concerns all over the world. Electricity production is responsible
for large shares of atmospheric pollutants including sulfur dioxide (SO2), nitrogen oxide (NOx), and
fine particulate matter (PM2.5) [1–3]. According to [4–6], coal-fired power plants are primary stationary
sources of air pollutants that adversely harm human health. Population exposure to ambient air
pollutant concentration that exceeds the World Health Organization (WHO) guidelines would cause
significant mortality and morbidity [7]. During the past decades, air quality control, especially the
control of environmental and health damages attributable to coal-fired generation, has received much
attention in the power sector [8–11].

In China, although renewable energy resources are playing significant roles in improving air
quality, they cannot fully substitute for traditionally fueled generation at the moment. Coal-fired
power plants still account for over 72% of China’s electricity generation in 2015, and the nation
is expected to maintain a coal-dominant generation-mix through 2040 [12]. Moreover, renewable
generation is regarded as long-term solution due to its uncertain nature, such as wind speed and
solar radiation [13,14], and the costly investment [15,16]. Therefore, in the short-run, it is necessary to
develop new dispatch model to implement more timely and refined air quality control.
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Traditional environmental economic dispatch (ED) or unit commitment (UC) constrains the total
emissions of the power sector [17], and various environment-aware technologies and policies are
considered [18,19]. Wei et al. [20] proposed a bi-objective ED considering carbon capture plants and
wind power uncertainty. Zhang et al. [21] incorporated carbon emission trading in UC problem,
which is solved by an improved particle swarm optimization. Abdollahi et al. [22] introduced a
cost-emission-based UC taking into account demand response and emission regulation policies. Other
critical techniques include: energy storage [23–25], electric vehicle [26], and power-to-gas [27,28].
It is noted that most environmental ED/UC models enforce undifferentiated control on emissions or
impose uniform incentives to regulate air pollutants.

It is true that the undifferentiated approach can result in a net reduction of air pollutants on the
individual generating unit level. However, on the level of regional air quality management, a more
refined model is in need because of the trans-regional dispersion characteristics of air pollutants. The
impact of generation-associated emissions on regional air quality is a complex problem. It involves
meteorology (wind direction, wind speed, atmospheric stability), geography (distances between
polluting units and polluted regions), ecology (self-purification capability of the atmosphere), and
electricity (system load, network constraints). To address this issue, an air pollutant dispersion
model is needed to describe the dynamic transport of air pollutants under variant meteorological
conditions [29–31]. Sullivan et al. in 1973 [32] incorporated an air pollutant dispersion model into
ED to regulate ground-level SO2 concentrations. Schwezer et al. [33] integrated meteorology-aware
constraints into a fuel-mix problem. Chu et al. in 1977 [34] proposed an optimal ED implementing
marginal environmental taxes under different weather conditions. However, related work has
stagnated for decades due to the technology limitations. Nowadays, the air quality modeling and
advances in weather forecasting enable us to continue this kind of research [35,36].

On the one hand, the geographical distribution of generating units influences the population
exposure to the generation-associated air pollution. For example, the near-city units may severely
pollute its downwind human habitats, while the remote units near coal-mines and the wind farms
in unmanned regions hardly impact residential air quality. Standing from the people-oriented point
of view, these ‘low-impact’ units are encouraged to generate more power within the system limits.
On the other hand, regional air quality stress is impacted by local atmospheric environmental capacity
(AEC). AEC is for recognizing atmospheric stress limits above which human and ecosystem health
will face severe challenges. Generally, AEC is studied in terms of critical load [37,38] or ecological
footprint [39,40], and its value is impacted by regional population, atmospheric ventilation, dry/wet
deposition, humidity [41,42]. Densely-populated regions have lower AEC and sparsely populated
region is with higher AEC [43]. This inspires us to formulate a refined power dispatch to ‘transfer’
the potential air pollution away from densely-populated regions to sparsely populated regions and
unmanned regions, thereby reducing the total person-hours exposed to severe air pollution.

Thus, this paper proposes an ecology- and security-constrained unit commitment (Eco-SCUC)
model integrating air quality intensity (API) constraints and stochastic wind power. The API index
is defined for assessing regional air pollutant saturation level considering the dispersion processes,
weather conditions and geographical distribution of system and AEC. When the API ≥ 100%, the
region and its population will suffer air pollutant saturated time. The aim of the Eco-SCUC is to
balance the regional API distribution and reduce the person-hours exposed to saturated pollution via
shifting generation among units. For example, in Figure 1, under the predefined wind direction, the
API constraints will help curtail generation of power plant A to prevent air quality deterioration in
densely populated region and encourage generation of power plant B and other remote power plants
to meet the system load, because their emissions are transported to sparsely-populated and unmanned
regions with high AECs. Thus, the health impacts in densely populated region are alleviated and the
total person-hours exposed to severe air pollution for the entire region are reduced. As depicted in
the figure, the dispatching center is the controller; the coal-fired power plants and wind farm are the
controlled objects; the air quality ground stations are the data collectors, and the collected data are sent
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to the dispatching center to formulate API constraints; the solutions to the Eco-SCUC are the control
signals to scheduling generation.

Sustainability 2018, 10, x FOR PEER REVIEW  3 of 27 

collectors, and the collected data are sent to the dispatching center to formulate API constraints; the 
solutions to the Eco-SCUC are the control signals to scheduling generation. 

 
Figure 1. Cyber-physical framework of the proposed Eco-SCUC. Coal-fired power plant A and B are 
assumed to be identical near-city power plants. Remote power plants represent power plants near 
coal-mines which are located in sparsely-populated or unmanned regions. Blue dots represent air 
quality ground stations; and blue lines and green lines represent inputs and outputs for the 
dispatching center. 

The main contributions and novelty of this paper include:  

1. Gaussian puff dispersion is used to model the transport of emissions, and the contribution of 
emissions to air pollutant concentration increments in targeted regions is calculated. The API is 
calculated as the ratio of local air pollutant concentration to local AEC-based threshold 
concentration. The API constraints are formulated and integrated into typical SCUC. 

2. The Monte Carlo simulation with Latin hypercube sampling (LHS) and scenario reduction is 
used to generate wind power volatility scenarios. Additionally, Benders decomposition is used 
to solve the formulated stochastic mixed-integer quadratic programming (MIQP) problem.  

3. Case studies prove the effectiveness of the proposed model in improving air quality for 
densely populated region and reducing the person-hours exposed to severe air pollution for 
the entire region via shifting generation among units.  

4. Compared to undifferentiated dispatches, the Eco-SCUC considers trans-regional pollutant 
dispersion effects and differentiated population exposure to harmful pollutants. Instead of 
enforcing uniform regulations on emission, API constraints are formulated according to the 
differentiated impacts of coal-fired units on regional air quality. The model succeeds in 
mitigating the air pollution in densely-populated regions via shifting generation away from 
high-impact units to low-impact units and wind power. 

The environmental benefits that the Eco-SCUC model can deliver are as follows: firstly, it can 
balance air pollution between densely-populated regions and sparsely-populated regions, thereby 
alleviating urban air pollution pressure; secondly, as the model schedules generation with respect 
to the differentiated impacts of units on regional air quality, it can reduce the average and peak 
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Figure 1. Cyber-physical framework of the proposed Eco-SCUC. Coal-fired power plant A and B
are assumed to be identical near-city power plants. Remote power plants represent power plants
near coal-mines which are located in sparsely-populated or unmanned regions. Blue dots represent
air quality ground stations; and blue lines and green lines represent inputs and outputs for the
dispatching center.

The main contributions and novelty of this paper include:

1. Gaussian puff dispersion is used to model the transport of emissions, and the contribution of
emissions to air pollutant concentration increments in targeted regions is calculated. The API
is calculated as the ratio of local air pollutant concentration to local AEC-based threshold
concentration. The API constraints are formulated and integrated into typical SCUC.

2. The Monte Carlo simulation with Latin hypercube sampling (LHS) and scenario reduction is
used to generate wind power volatility scenarios. Additionally, Benders decomposition is used
to solve the formulated stochastic mixed-integer quadratic programming (MIQP) problem.

3. Case studies prove the effectiveness of the proposed model in improving air quality for densely
populated region and reducing the person-hours exposed to severe air pollution for the entire
region via shifting generation among units.

4. Compared to undifferentiated dispatches, the Eco-SCUC considers trans-regional pollutant
dispersion effects and differentiated population exposure to harmful pollutants. Instead of
enforcing uniform regulations on emission, API constraints are formulated according to the
differentiated impacts of coal-fired units on regional air quality. The model succeeds in mitigating
the air pollution in densely-populated regions via shifting generation away from high-impact
units to low-impact units and wind power.

The environmental benefits that the Eco-SCUC model can deliver are as follows: firstly, it can
balance air pollution between densely-populated regions and sparsely-populated regions, thereby
alleviating urban air pollution pressure; secondly, as the model schedules generation with respect to the
differentiated impacts of units on regional air quality, it can reduce the average and peak concentrations
of air pollutant in populated regions and help improve the level of air quality assessment of the city;
thirdly, it significantly reduces the person-hours exposed to harmful air pollutants, such as SO2, and



Sustainability 2018, 10, 1433 4 of 27

abates the associated human health impacts. Note that the proposed model does not include chemical
conversion from primary pollutants to secondary pollutants for now, and integrating secondary
pollutants into the Eco-SCUC model requires greater research effort.

The rest of this paper is organized as follows: Section 2 formulates the differentiated API
constraints; Section 3 describes the wind power generation scenarios; Section 4 formulates the
Eco-SCUC and provides the solution methodology; and Section 5 presents the case studies while the
conclusion is drawn in Section 6.

2. Formulating Differentiated API Constraints

In order to formulate regional differentiated API constraints, two critical parameters need to be
ascertained using applicable methods: generation-associated concentration and regional threshold
concentration. The former generally refers to the contribution of emissions of power plants to the
pollutant concentration at predefined location. Therefore, it is necessary to include a deterministic and
accurate dispersion model which can accommodate the varying meteorological conditions. In this
context, a Gaussian puff dispersion model is applied to capture the dynamic transport of air pollutants
from the emitting units to the concentration monitoring point. Secondly, the threshold concentration
at the predefined location reflects the air pollutant carrying capacity in the concerned region, which
depends on its AEC, population, area, etc. In this paper, an AEC method is employed to determine the
threshold concentration of air pollutants with respect to geographical variations. The methodology of
API constraints formulation is shown in Figure 2, and the modeling of the Gaussian puff model and
AEC model is presented in the following sub-sections accordingly.
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Figure 2. Methodology of formulating differentiated API constraints. Meteorological data are inputs
for Gaussian puff model, and the generation-associated concentrations Ci are calculated; the regional
threshold concentrations CT are derived according to AEC model. Based on Ci and CT, regional APIs
are obtained and differentiated constraints are formed according to regional background API value.

2.1. Gaussian Puff Dispersion

There are two commonly used air dispersion models: the steady-state Gaussian plume model
and the integrated Gaussian puff model. The former is based on the assumption of constant wind
speed and unchanging wind directions [34]. In comparison, the latter can accommodate fluctuating
wind directions, wind speeds, and atmospheric stabilities [30]. Thus, the Gaussian puff model is used
to describe the link between emissions at stacks (source) and air pollutant concentrations in polluted
regions (receptor). The diagram of the Gaussian puff model is shown in Figure 3.
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The Gaussian puff dispersion function is expressed as follows [34]:

Gi(τ, t; x, y, z) =
1

(2π)3/2σx(τ, t)σy(τ, t)σz(τ, t)eΨ/2
(1)

The intermediary parameter Ψ is calculated using Equations (A1) and (A2). When the atmospheric
condition is steady, standard deviation σx/y/z(·) is in log-linear relation with respect to dispersion period
(t – τ), which is expressed in (A3); when atmospheric condition is unsteady, the relationship is expressed
in Equation (A4). The atmospheric stability class v can be estimated by Pasquill grading method based
on cloud coverage, solar radiation, wind speed and actual measurements [44]. The solar radiation
level (−2 to +3) with respect to cloud coverage and solar altitude is given in Table A1; stability class v

(A–F) with respect to wind speed and solar radiation is given in Table A2; relation between standard
deviation and dispersion period with respect to v is shown in Figure A1.

Based on Equation (1), the contribution of emissions to regional air pollutant concentration Ci is:

Ci(t; j) =
t−τ

∑
τ

Qi(τ)Gi(τ, t; j) (2)

Qi(t) = siFi(pit) (3)

Fi(pit) = (ai p2
it + bi pit + ci)∆T (4)

where j represents the location (xj,yj) in the targeted polluted region, in this paper we only care the
ground-level concentration (assuming z ≈ 0).

2.2. Atmoshperic Environmental Capacity (AEC)

AEC represents the atmospheric stress limit within which the environmental system can return to
its original condition [43]. Widely applied approaches to estimating AEC are: (1) A-value method; and
(2) multisource modeling [45]. The latter requires accurate air quality model, such as the community
multi-scale air quality (CMAQ) modeling. Its disadvantage is the neglect of accumulation-removal
process of pollutants in the entire region. Thus, A-value method is applied in this paper. According
to [43], for a given volume in atmosphere and time interval, AEC is defined as the removal rate of
pollutant at the threshold concentration where the air pollutant emission rate (source) and removal
rate (sink) reach the source-sink equilibrium. In the equilibrium, regional threshold concentration can
be ascertained according to local AEC. The equilibrium is expressed in Equations (A5) and (A6), and
the derived concentration and A-value is expressed in Equations (A7) and (A8).
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When the generation and removal of air pollutant reach the equilibrium at location j and time t
( c = CT,tj, t→ ∞ ), the threshold concentration at location j and time t can be expressed as:

CT,tj =
ηtj

Atj

√
Sj

(5)

To sum up, the steps of calculating regional threshold concentration is as follows:
Step 1: Determine the removal rate of air pollutant ηtj.
The removal rate of air pollutant can be obtained via official environmental statistic Yearbooks

or Bulletins. In this paper, climate-average values of AEC during the air pollution-prone seasons
(November-February) are used, referring to [41].

Step 2: Determine A-value Atj and examined area Sj.
Atj can be calculated using Equation (A8), where U, H, vd, and vw are obtained through observation

data or modeling data. This paper mainly concerns atmospheric ventilation and considers Atj =√
πUtjH/2, where Utj is hourly predicted wind speed and H = 276.85 m referring to winter-average H

value in [41]. The resolution of Sj should be in consistency with that of ηtj and Atj.
Step 3: Calculate the threshold concentration CT,tj.
Based on the obtained ηtj, Atj and Sj, regional CT,tj are calculated by Equation (5).

2.3. Air Pollutant Intensity (API)

API is defined as the ratio of local air pollutant concentration to local threshold concentration:

APIi(t; j) =
Ci(t; j)

CT,tj
× 100% (6)

API0,tj =
C0,tj

CT,tj
× 100% (7)

API(t; j) =
NG

∑
i=1

APIi(t; j) + API0,tj (8)

where APIi(t;j) is calculated by Equations (2) and (6); API0,tj is calculated by Equation (7); C0,tj comes
from 24-h air quality forecast from ground stations; CT,tj is calculated by Equation (5). According
to Equation (8), the API at the predefined location is the sum of all generation-associated APIs and
background API.

Figure 4 shows the distribution of threshold concentration of SO2 and API of SO2 of one city in
Northeast China, respectively. It illustrates that densely populated regions (low-AEC regions) have
lower threshold concentrations and higher APIs.
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Figure 4. (a) SO2 threshold concentration and (b) API of SO2 by administrative-district-level of one
city in Northeast China. Daily-average concentration data are from [46].

2.4. Differentiated API Constraints

The differentiated API constraints can be expressed as:

API(t; j) ≤ max
{

APIE,tj, API0,tj
}
∀j (9)

APIE,tj refers to the expected API value at location j and time t, which is normally set to 100%
(air pollutant saturated state). Additionally, the value of APIE,tj can be differentiated according to the
local pollution level. For example, it can be set to higher value (>100%) when the air quality control is
loosened in the targeted region; reversely, it can be set to lower value (<100%) when the region suffers
severe air pollution and the air quality control is tightened.

When the background API value API0,tj ≥ APIE,tj, the impacting units are expected to shut down
or curtail their generation without violating system security constraints; when API0,tj < APIE,tj, the
impacting units are allowed to generate more to meet the load.

3. Formulating Wind Power Scenarios

The volatile and intermittent nature of wind leads to the inaccuracy of wind power prediction,
challenging the secure operation of power system. According to [47], the intermittency refers to the
unavailability of wind power within a relatively long period (≥1 h) and can be addressed by hourly
wind forecast; the volatility refers to small fluctuations and can be mitigated by simulating possible
wind power scenarios (<1 h). In this paper, the Weibull distribution is used to simulate the wind speed
patterns [15], based on which the Monte Carlo simulation is used with LHS and scenario reduction
techniques to generate possible wind power scenarios.

3.1. Distribution of Wind Speed

Field data suggest that wind speed at a given location follows Weibull distribution [48], whose
cumulative distribution function (CDF) and probability density function (PDF) are:

FV(v) =
v∫

0

fv(λ)dλ =1− exp
[
−
(v

c

)k
]

(10)

fV(v) =
kvk−1

ck exp
[
−
(v

c

)k
]

, v ≥ 0 (11)
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The mean and standard variance of Weibull function is expressed by Equations (A9)–(A11). When
k = 1, the distribution of V follows exponential distribution; when k = 2, the distribution of V follows
Rayleigh distribution. To embrace the variety of wind speed patterns, our derivation of wind power
distribution is based the general assumption that k > 0. Actual wind measurement data are used to
estimate parameters c and k, as in Equations (A12) and (A13), and the estimation values are as in
Equations (A14)–(A16).

3.2. Distribution of Wind Power

The relationship between wind power and wind speed depends on factors including generator
efficiencies, wind rotor, inverter, gearbox and other wind turbine characteristics [49]. As shown in
Figure A2, the simplified piecewise relationship can be expressed using Equation (A17). Two discrete
probabilities for PW = 0 and PW = pwr [50] are expressed in Equations (A18) and (A19). According
to the theory for the function of random variables [15], the PDF and CDF of wind power can be
expressed as:

fPW(pw) =
khvin

pwrc

[
(1 +

hpw
pwr

)vin/c
]k−1

exp

{
−
[
(1 +

hpw
pwr

)vin/c
]k
}

(12)

FPW(pw) = Pr(PW ≤ pw) =


0 (pw < 0)

1− exp
{
−
[
(1 + hpw

pwr
)vin/c

]k
}
+ exp

[
−
( vout

c
)k
]

(0 ≤ pw < pwr)

1 (pw ≥ pwr)

(13)

h =
vr

vin
− 1 (14)

Examples of the CDF and PDF of wind power are plotted in Figure 5, respectively.

1 
 

 
Figure 5. CDF and PDF of wind generation PW: (a) CDF of PW; (b) PDF of PW. Assumptions: c = 15,
vin = 5 m/s, vout = 45 m/s, vr = 15 m/s, k = 1.2, 1.7, or 2.2. CDF includes both discrete probabilities
(marked as colorful dots) and continuous probabilities, while PDF only contains continuous portions.

3.3. Scenario Generation and Reduction

To capture the stochastic availability of wind power, first, the Monte Carlo simulation is used to
generate a large number of scenarios based on the wind power distribution and forecasted wind power.
Second, LHS [47], which can be easily included in the Monte Carlo method, is applied to reduce the
number of runs and achieve more appropriate random distribution of wind power. Simulation tests
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show that the Monte Carlo method with LHS can better approximate the required PDF of wind power
than the simple Monte Carlo. Third, scenario reduction technique [51] is used to remain representing
scenarios by eliminating scenarios of low probabilities and aggregating scenarios of close probabilities
within an acceptable level of variation of the simulation precision.

4. Modeling Eco-SCUC

As shown in Figure 6, the proposed Eco-SCUC integrates differentiated API constraints into typical
SCUC model for a hybrid power system consisting of coal-fired units and wind power generation.
To accommodate wind power uncertainty, the day-ahead forecasted wind power and system load
profile are required as electrical inputs for the Eco-SCUC. To differentiate the impacts of coal-fired units
on regional air quality stress, the environmental inputs including air quality and weather forecasts are
needed. The goal of the Eco-SCUC is to balance regional air quality stress among urban, suburban,
and unmanned regions via shifting generation among units.
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In this paper, SO2 is assumed to be the major air pollutant in the targeted region, thus, it is taken
as the single pollutant under study. However, the model can be extended to accommodate other single
or multiple pollutants (e.g., NOx, PM2.5). This study does not consider chemical conversions from
primary pollutants to secondary pollutants for now.

4.1. Integrating Wind Power Scenarios

SCUC with volatile wind power is formulated as a stochastic optimization [52] problem with the
objective function of Equation (15) and constraints (Equations (16)–(36)). To consider the uncertainties
of wind power, Monte Carlo simulation with LHS and scenario reduction techniques are used to
generate possible scenarios based on the wind power distribution described in Equation (12). In each
scenario, the simulated hourly random wind power will replace the forecasted hourly wind power in
re-dispatch, thus, the hourly constraints (Equations (16)–(27)) are re-used as the scenario constraints
(Equations (28)–(36)).

4.1.1. Objective Function

The objective function of typical SCUC is the sum of fuel, startup and shutdown costs of coal
units, while assuming that the operating cost of wind-powered units is zero:

min
NT

∑
t=1

NG

∑
i=1

[γiFi(pit)Iit + Uit + Dit] (15)

where Fi(pit) is calculated using Equation (4); and Uit/Dit is normally regarded as step function with
respect to time t—in this paper we take it as a constant value for simplification.
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4.1.2. Hourly Constraints

Hourly SCUC constraints include system power balance constraints (Equation (16)), wind power
limit (Equation (17)), unit minimum on/off limits (Equations (18) and (19)), unit ramping up/down
limits (Equations (20) and (21)), unit generation limits (Equation (22)), system regulation up/down
limits (Equations (23) and (24)), system spinning/operating reserve limits (Equations (25) and(26)),
and generalized DC power flow constraints (Equation (27)):

NG

∑
i=1

pit Iit +
NW

∑
i=1

pwit = PDt + PLt ∀t (16)

0 ≤ pwit ≤ pw f
it ∀i, ∀t (17)

[Xon
i,t−1 − Ton

i ][Ii,t−1 − Iit] ≥ 0 ∀i, ∀t (18)

[Xoff
i,t−1 − Toff

i ][Ii,t−1 − Iit] ≥ 0 ∀i, ∀t (19)

pit − pi,t−1 ≤ [1− Iit(1− Ii,t−1)]PRU
i + Iit(1− Ii,t−1)Pi.min (20)

pi,t−1 − pit ≤ [1− Ii,t−1(1− Iit)]PRD
i + Ii,t−1(1− Iit)Pi.min (21)

Pi,min Iit ≤ pit ≤ Pi,max Iit ∀i, ∀t (22)

NG

∑
i=1

RUit Iit ≥ RUt ∀t (23)

NG

∑
i=1

RDit Iit ≥ RDt ∀t (24)

NG

∑
i=1

RSit Iit ≥ RSt ∀t (25)

NG

∑
i=1

ROit Iit ≥ ROt ∀t (26)

|SF(KPP + KWPW−KDPD)| ≤ PL (27)

4.1.3. Scenario Constraints

For each simulated scenario, the scenario constraints include system power balance constraints
(Equation (28)), wind power limit (Equation (29)), unit generation limits (Equation (30)), system
regulation up/down limits (Equations (31) and (32)), system spinning/operating reserve requirements
(Equations (33) and (34)), generalized DC power flow constraints (Equation (35)) and permissible
adjustment of real power generation limits (Equation (36)):

NG

∑
i=1

ps
it Iit +

NW

∑
i=1

pws
it = PDt + PLt ∀t, ∀s (28)

0 ≤ pws
it ≤ pw f ,s

it ∀i, ∀t (29)

Pi,min Iit ≤ ps
it ≤ Pi,max Iit ∀i, ∀t, ∀s (30)

NG

∑
i=1

RUs
it Iit ≥ RUt ∀t, ∀s (31)

NG

∑
i=1

RDs
it Iit ≥ RDt ∀t, ∀s (32)
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NG

∑
i=1

RSs
it Iit ≥ RSt ∀t, ∀s (33)

NG

∑
i=1

ROs
it Iit ≥ ROt ∀t, ∀s (34)

|SF(KPPs + KWPWs −KDPD)| ≤ PL ∀s (35)

|ps
it − pit| ≤ ∆i ∀i, ∀t, ∀s (36)

Equation (36) ensures that the re-dispatch of coal-fired units can accommodate the volatility
of wind power. For each scenario and time interval, Equation (36) is applied for mitigating the
violations based on which corrective and preventive actions are formulated. ∆i represents the adjustable
magnitude of real power of coal-fired units in ten minutes (i.e., 10/60 of hourly ramping rate of
units) [47].

4.2. Integrating API Constraints

The differentiated API constraints are expressed in Equation (9). As the violation of API constraints
may fail the optimal solution to the formulated MIQP problem, the big M-slack method is employed.
The objective function of the proposed model can be expressed as:

NT

∑
t=1

NG

∑
i=1

[γiFi(pit)Iit + Uit + Dit] +
NT

∑
t=1

NJ

∑
j=1

Mtj ·max
{

ζtj, 0
}

(37)

API(t; j)−max
{

APIE,tj, API0,tj
}
= ζtj (38)

where Mtj is the penalty function determined by different environmental-justice-associated factors,
such as geographical population, regional GDP, ecological GDP, etc., in this paper, Mtj is taken as
a large enough constant for simplicity; ζtj is the artificial slack variable which is calculated using
Equation (38).

The objective function of the Eco-SCUC is the minimization of total cost including the penalties
caused by violation of regional API constraints as expressed in Equation (37), and the constraints
include hourly SCUC constraints (Equations (16)–(27)) and wind power scenario constraints (Equations
(28)–(36)). The Eco-SCUC incorporating API constraints and volatile wind power can be expressed as:

min (37)

s.t. (16)-(36), (38)

4.3. Solution Methodology

To reduce the computation burden of the formulated MIQP, Benders decomposition technique
is applied to unbundle the problem into a master UC problem followed by a network security check
sub-problem. Furthermore, re-dispatch will be conducted for accommodating the volatility of wind
power in the scenario feasibility check sub-problems. If any violation appears in the sub-problems,
the Benders cuts will be created and added to master UC problem. The flowchart of the two-stage
algorithm is plotted in Figure 7.
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Figure 7. Eco-SCUC solution methodology. Part I includes the master UC problem and hourly network
security check sub-problem; Part II includes the wind power scenario feasibility check sub-problem.

Step 1: the input parameters including unit data, system data, 24-h load forecast, hourly wind
power forecast, predicted meteorological conditions, regional background API data are collected;

Step 2: Monte Carlo simulation with LHS is applied to generate hourly wind power volatility
scenarios; the number of possible scenarios is reduced by scenario reduction technique;

Step 3: the initial dispatch is checked in the hourly network security check sub-problem 1 in
the first stage (part I); if any violation occurs, feasibility Benders cut will constrain the violating unit
outputs and will be added to the master UC problem for updating new commitment;

Step 4: the re-dispatch for accommodating wind power volatility is considered in the scenario
feasibility check sub-problem 2 in the second stage (part II); if any violation occurs, optimality Benders
cut will prevent and revise the commitment solution and will be added to the master UC problem; the
scenario check sub-problem is optimized by Equation (36); and

Step 5: the iterations between the master UC problem and feasibility check sub-problem will
continue until the generation re-dispatch can satisfy the simulated wind power scenarios.

Detailed descriptions about Benders decomposition can be referred to [13,47]. The formulated
MIQP can be solved by multiple commercial solvers [53]. In this paper, the problem is solved using
CPLEX 12.1 optimizer in MATLAB (MathWorks, Natick, MA, USA).
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5. Case Studies

5.1. Description

The Eco-SCUC is tested for a 24-h period in a 14-bus power system consisting of six6 coal units
and wind power. Figure 8 shows the geographical distribution of the units (G1–G6) and regions
(R1–R5) with differentiated threshold concentrations. The wind turbines are integrated at Bus 9.

1 

 

 

Figure 8. Geographical distribution of unit G1–G6 and region R1–R5. R1 represents the city center;
R1–R4 represent the densely-populated regions; and R5 represents the sparsely-populated region.

Parameters of system are listed as follows: Table A3 lists the fuel consumption coefficients and
stack parameters of coal units; Table A4 shows the generation costs, on/off limits, generation limits,
ramping limits of coal units; and Table A5 lists the transmission line impedances and power flow
limits. The population in R1–R5 is 2.65, 1.13, 0.56, 0.27, and 0.08 million, respectively.

Forecasted parameters are listed as follows: Table A6 gives the hourly forecasted wind power
and system load; Table A7 shows the simulated wind power scenarios (1–10) based on a standard
deviation of 10% of the predicted wind power as listed in Table A6; Table A8 provides the hourly
forecasted wind speed, wind direction and atmospheric stability class near coal units; and Table A9
lists the forecasted hourly background concentration, threshold concentration, and calculated regional
background API of SO2.

5.2. Results

Four cases are studied in this paper:
Case 1: typical SCUC minimizing the total costs, neither wind generation nor API constraints are

included; Case 2: typical SCUC minimizing the total costs, considering wind generation, but the API
constraints are still absent; Case 3: typical SCUC minimizing the total emissions, considering wind
generation, but the API constraints are still absent; and Case 4: the Eco-SCUC, considering both wind
generation and API constraints, the API expectation value is set to 100% (APIE,tj = 100%).

Comparisons are made among Cases 1–4. Figure 9 shows the generation results of G1-G6; Figure 10
compares their hourly total emissions; Figure 11 shows the geographical distribution of API increases
(∆API) at 6:00, 12:00, 18:00, and 24:00, respectively.

As shown in Figure 9, the hourly generation results of G1-G6 in Cases 1–4 are different. As Case 1
does not consider wind power, it has higher hourly generation compared to Cases 2–4. Cases 2 and
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3 have different results because they schedule generation according to the minimization of the fuel
cost and total emission, respectively. In comparison, the hourly generation of G3 and G5 in Case 4
(Eco-SCUC) is obviously lower. This is because, according to geographical locations (see Figure 8) and
wind directions (see Table A8), G3 and G5 are situated upwind of densely-populated R1 and R2, thus,
wind brings pollutants from the units downwind to densely-populated regions. Taking into account
differentiated API constraints, Case 4 will curtail generation of G3 and G5 to reduce the resulting API
increments in R1 and R2. Conversely, generation of other units is increased to meet the load.
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As shown in Figure 10, Case 1 has the highest hourly total emission among the four cases during
most times of the day, because it does not contain wind power. Generally, Case 3 has the lowest hourly
emissions, because the objective of Case 3 is to minimize total emissions of system. Finally, Case 4
sometimes has higher hourly emissions because it schedules generation according to the differentiated
impacts of units on regional air quality, instead of the merely low emission rate of the unit. In other
words, the unit that has a low emission rate may have a high impact on the regional API.

As shown in Figure 11, Case 1 without wind power has the worst ∆API distribution results
compared with Cases 2–4, for example, its ∆API in densely-populated R1 is the highest among the four
cases. Compared to Cases 1–3, Case 4 (Eco-SCUC) has the lowest ∆API in densely-populated regions
because, as stated above, Eco-SCUC schedules the generation of units according to their differentiated
impacts on regional API. In order to justify the effectiveness of the Eco-SCUC in mitigating regional air
pollution, comparisons on different cases, units, and regions are made in Tables 1–3.

Table 1. Comparisons of total cost, total fuel, total emission, and SO2 concentrations at R1–R5.

Case
Cost
(103$)

Fuel
(ton)

Emission
(ton)

Cav (µg/m3) Cpk (µg/m3)

R1 R2 R3 R4 R5 R1 R2 R3 R4 R5

1 595.93 10138.0 55.4 60.2 57.6 52.9 41.3 38.1 70.7 68.2 65.1 53.2 49.0
2 512.73 8683.8 50.5 59.9 55.7 50.4 40.1 36.5 68.8 63.9 57.3 48.4 45.4
3 523.46 8957.2 48.5 55.5 51.2 47.1 38.2 31.2 66.4 60.1 53.3 45.1 43.1
4 527.62 9174.2 53.2 50.2 47.0 43.3 35.3 39.8 57.9 54.3 48.4 41.4 49.6
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Table 2. Comparisons of total generation and daily average generation-associated API in Cases 3 and 4.

Unit
Traditional SCUC (Case 3) Eco-SCUC (Case 4)

Generation
(MW)

∆APIi,av
1

Generation
(MW)

∆APIi,av
1

R1 R2 R3 R4 R5 R1 R2 R3 R4 R5

G1 4763.7 0.0% 0.3% 0.0% 0.0% 0.7% 5572.5 0.0% 0.5% 0.0% 0.0% 3.4%
G2 5334.9 0.5% 0.0% 0.0% 5.6% 0.9% 6015.8 0.8% 0.0% 0.0% 6.8% 5.1%
G3 5518.5 1.1% 15.6% 12.3% 0.0% 1.1% 5044.2 0.8% 9.4% 9.1% 0.0% 0.9%
G4 4239.1 0.6% 0.2% 0.0% 0.4% 0.6% 4763.9 0.9% 0.3% 0.0% 0.6% 1.2%
G5 3678.4 31.4% 14.4% 13.5% 9.8% 0.5% 1622.1 15.9% 7.1% 7.2% 1.5% 0.4%
G6 0.0 0.0% 0.0% 0.0% 0.0% 0.0% 516.1 0.0% 0.0% 0.0% 0.0% 7.1%

Total 23534.6 33.6% 30.5% 25.8% 15.8% 3.8% 23534.6 18.4% 17.3% 16.3% 8.9% 18.1%
1 ∆APIi,av represents daily average value of regional API increment caused by coal-fired unit.

Table 3. Comparisons of pollutant saturated hours and sum of person-hour exposed to pollutant
saturation in an annual case.

Case
Ts (Hour) P × Ts (109 Person·Hour)

R1 R2 R3 R4 R5 Sum of R1–R5

1 1101 733 411 194 59 4.078
2 1056 685 398 181 55 3.754
3 1063 719 379 178 57 3.894
4 561 437 316 153 63 2.204

As shown in Table 1, Case 1 suffers the most total cost, total fuel, total emission, and regional
SO2 concentration compared to other cases, this is mainly because there are no wind power and
API constraints in Case 1. Furthermore, comparisons among Cases 2–4 show that Case 4 suffers
2.9% more total cost than Case 2 and 9.7% more total emissions than Case 3. However, the resulting
concentrations in Case 4 are much lower: in densely-populated R1, Cav reduces 16.2% from Case 2,
and Cpk reduces 12.8% from Case 3. In sparsely populated regions, API constraints in the Eco-SCUC
may lead to an increase of pollutant concentration, explaining that in Case 4, Cav and Cpk in R5
increase to 39.8 µg/m3 and 49.6 µg/m3, respectively. This proves that, via shifting generation among
units, the Eco-SCUC can cost-effectively mitigate pollution in densely-populated regions while the
concentrations in sparsely-populated regions do not exceed local threshold concentrations.

As shown in Table 2, the hourly generation of G1–G6 varies significantly between Case 3 and Case
4. Accordingly, the resulting regional ∆API is different (see Figure 11). It can be observed that Case
4 (Eco-SCUC) can effectively mitigate total ∆API for densely populated R1–R4 compared to Case 3,
while ∆API in less densely populated R5 augments from 3.8% to 18.1%. However, Cav and Cpk in R5
in Case 4 are still below its threshold concentration. This phenomenon stems from the integration of
differentiated API constraints in the Eco-SCUC. To be specific, G3 and G5 (underlined) are taken as
high-impact units and their generation is curtailed, while generation of other units is augmented to
meet the load. This justifies that via shifting generation away from high-impact units to low-impact
ones, the Eco-SCUC can drive the potential air pollution away from densely-populated regions to
sparsely populated ones.

To illustrate the effects in a larger scale, 48 historical samples of meteorological data are used to
represent an annual case. Table 3 compares the annual pollutant saturated hours (Ts) in R1–R5 and the
annual sum of person-hours (P × Ts) exposed to saturated pollutant for the whole region.

As shown in Table 3, Ts in R1 in Case 4 is nearly half of the value in Cases 1–3, which indicates that
under the Eco-SCUC, densely populated regions face much less air pollution. In return, Ts in R5 in
Case 4 is 4 h per year more than Case 1, which has little impact on sparsely populated R5. Once the
system includes other regions with much lower population density, Ts in R1–R5 will all decrease. In
the whole, the annual sum of person-hour in Case 4 in R1–R5 is 54.0% of that in Case 1, which proves
that the Eco-SCUC can protect much more residents from severe air pollution.
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From the above results, several conclusions can be drawn:

1. Even with integration of wind power, the API constraints are still necessary in the dispatch model
to mitigate air quality deterioration. For example, in Table 1 in R1, Cav in Case 2 is only 0.4%
lower than Case 1, while Cav in Case 4 is 16.6% lower than Case 1. Although Case 2 decreases
its fuel consumption because of less power demand from coal-fired units, it fails to effectively
mitigate regional air quality degradation.

2. The dispatch minimizing total emissions may encourage emission reductions at wrong locations
and times regarding regional air quality control. In Table 1 in R1, Cav and Cpk in Case 4 are
9.5% and 12.7% lower than Case 3, respectively. This justifies that both weather conditions and
geographical distribution of system are critical in environmental dispatch.

3. The proposed Eco-SCUC takes advantage of wind generation and API constraints, and it can
cost-effectively alleviate air quality deterioration for densely populated regions. Via shifting
generation among units, the Eco-SCUC succeeds in balancing regional air quality saturation level.
Although the Eco-SCUC improves regional air quality at a cost of slight increase of total costs
and emissions, it can significantly reduce the person-hour exposure to severe air pollution, which
is beneficial to human and environmental health.

We examine the effectiveness of the model with respect to differentiated API expectations with
and without wind power. API expectation (APIE,tj) refers to the expected value of API as expressed in
Equation (9). When the city tightens its air quality control, APIE,tj can be set to lower values; when the
city loosens its control, APIE,tj can be set to higher values. We adjust APIE,tj from 50% to 200%.

Figure 12 shows the resulting Cav and Cpk in R1 under the Eco-SCUC, respectively. As APIE,tj
decreases, the model tightens control on emissions, both Cav and Cpk drop. This demonstrates that
the decrease of APIE,tj helps improve regional air quality. Especially during extreme haze-fog periods,
APIE,tj could be set to relatively low value to cope with bad weather. Moreover, Figure 12 proves
that the Eco-SCUC with wind power is more effective than the counterpart without wind power in
reducing regional pollutant concentrations.
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5.3. Discussion

This paper links regional API with electricity generation scheduling. The proposed Eco-SCUC
is a useful step towards alleviating the environmental dilemma in the power sector, as it enforces
differentiated API constraints above which human and ecosystem health faces severe challenges. Based
on the case studies, several potential policy implementations can be drawn:

1. Environmental or ecological taxes can be imposed to power plants based on the violation of
API constraints. In the Eco-SCUC, the violation of API constraint can be directly linked to the
ecosystem or human health damages. This solves the problem that the impact of coal-fired power
plants on regional air quality cannot be quantitatively analyzed.



Sustainability 2018, 10, 1433 18 of 27

2. Air quality compensation mechanism can be implemented by the government to press the power
plants to adjust their generation in response to regional air quality. The Eco-SCUC helps calculate
the compensated amount based on regional API changes.

3. The developing cyber-physical system (CPS) technologies enable power grid corporations to
expand their ancillary services to include API-associated regulations, thereby improving regional
air quality.

6. Conclusions

This paper proposes an Eco-SCUC model addressing regional air quality management via shifting
generation among units. An API index is defined for evaluating regional air pollutant saturation levels
and is calculated based on a Gaussian puff dispersion model, geographically-differentiated AEC, and
forecasted weather conditions. API constraints are formulated according to the differentiated impacts
of coal-fired units on regional air quality and integrated into a SCUC model. Stochastic optimization
is applied to accommodate volatile wind power; as such the benefits of wind power for air quality
control are estimated. The test results demonstrate that the model can cost-effectively prevent air
quality deterioration in densely-populated regions and reduce the person-hours exposed to severe
air pollution.

Future studies will focus on the investigation of chemical conversion from primary pollutants to
secondary pollutants and its integration into the Eco-SCUC model.

Author Contributions: J.Y. conceived the idea of this paper and guided the research; D.G. designed the Eco-SCUC
and wrote the paper; and M.B. proposed the solution to the optimization problem and debugged the program. All
of the authors revised the manuscript.

Acknowledgments: This research was funded by National Natural Science Foundation of China (51377035) and
the National Natural Science Foundation of China (51361130153). The authors also would like to thank the editor
and the anonymous reviewers for their valuable comments.

Conflicts of Interest: The authors declare no conflict of interest.

Nomenclature

A. Acronyms
ED Economic dispatch
UC Unit commitment
SCUC Security-constrained unit commitment
Eco-SCUC Ecology- and security-constrained unit commitment
AEC Atmospheric environmental capacity
API Air pollutant intensity
LHS Latin hypercube sampling
CDF Cumulative distribution function
PDF Probability density function
MIQP Mixed-integer quadratic programming
B. Sets and indices
t Index for time
τ Index for pollutant emitting time
i Index for unit
j Index for monitoring point
s Index for wind power generation scenario
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C. Parameters
(xp,yp,zp) Coordinates of dispersion puff center
(xs,ys,zs) Coordinates of the emitting stack
(xj, yj, zj) Coordinates of concentration monitoring location
Ψ, λ, h Intermediary parameter
σx/y/z(·) Standard deviation in x/y/z direction of the puff center
∆n Equal time interval of dispersion period (t-τ), n = 1, 2, . . . N
vx/y/z(n) Wind velocity in x/y/z direction during time interval ∆n

v Atmospheric stability class A–F
a(·)/b(·)/α(·)/β(·) Atmospheric stability coefficients
si Pollutant emission per unit fuel of unit i, ton/ton
γi Fuel cost of unit i, $/ton
Fi Fuel consumption function of unit i, ton
ai, bi, ci Fuel consumption coefficients of unit i, ton/MW2h, ton/mwh, ton/h
c Volume-average value of concentration c, µg/m3

c0 Initial volume-average concentration, µg/m3

ρ Atmospheric volume, m3
⇀
V/

⇀
V t Advection/pseudo-diffusion speed, m/s

ηρ Removal rate of air pollutant in the examined volume ρ, ton/a
ηtj Removal rate of air pollutant at location j and time t, ton/a
δρ Dirac function for the examined volume ρ
⇀
v d/

⇀
v w Dry/wet deposition speed, m/s

A AEC coefficient, m2/s
U Predicted wind speed, m/s
H Height of atmospheric boundary layer, m
S Area of the examined region, km2

v Value of random wind speed variable V, m/s
vm Mth sampled wind speed value, m/s
v/s Average/sample variance of measured wind speed, m/s
FV(v)/fV(v) CDF/PDF of random V
c/k Scale/shape factor at the predefined region
µ/σ2

v Mean/standard variance of wind speed
Γ(·) Gamma function
pw Value of random wind power variable PW, MW
pwr Rated wind power, MW
vr, vin, vout Rated/cut-in/cut-out wind speed, m/s
NT Number of periods under study (24-h)
NG Number of coal units
NW Number of wind-powered units
NM Sample number of measured wind speed
NJ Number of air quality monitoring points
∆T Time interval of dispatch (1 h)

pw f
it Forecasted generation of wind-powered unit i at time t, MW

Uit/Dit Startup/shutdown cost of unit i at time t, $
PDt/PLt System demand/losses at time t, MW
RSt/ROt System spinning/operating reserve requirement at time t, MW
Ton/off

i Minimum on/off time of unit i
Pi,min/Pi,max Lower/upper limit of real power generation of unit i, MW
PRU

i /PRD
i Ramping up/down limit of unit i, MW

RUt/RDt System regulation up/down limit at time t, MW
SF Shift factor matrix
KP/W/D Bus-unit/bus-wind/bus-load incidence matrix
PD/PL System demand/losses vector
Mtj Penalty function for location j at time t
ζtj Artificial slack variable for location j at time t
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D. Variables
Gi(·) Gaussian puff dispersion function
Ci(t;j) Change of pollutant concentration caused by unit i at time t at location j, µg/m3

CT,tj Threshold concentration at location j and time t, µg/m3

C0,tj Background concentration at location j and time t, µg/m3

Cav/Cpk Daily average/peak concentration of pollutant, µg/m3

Qi(t) Pollutant emission of unit i at time t, ton
pit Generation of coal-fired unit i at time t, MW
pwit Generation of wind-powered unit i at time t, MW
API(t;j) API at location j and time t, %
APIi(t;j) Change of API caused by unit i at location j and time t, %
API0,tj Background API at location j and time t, %
APIE,tj Expected API at location j and time t, %
Iit Binary commitment of unit i at time t
Xon/off

it On/off time of unit i at time t
RUit/RDit Regulation up/down capacity of unit i at time t, MW
RSit/ROit Spinning/operating reserve of unit i at time t, MW
P Vector of generation of coal-fired units
PW Vector of generation of wind-powered units

Appendix A

Appendix A.1

The Gaussian puff model is detailed as:

Ψ =

[
x− xp(τ, t)

σx(τ, t)

]2

+

[
y− yp(τ, t)

σy(τ, t)

]2

+

[
z− zp(τ, t)

σz(τ, t)

]2

(A1)

 xp(τ, t)
yp(τ, t)
zp(τ, t)

 =

 xs
ys
zs

+
N

∑
n=1

 vx(n)
vy(n)
vz(n)

∆n (A2)

{
σx(τ, t) = σy(τ, t) = α(v)(t− τ)a(v)

σz(τ, t) = β(v)(t− τ)b(v) (A3)


σx(τ, n) = [a(n, v)1/α(n,v)∆n + σx(τ, n− 1)1/α(n,v)]

α(n,v)

σy(τ, n) = [a(n, v)1/α(n,v)∆n + σy(τ, n− 1)1/α(n,v)]
α(n,v)

σz(τ, n) = [b(n, v)1/β(n,v)∆n + σz(τ, n− 1)1/β(n,v)]
β(n,v)

(A4)

Appendix A.2

The atmospheric environmental capacity (AEC) model is detailed as:

∂c
∂t

+
1
ρ

y

ρ

⇀
V · ∇cdρ =

1
ρ

y

ρ

ηρδρdρ− 1
ρ

y

ρ

∇ · (c⇀v d + c
⇀
v w)dρ− 1

ρ

y

ρ

⇀
V t · ∇cdρ (A5)

c =
1
ρ

y

ρ

cdρ (A6)

c =
ηρ

A
√

S
[1− exp(− A

H
√

S
t)] + c0 exp(− A

H
√

S
t) (A7)

A =

√
π

2
UH + (vd + vw)

√
S (A8)
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Appendix A.3

The wind speed distribution model is detailed as:

µ = cΓ(1 +
1
k
) (A9)

σ2
v = c2Γ(1 +

2
k
)− µ2 (A10)

Γ(α) =
∞∫

0

yα−1 exp(−y)dy, y > 0 (A11)

µ = v =
1

NM

NM

∑
m=1

vm (A12)

σ2
v = s2 =

1
NM

NM

∑
m=1

(vm − v)2 (A13)

k =
1
λ
− 1 (A14)

c =
µ

Γ
√

1− λ
(A15)

λ =

√
1− Γ(

σ2
v

µ2 + 1) (A16)

Appendix A.4

The wind power distribution model is detailed as:

PW =

 0 (V < vin or V ≥ vout)
pwr (vr ≤ V < vout)
(V − vin)pwr/(vr − vin) (vin ≤ V < vr)

(A17)

Pr(PW = 0) = Pr(V < vin) + Pr(V ≥ vout) = 1− exp
[
−
( vin

c

)k
]
+ exp

[
−
( vout

c

)k
]

(A18)

Pr(PW = pwr) = Pr(vr ≤ V < vout) = exp
[
−
( vr

c

)k
]
− exp

[
−
( vout

c

)k
]

(A19)
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Figure A1. Relationship between standard deviation of puff center x/y/z(τ,t) and dispersion time (t – 
τ) according to Pasquill atmospheric stability classes (A–F): (a) in the x and y directions; and (b) in 
the z direction. 

Figure A1. Relationship between standard deviation of puff center σx/y/z(τ,t) and dispersion time (t –
τ) according to Pasquill atmospheric stability classes (A–F): (a) in the x and y directions; and (b) in the
z direction.
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Table A1. Solar radiation classification according to total/low cloud coverage and solar altitude.

Total/Low Cloud Coverage (1/10) Solar Altitude (◦)

Night ≤15 15–35 35–65 >65

≤4/≤4 −2 −1 +1 +2 +3
5–7/≤4 −1 0 +1 +2 +3
≥8/≤4 −1 0 0 +1 +1
≥5/5–7 0 0 0 0 +1
≥8/≥8 0 0 0 0 +1

Table A2. Atmospheric stability classification according to wind speed and solar radiation level.

Ground-Level Wind Speed(m/s)
Solar Radiation Level

+3 +2 +1 0 −1 −2

≤1.9 A A–B B D E F
2–2.9 A–B B C D E F
3–4.9 B B–C C D D E
5–5.9 C C–D D D D D
≥6 C D D D D D

Table A3. Fuel consumption coefficients and stack parameters of coal-fired units.

Unit
Fuel Consumption Coefficients Stack Parameters

ai (ton/MW2h) bi (ton/MWh) ci (ton/h) si (ton/ton) xs (km) ys (km) zs (m)

G1 0.001076 0.050572 21.2 0.00487 3 14 150
G2 0.000960 0.050052 24.8 0.00465 23 9 150
G3 0.001052 0.056072 16.0 0.00455 7 2 135
G4 0.001132 0.063940 16.8 0.00495 22 24 105
G5 0.001176 0.068860 13.2 0.00425 15 5 135
G6 0.001528 0.069864 12.4 0.00413 8 18 135

Table A4. Generation costs, on/off limits, generation limits, and ramping limits of units.

Unit
Generation Costs On/Off Limits Generation Limits Ramp Limits

γi ($/ton) Uit ($) Dit ($) Ton (h) Toff (h) Pi,min (MW) Pi,max (MW) PRU
i /PRD

i (MW)

G1 55.572 623.6 374.1 5 5 360 80 120/120
G2 55.884 501.2 213.0 5 5 380 100 125/125
G3 60.360 497.6 186.6 4 4 290 75 80/80
G4 60.624 428.7 264.3 4 4 280 110 115/115
G5 60.836 423.5 236.7 3 3 295 120 120/120
G6 63.712 202.5 113.6 2 2 120 25 60/60
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Table A5. Transmission line impedances and power flow limits.

Line Initial Bus Terminal Bus Impedance (p.u.) Power Flow Limit (MW)

1 1 2 0.170 250
2 1 5 0.258 180
3 2 3 0.150 175
4 2 4 0.197 185
5 2 5 0.140 225
6 3 4 0.018 320
7 4 5 0.037 175
8 4 7 0.037 195
9 4 9 0.150 200
10 5 6 0.187 225
11 6 11 0.197 450
12 6 12 0.197 150
13 6 13 0.150 180
14 7 8 0.140 380
15 7 9 0.019 260
16 9 10 0.039 325
17 9 14 0.037 255
18 10 11 0.152 250
19 12 13 0.183 150
20 13 14 0.192 260

Table A6. Hourly forecasted wind power and system load.

t pwf
it

(MW)
Bus-Load (MW)

Bus 4 Bus 5 Bus 7 Bus 9 Bus 10 Bus 11 Bus 12 Bus 13

1 142. 6 190.2 113.1 83.7 98.4 93.8 177.1 107.1 55.2
2 131.0 204.2 121.4 89.9 105.6 100.8 190.1 115.0 59.1
3 123.8 203.6 121.1 89.6 105.3 100.5 189.5 114.7 58.8
4 142. 6 205.4 122.1 90.4 106.2 101.3 191.2 115.7 59.4
5 123.8 207.4 123.3 91.3 107.3 102.3 193.1 116.8 59.9
6 105.1 212.1 126.1 93.3 119.7 104.7 197.5 119.5 61.3
7 96.5 237.2 141.0 104.4 122.7 117.0 220.8 133.6 68.5
8 89.3 252.0 149.8 110.9 130.3 124.3 215.9 151.9 82.8
9 110.9 236.0 146.3 108.2 127.3 121.4 225.3 138.6 71.1

10 112.3 234.0 135.0 99.9 117.5 111.4 227.8 137.4 70.5
11 128.2 267.7 145.1 122.2 133.6 137.0 221.3 156.4 73.8
12 148.3 254.7 149.2 125.2 137.2 140.5 247.1 160.3 69.4
13 207.4 263.0 148.2 124.5 126.4 139.6 235.5 154.1 72.6
14 198.7 260.8 136.9 123.5 135.2 138.5 234.2 158.1 74.7
15 193.0 263.6 128.6 124.8 136.7 139.9 236.1 154.4 66.4
16 185.7 249.7 118.4 109.9 129.2 123.2 223.1 140.6 72.1
17 184.3 225.6 114.1 99.3 116.7 121.3 220.0 127.1 65.2
18 174.2 214.1 127.3 94.2 129.7 105.6 199.3 120.6 61.9
19 63.5 246.2 136.4 108.3 127.3 121.5 229.2 165.8 85.1
20 86.5 206.0 122.4 90.6 106.5 101.6 191.7 116.0 59.5
21 110.9 211.1 125.5 92.9 109.2 104.2 196.5 118.9 61.0
22 119.5 245.7 146.0 108.1 127.1 121.2 228.7 138.4 71.0
23 138.2 197.4 117.4 86.9 102.1 97.4 183.8 111.2 57.0
24 146.9 191.7 114.0 84.4 99.2 94.6 181.3 108.1 55.4
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Table A7. Hourly simulated and reduced wind power volatility scenarios.

t
Wind Power Volatility Scenario (MW)

1 2 3 4 5 6 7 8 9 10

1 144.9 146.8 148.7 146.8 146.6 146.9 143.7 137.9 141.3 140.1
2 133.7 135.4 133.9 136.8 133.5 128.6 126.9 128.3 129.8 130.1
3 121.5 120.9 122.0 121.1 120.2 119.7 118.9 114.3 113.5 114.4
4 145.6 146.8 148.0 145.8 143.4 143.4 145.8 148.7 149.4 148.8
5 124.7 122.7 120.7 119.2 121.0 121.7 118.8 125.2 122.8 124.8
6 103.5 104.1 102.2 102.8 101.9 99.4 97.2 92.4 94.3 95.4
7 95.5 93.3 93.3 93.2 93.4 91.1 89.5 90.8 92.6 94.8
8 89.6 88.7 90.8 90.2 88.7 89.5 90.2 89.8 91.3 95.5
9 113.5 111.7 110.2 112.1 112.7 117.0 118.4 124.6 123.2 122.2
10 115.4 112.7 113.2 113.7 112.4 112.1 113.0 121.8 122.4 117.0
11 126.1 128.2 126.5 126.9 127.9 130.6 130.3 135.1 131.9 132.7
12 151.8 153.3 155.3 158.6 160.2 156.5 156.9 147.7 147.2 149.3
13 212.2 210.3 207.8 205.6 208.2 219.2 197.9 212.4 210.5 209.7
14 198.6 203.1 203.2 205.9 205.4 200.5 203.1 202.3 199.9 195.9
15 195.9 191.4 193.4 195.9 191.9 184.9 182.1 177.3 170.3 168.4
16 182.4 181.9 185.5 174.4 182.0 181.8 189.8 193.6 192.9 189.6
17 183.6 182.6 186.8 187.5 191.4 191.2 188.2 187.9 184.1 182.1
18 177.9 180.3 180.8 177.0 174.0 172.3 171.2 167.2 168.1 167.6
19 64.5 60.5 64.4 69.3 64.1 62.7 63.1 64.6 64.6 62.7
20 88.5 87.2 85.7 85.9 86.1 80.2 87.3 82.9 83.8 83.7
21 111.8 111.8 110.5 112.1 114.9 113.6 111.3 109.5 110.6 115.7
22 116.8 116.5 118.5 121.1 118.6 120.5 123.1 131.3 132.3 122.5
23 140.7 141.8 140.1 137.6 137.3 140.6 142.6 138.8 135.6 128.7
24 150.1 151.7 154.1 154.7 151.7 159.6 151.5 147.4 144.3 145.3

Table A8. Hourly forecasted wind speed, wind direction, and atmospheric stability near units.

t
G1 G2 G3 G4 G5 G6

v 1 ϕ 1 v 1 v ϕ v v ϕ v v ϕ v v ϕ v v ϕ v

1 7.6 292 D 15.2 290 E 3.2 310 E 13.1 290 D 13.2 20 E 8.6 337 F
2 8.3 285 D 15.4 295 E 4.3 333 E 13.4 284 D 14.2 18 E 8.4 343 F
3 7.8 281 D 15.0 301 E 4.3 323 E 12.9 280 D 13.5 15 E 8.5 349 F
4 6.9 275 D 14.2 304 E 4.6 320 E 12.4 283 D 13.7 7 E 7.9 356 F
5 6.4 276 D 14.9 310 E 4.2 317 E 12.1 286 D 13.0 9 E 7.5 348 F
6 6.2 271 D 14.0 312 E 5.3 304 E 11.5 291 D 12.2 4 E 6.5 355 F
7 5.3 270 F 14.1 318 F 5.6 302 D 10.5 283 F 11.0 354 F 5.5 357 D
8 5.0 270 F 14.1 317 F 4.9 305 D 10.4 276 F 11.0 350 F 5.3 355 D
9 5.1 274 F 14.3 316 F 6.3 311 D 10.2 273 F 11.2 359 F 5 355 D

10 5.2 277 F 14.5 315 F 5.3 313 D 10.7 269 F 11.3 2 F 5.1 5 D
11 5.4 275 F 14.6 315 F 4.3 315 D 10.3 268 F 11.1 8 F 5.3 4 D
12 5.0 269 F 14.3 320 F 5.1 305 D 10.2 271 F 11.5 355 F 5.4 358 D
13 5.3 268 F 14.2 310 E 6.3 298 F 10.2 270 C 11.6 357 E 5.9 3 F
14 5.3 270 F 14.2 319 E 6.4 295 F 10.3 275 C 10.8 354 E 5.7 356 F
15 4.9 274 F 14.5 316 E 7.3 290 F 10.4 276 C 10.9 7 E 5.1 2 F
16 5.1 275 F 14.3 315 E 6.3 285 F 10.1 273 C 10.8 3 E 5.2 3 F
17 5.0 272 F 14.3 315 E 5.3 294 F 10.1 275 C 11.1 355 E 5 355 F
18 5.5 274 F 14.1 319 D 4.2 303 E 10.2 276 C 11.0 355 D 5.2 360 D
19 5.5 279 F 15.5 310 D 6.3 300 E 12.4 273 C 11.8 358 D 5.6 355 D
20 6.1 281 F 15.9 308 D 5.9 322 E 12.6 276 C 11.9 360 D 6.3 352 D
21 6.4 284 F 16.5 304 D 5.5 318 E 11.9 284 C 12.5 360 D 6.5 356 D
22 7.4 295 F 17.5 310 D 5.9 323 E 11.0 297 C 13.4 345 D 7.0 354 D
23 7.9 292 D 17.9 296 D 6.0 325 E 12.6 292 C 14.5 339 D 7.5 331 D
24 8.0 296 D 16.5 292 D 6.3 316 E 12.9 302 C 14.6 331 D 7.2 345 D
1 In this table, v represents the wind speed, in m/s; ϕ represents the wind direction, in ◦; and v represents the
Pasquill atmospheric stability class, in A–F.
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Table A9. Hourly forecasted regional background and threshold concentration of SO2.

t
Background Concentration C0,tj

(µg/m3)
Threshold Concentration CT,tj

(µg/m3)
Background API API0.tj (%)

R1 1 R2 R3 R4 R5 R1 R2 R3 R4 R5 R1 R2 R3 R4 R5

1 34.5 32.2 31.9 28.8 25.3 35.7 38.2 40.3 42.5 60.2 96.6 84.3 79.1 67.8 42.0
2 33.2 31.6 29.8 26.7 23.2 35.7 38.2 40.3 42.5 60.2 93.0 82.7 73.9 62.8 38.5
3 31.5 30.2 28.7 25.5 21.9 35.7 38.2 40.3 42.5 60.2 88.2 79.1 71.2 60.0 36.4
4 30.8 29.8 28.8 25.7 21.5 35.3 37.5 39.8 42.3 60.2 87.3 79.5 72.4 60.8 35.7
5 31.5 30.3 28.8 25.8 22.5 35.3 37.5 39.8 42.3 60.2 89.2 80.8 72.4 61.0 37.4
6 33.6 32.4 29.3 26.1 23.6 35.3 37.5 39.8 42.3 60.2 95.2 86.4 73.6 61.7 39.2
7 36.4 33.5 30.7 26.9 24.3 35.1 37.5 39.5 42.2 59.5 103.7 89.3 77.7 63.7 40.8
8 39.4 35.8 32.5 28.5 25.1 35.1 37.5 39.5 42.2 59.5 112.3 95.5 82.3 67.5 42.2
9 43.9 39.1 34.8 29.8 26.8 35.1 37.5 39.5 42.2 59.5 125.1 104.3 88.1 70.6 45.0
10 48.5 42.7 38.9 32.4 27.9 34.4 36.9 39.5 41.6 59.5 141.0 115.7 98.5 77.9 46.9
11 52.9 46.8 42.6 34.5 31.4 34.4 36.9 39.5 41.6 59.5 153.8 126.8 107.8 82.9 52.8
12 53.1 48.3 43.8 36.8 34.2 34.4 36.9 39.5 41.6 59.5 154.4 130.9 110.9 88.5 57.5
13 52.9 48.1 43.5 36.5 33.6 34.6 36.9 39.4 41.6 59.3 152.9 130.4 110.4 87.7 56.7
14 51.8 45.2 42.7 36.4 33.5 34.6 36.9 39.4 41.6 59.3 149.7 122.5 108.4 87.5 56.5
15 48.2 45.1 41.6 35.9 32.8 34.6 36.9 39.4 41.6 59.3 139.3 122.2 105.6 86.3 55.3
16 48.1 44.1 41.7 35.2 31.9 34.5 36.6 40.2 41.5 59.3 139.4 120.5 103.7 84.8 53.8
17 50.1 43.2 40.7 35.0 32.4 34.5 36.6 40.2 41.5 59.3 145.2 118.0 101.2 84.3 54.6
18 54.2 47.2 43.8 36.6 34.7 34.5 36.6 40.2 41.5 59.3 157.1 129.0 109.0 88.2 58.5
19 53.9 46.9 43.2 35.4 35.1 34.5 37.2 40.2 41.5 60.1 156.2 126.1 107.5 85.3 58.4
20 50.2 44.3 41.5 34.2 33.2 34.5 37.2 40.2 41.5 60.1 145.5 119.1 103.2 82.4 55.2
21 47.0 42.1 38.9 32.4 32.4 34.5 37.2 40.2 41.5 60.1 136.2 113.1 96.8 78.1 53.9
22 43.1 38.2 35.1 30.1 30.1 35.2 37.5 40.4 42.4 60.1 122.4 101.9 86.9 71.0 50.1
23 40.7 36.2 32.5 27.9 27.5 35.2 37.5 40.4 42.4 60.1 115.6 96.5 80.4 65.8 45.8
24 38.1 34.6 32.3 28.3 26.6 35.2 37.5 40.4 42.4 60.1 108.2 92.3 80.0 66.7 44.3

1 In this table, R1–R5 represents the region 1–5 as shown in Figure 8.
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