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Abstract: In this paper, we see the Data Centers (DCs) as producers of waste heat integrated with
smart energy infrastructures, heat which can be re-used for nearby neighborhoods. We provide a
model of the thermo-electric processes within DCs equipped with heat reuse technology, allowing
them to adapt their thermal response profile to meet various levels of hot water demand. On top of
the model, we have implemented computational fluid dynamics-based simulations to determine the
cooling system operational parameters settings, which allow the heat to build up without endangering
the servers’ safety operation as well as the distribution of the workload on the servers to avoid hot
spots. This will allow for setting higher temperature set points for short periods of time and using
pre-cooling and post-cooling as flexibility mechanisms for DC thermal profile adaptation. To reduce
the computational time complexity, we have used neural networks, which are trained using the
simulation results. Experiments have been conducted considering a small operational DC featuring
a server room of 24 square meters and 60 servers organized in four racks. The results show the
DCs’ potential to meet different levels of thermal energy demand by re-using their waste heat in
nearby neighborhoods.

Keywords: data centers; waste heat re-use; thermal energy flexibility; thermal profile adaptation;
neural networks; computation fluid dynamics

1. Introduction

Energy efficiency in Data Centers (DCs) is of utmost importance as they are among the largest
consumers of energy and their energy demand is rapidly increasing due to the increasing digitization
of human activities. The cooling system is the second largest consumer in a DC after the Information
Technology (IT) equipment and deals with maintaining the proper temperature for servers’ safe
operation. Even in the best-designed DCs, the cooling system can consume up to 37% of the total
electricity [1]. The main cause of this high energy consumption is that most nowadays, DCs use low
temperature set points to cool down the server room, minimizing the risk of overheating the servers.
Nevertheless, it has been shown in [2] that a temperature between 15 ◦C and 32 ◦C does not affect
the proper operation of servers. Thus, methods for decreasing the energy consumption of the cooling
system had emerged considering actions such as increasing the temperature of the air pumped in the
server room by air conditioning units or minimizing the air volume pumped in the room. However,
approaches bring the risk of creating hot spots in the server room, resulting in the emergency stop or
even total damage of the servers. To avoid such unpleasant situations, workload allocation methods
that consider the heat distribution resulting from the execution of tasks by the servers have been
proposed in [3,4].
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Lately, with the advent of smart city concept to urban development, the DCs have become
fundamental in providing the technological foundation to process the huge amount of data the smart
cities are generating [5]. Thus, many DCs are located in urban environments providing theological
support for the implementation of various smart city services. One way to achieve cost-effectiveness
and/or energy efficient solutions is the integration of DCs with the smart cities’ energy infrastructure
and utilities. The H2020 CATALYST project [6] vision is that DCs have the potential of becoming active
and important stakeholders in a system-level thermal energy value chain. Being electrical energy
consumers as well as heat producers, the DC can be successfully integrated into both electrical and
thermal energy grids and the waste heat generated by the IT components can be effectively re-used
either internally for space heating and/or domestic or district heating network operators. As a result,
the DCs will gain financial benefits from cooperating under various modalities with smart energy grids
by becoming intelligent hubs at the crossroad of three energy networks: electrical energy network,
heat network and data network. Thus, in our vision waste heat reuse is expected to become a
considerable financial revenue stream for DCs, trading off additional costs for waste heat regeneration
(e.g., heat pumps) with incremental revenues from waste heat valorization.

This paper addresses the issue of transforming the DCs into active players in the local heat
grid by proposing an optimization methodology that will allow them to adapt their heat generation
profile by optimal setting operational parameters of the cooling system (airflow and air temperature)
and intelligent workload allocation to avoid hot spots. Our approach to DCs wasted heat recovery
problem will allow for exploiting and adapting DCs’ internal yet latent thermal flexibility and feed
heat (as hot water for example) to the nearby neighborhood on demand. The methodology is based
on a thermo-electrical mathematical model of a virtualized DC equipped heat reuse technology and
relates the servers’ utilization to the server room temperature set points as well as the cooling system
energy consumption to the amount heat amount and quality generated by the heat pump. Because the
thermal processes within the server room are highly complex, models based on Computational Fluid
Dynamics (CFD) techniques and neural networks are used to estimate the available thermal energy
flexibility of the DC. In summary, the paper brings the following contributions:

• A thermo-electrical model that correlates the workload distribution on servers with the heat
generated by the IT equipment for avoiding hot spot appearance.

• Techniques for assessing the DCs’ thermal energy flexibility using CFD simulations and
neural networks.

• An optimization technique for DCs equipped with heat reuse technology that enables the
adaptation of thermal energy profile according to the heat demand of the nearby buildings.

• Experimental evaluation of the defined models and techniques on a simulated environment.

The rest of the paper is structured as follows: Section 2 presents the related work in DC heat
reuse, Section 3 presents a model for estimating the heat generated by server in correlation with the
workload distribution, Section 4 describes the CFD and neural networks techniques used to assess the
DC thermal flexibility, Section 5 presents results obtained for a small-scale test bed DC, while Section 6
concludes the paper and shows the future work.

2. Related Work

Few approaches can be found in state of the art literature addressing the thermal energy
flexibility of DCs and reuse of waste heat in nearby neighborhoods and buildings [7,8]. The hardware
development in the last years has led to the increase of the power density of chips and of servers’
density in DCs. As the servers’ design improves for allowing them to operate at increasingly higher
temperatures and their density in server rooms will continue to rise, the DCs will be transformed in
producers of heat [9]. This generates a cascading energy loss effect in which the heat generated by
servers must be dissipated and gets wasted while the cooling system needs to work at even higher
capacity leading to even increased levels of energy consumption. From the perspective of utilities
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and district heating, there is a clear identified need for intelligent heat distribution systems that
can leverage on re-using the heat generated on demand by third parties such DCs [10]. The goal
is to provide heat-based ancillary services leveraging on forecasting techniques to determine water
consumption patterns [11,12]. Modeling and simulation tools for the transport of thermal energy
within district heating networks are defined in [13,14] to assess benefits and potential limitations of
re-using the wasted heat. They can help communities and companies to make preliminary feasibility
studies for heat recovery and make decisions and market analysis before actual project implementation.
Besides increasing the efficiency of district heating, the heat reuse will also contribute to the reduction
of emissions during the peak load production of thermal energy which is being typically produced
using fossil fuels.

There are two big issues with re-using the heat generated by DCs in the local thermal grid:
the relatively low temperatures in comparison with the ones needed to heat up a building and the
difficulty of transporting heat over long distances [15]. In Wahlroos et al. [16], the case study of DCs
located in Nordic countries is analyzed because in these regions the heat generated by DCs is highly
demanded by houses and offices, while due to specific climate conditions free cooling can be used
for most of the year. The study concluded that the DCs can be a reliable source of heat in a local
district heating network and may contribute to the costs reduction of the heat network with 0.6% up to
7% depending on the DC size. The low quality of heat (i.e., low temperature or unstable source) is
identified as the main barrier in DCs’ waste heat reuse in [17], thus an eight-step process to change this
was proposed. It includes actions like selecting appropriate energy efficiency metrics, economic and
CO2 analysis, implementing systematic changes and investment in heat pumps. A comprehensive
study of reusing the waste heat of DCs within the London district heat system is presented in [18].
In the UK, DCs consume about 1.5% of the total energy consumption, most of this energy being
transformed in residual heat, which, with the help of heat pumps that can boost its temperature, can be
used in heating networks leading to potential carbon, cost, and energy savings. An in-depth evaluation
of the quantity and quality of heat that can be captured from different liquid-based cooling systems for
CPUs (Central Processing Units) on blade servers is conducted [19]. The study determines a relation
between CPU utilization, power consumption and corresponding CPU temperatures showing that
CPUs running at 89 ◦C would generate high quality heat to be reused. In [20] the authors propose a
method to increase the heat quality in air-cooled DCs by grouping the servers in tandem to create cold
aisles, hot aisles and super-hot aisles. Simulations showing a decrease in DC energy consumption with
27% compared to a conventional architecture and great potential for obtaining high quality heat to
be reused.

Nowadays the DCs have started to use heat pumps to increase the temperature of waste heat,
making the thermal energy more valuable, and marketable [21]. With the help of heat pumps, the heat
generated by servers can be transferred to heat the water to around 80 degrees Celsius, suited for
longer distance transportation in the nearby houses. In [22] the authors evaluate the main heat reuse
technologies, such as plant or district heating, power plant co-location, absorption cooling, Rankine
cycle, piezoelectric, thermoelectric and biomass. In [23] a study of ammonia heat-pumps used for
simultaneous heating and cooling of buildings is conducted. They are analyzed from a thermodynamic
point of view, computing the proper scaling with the building to be fit in, showing great potential.
The authors of [7] present an infrastructure created to reuse the heat generated by a set of servers
running chemistry simulations to provide heat to a greenhouse located within the Notre Dame
University. It consists of an air recirculation circuit that takes the hot air from the hot aisle containment
and pumps it in the space needed to be heated. The main issue with this approach is that the heat
is provided at the exhaust temperature of the servers is relatively low making it unsuited for long
distance transportation. In [24,25] thermal batteries are attached to the heat pumps to increase the
quality of reused heat. The thermal battery consists of two water tanks, one for storing cold water near
the evaporator of the heat pump, and one for storing hot water near the heat exchanger of the heat
pump. The two tanks allow the heat pump to store either cool or heat. The authors conclude that such
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approach proves to be more economically efficient than traditional electrical energy storage devices.
In [26] an analytical model of a heat pump equipped with thermal tanks is defined and used to study
the thermodynamics of the system within a building. The model was used to simulate the behavior of
a building during a 24-h operational day, analyzing the sizes of the storage tanks to satisfy the heating
and cooling demands. A set of measurable performance indices such as Supply/Return Heat Index,
Return Temperature Index and Return Cooling Index are proposed in [27–29] to measure the efficiency
of the server rack thermal management systems. They conclude that the rack’s thermal performance
depends on its physical location within the server room and the location of air conditioning units,
and that cold aisle containment increases the energy efficiency of the DC.

Thermal processes simulations within the server room are essentials for increasing the DC’s
thermal flexibility without endangering the operation of servers. It is well known that by increasing
the temperature in the server room of a DC, hot spots might appear near highly utilized equipment,
leading to emergency shutdown or total damage of this equipment [30,31]. Thus, management
strategies need to cope with these situations by simulating in advance workload deployment
scenarios and avoiding dangerous situations. CFD simulation techniques are traditionally used for
evaluating the thermal performance DCs [32–34]. Using CFD software tools (e.g., OpenFoam [35],
BlueTool [36], etc.), a detailed infrastructure of the DC with air flows and temperature distributions
can be simulated [37]. However, the main disadvantage of these kind of tools is the time overhead,
most of them being unsuitable for real-time management decisions that can arise in a dynamic DC
environment. Depending on the complexity of the simulated environment, a CFD simulation can
take from few minutes up to a few hours and can consume a lot of hardware resources. Techniques to
reduce the execution time are developed and are classified into white-box or black-box approaches.
The white-box simulations are based on a set of equations that describe the underlying thermal physical
processes which are parametrized with real or simulated data describing the modeled DC [3,38–41].
The black-box simulations use machine learning algorithms which are trained to predict the thermal
behavior of the DC of without knowing anything about the underlying physical processes [25,29,42–44].

Our paper builds upon existing state of the art proposing a set of optimization techniques for
DCs equipped with heat reuse technology addressing the problem of waste heat reuse by exploiting
the thermal energy generation of servers within the server room without endangering their operation.
The proposed solution combines existing cooling system models with workload allocation strategies
and heat reuse hardware to explore the potential of DC thermal energy flexibility for providing heat to
nearby neighborhoods. Our paper goes beyond the state of the art by proposing a black-box time-aware
model of the DC thermodynamic behavior that can compute the evolution of the temperatures within
the server room for future time intervals. A simulation environment based on a CFD tool is proposed
to generate training data for the neural network within the black box model. Once defined and trained,
the neural network is integrated into a proactive DC management strategy that can control both
workload allocation and cooling system settings, to adapt the heat generation to meet various heating
demands and to avoid the hot spots forming.

3. DC Workload and Heat Generation Model

In this section, we introduce a mathematical model to relate the DC workload and associated
electrical energy consumption with the generated thermal energy that must be dissipated by the
cooling system (waste heat), as shown in Figure 1. The model’s objective is to provide the support
necessary for the DC infrastructure management software in taking workload scheduling decisions as
well as cooling system operation optimization decisions such that the DC thermal profile is adapted to
meet the heat demand coming from nearby neighborhoods. The model is based on and enhances the
previous one proposed by us in [45], this time focusing on the thermo-electrical model of the server
room and energy dynamics by providing mathematical formalisms that relate the deployment of the
VMs on the servers with the electrical energy consumption and thermal energy generation of the IT
equipment. Furthermore, in this paper the relations between the IT equipment heat generation and
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cooling system thermal energy dissipation capabilities are presented, also considering the impact of
the volume and temperature of the input airflow in the case of an air-cooled server room.

Figure 1. Data Center (DC) workload, electric and thermal energy exchange.

To execute the clients’ workload, the IT equipment from the server room consumes electrical
energy which is transformed into heat that must be dissipated by the cooling system. If the DC is
equipped with heat reuse technology, the heat pump can perform both cooling of the server room and
waste heat reuse. We consider a cloud-based DC hosting applications for its clients in VMs. When the
number of user requests for an application increases, the cloud platform load balancer automatically
scales up or down the resources allocated to VMs. Thus, the workload is modeled as a set of VMs each
having virtual resources allocated:{

Workload = {VM1, VM2, . . . , VMM}
VMj =

(
CPUj, RAMj, HDDj

)
, 0 ≤ j ≤ M

(1)

The server room of the DC to be composed of set of N homogeneous servers defined according to
relation (2) the main hardware resources of the server being the number of CPU cores, the RAM and
the HDD capacity. {

ServerRoom = {Server1, Server2, . . . , ServerN}
Serveri = (CPUi, RAMi, HDDi), 0 ≤ i ≤ N

(2)

We define an allocation matrix of the VMs on servers, εRN ∗ M, where the element S[Serveri]
[
VMj

]
is defined according to relation (3) and specifies if VMj is allocated to server Serveri:

S[Serveri]
[
VMj

]
=

{
1, if VMj is allocated to Serveri during time window T

0, otherwise
(3)

Using the S matrix, we can compute the utilization rate of server Serveri over the time window of
length T by summing the hardware resources used by the VMs allocated on this server. For example,
in case of the CPU it is denoted as µserveri , and calculated using the following relation:

µserveri =
∑M

j=1 S[i][j]× CPUVMj

CPUServeri

(4)

Knowing the utilization of the server, one can approximate the power consumed by the server
using Equation (5) proposed in [3], that defines a linear relationship between the server utilization,
the idle power consumption Pidle and the maximum power consumption of the server Pmax:
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Pserver(µserver) = Pidle + µserver × (Pmax − Pidle) (5)

The IT equipment energy demand over the time interval T can be computed as:

EIT(T) =
∫ t+T

t
PIT(t)dt where PIT = ∑n

i=1 Pserver(µserveri ) (6)

Most of the electrical energy consumed by the servers is converted to thermal energy that must
be dissipated by the electrical cooling system for keeping the temperature in the server room below a
defined set point:

HeatRemoved(t) = EIT(t) (7)

The electrical cooling system is the largest energy consumer of the DC after the IT servers.
Following our assumption of being equipped with heat reuse pumps, the cooling system must extract
the excess heat from the server room and dissipate it into the atmosphere. By operating in this way
there are two sources of energy losses: first the electrical energy needed to extract the heat from the
server room and second the thermal energy dissipated. The main idea to increase efficiency is to use
the heat pump to capture the excess heat and reuse it for nearby neighborhoods.

The heat pump operation is modeled leveraging two main parameters [8,24–26]: the COP for
cooling, denoted as COPcooling and the COP for heating, denoted as COPheating. The first parameter is
calculated as the ratio between the heat absorbed by the heat pump, denoted HeatRemoved(t), and the
work done by the compressor of the heat pump to transfer the thermal energy, in this case, represented
by the electrical energy consumed by the heat pump compressor denoted as Ecooling(t):

COPcooling =
HeatRemoved(t)

Ecooling(t)
(8)

The second parameter, the COP for heating, the relation between the heat produced by the heat
pump and supplied in the nearby neighborhoods, HeatSuplied(t), and the electrical energy consumed
by the heat pump to extract the heat, Ecooling(t).

COPheating =
HeatSupplied(t)

Ecooling(t)
+ 1 (9)

Using the thermodynamics law of heat capacity, the heat removed from the server room in a
specific moment of time t can be computed as the product between the airflow through the room,
air f low(t), the specific heat of air, cair, and the difference between the temperature of the air entering
the room, TIN(t− dt), and exiting the room, TOUT(t), where dt is the time needed by the air to pass
through the room:

HeatRemoved(t) = air f low(t)× cair × [TOUT(t)− TIN(t− dt)] (10)

The air traveling through the server room takes the heat from the servers, increasing its
temperature from TIN(t − dt) to TOUT(t) during a period dt. If during this interval, the heat removed
by the air passing through the room is equal to the electrical energy consumed by the servers during this
interval, then, according to relation (7) the temperature inside the room remains constant. Otherwise,
the temperature inside the room can fluctuate, increasing or decreasing.

It is difficult to determine a relation between the input and output airflow temperature on
one side and the server room temperature on the other side in different interest points because the
thermodynamics of the room must be considered. Consequently, we have defined a function TSIM that
takes as inputs the set of servers in the server room (ServerRoom), the heat produced by each server,
HServeri (considered equal to the energy consumed), the input airflow and temperature TIN , air f low and
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computes the output temperature of the air leaving the room, TOUT , and the temperatures in critical
points of the server room, TSurround

Serveri
, after a time period t:

TSIM(ServerRoom, HServeri , TIN , air f low, t)→ (TOUT , TSurround
Serveri

) (11)

For a given configuration of the DC and setting of the cooling system, the TSIM function computes
the temperatures in the room after a time t. To function properly, the temperatures of the critical DC
equipment must not exceed the manufacturer threshold:

TSurround
Serveri

< ThresholdServer∀ i ∈ {1 . . . N} (12)

Because the aim of this paper is to define a proactive optimization methodology for DC waste
heat reuse on-time window of length T, we choose to construct a discrete model of the thermodynamic
processes described above and to split the time window [0 . . . T] in T equidistant time slots.
Consequently, the values of the control variables of the cooling system equipped with heat reuse
pumps as well as the workload allocation matrix will be computed. The optimization problem is
defined in Figure 2.

Figure 2. DC heat generation optimization problem for reusing in nearby neighborhoods.

The inputs are represented by the DC server room configuration, the workload that has to
be deployed during and executed during the time window [0 . . . T] as well as the heat demand
profile HeatDemand[T] (i.e., requested by the neighborhood) that has to be supplied HeatSupplied by the
DC computed using the model presented above. The outputs of the optimization problem are the
scheduling matrix VMs to the servers, the airflow and air temperature of the cooling system for each
time slot of the optimization window [0 . . . T].

The defined optimization problem is a Mixed-Integer-Non-Linear Program (MINLP) [46] due
to the nonlinearities of the objective function and the integer variables of the scheduling matrix.
It can be shown that the resulting decision problem is NP-Hard [47], thus we have used a multi-gene
genetic algorithm heuristic to solve the optimization problem, similar with the one presented by
us [48]. The solution of the algorithm is represented by three chromosomes corresponding to the
three unknowns of the optimization problem described in Figure 2. The chromosome corresponding
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to the S workload scheduling matrix is an integer vector of size M, equal to the number of VMs.
The chromosomes corresponding to the air f low and TIN variables are two real number arrays of length
T, equal to the length of the optimization time window. As a result, we deal with a total number
of M integer and 2 × T real unknowns. The fitness function is defined as the Euclidean distance
between the heat profile of the DC corresponding to a solution and the heat demand. When evaluating
each solution, the thermal profile of the DC is computed during the time window [0 . . . T] by calling
the TSIM function to compute the server temperatures. Thus, the run-time complexity of the genetic
algorithm heuristic is:

O(Noiterations × Populationsize × (T ×O(TSIM) + T + M) (13)

where Noiterations represents the number of iterations of the genetic a algorithm and Populationsize the
size of chromosomal population. The TSIM function implementation and time complexity is detailed
in Section 4.

4. Thermal Flexibility of Server Room

An important component in adapting the DC thermal energy profile to meet a certain demand is
the thermal energy flexibility of server room. Our objective is to estimate the available thermal energy
flexibility considering different schedules of the workload to be executed and different settings of the
cooling system (i.e., TSIM function behavior). This will allow us to obtain a high server utilization ratio
and increase for limited time periods the temperature set points in the server room (i.e., allowing heat
to accumulate) while being careful not to endanger the proper operation of IT equipment (i.e., servers’
temperature thresholds TSurround

Serveri
). Moreover, this will optimize the operation of the heat pump which

will increase with more efficiency the temperature of waste heat leaving the server room, TOUT ,
(i.e., due to higher temperature baseline) making the thermal energy more valuable and marketable.

To estimate the thermal flexibility of the server room we have used CFD techniques to simulate
the thermodynamic processes in the server room in relation to workload allocation on servers. We have
considered a generic configuration of the server room as the one presented in Figure 3.

Figure 3. Server room configuration used in Computational Fluid Dynamics (CFD)-based thermal
flexibility estimation.

The server room is modeled as a parallelepiped with physical dimensions defined in tri-
dimensional space expressed in meters (length, width, and height), number of homogenous blocks
in which the server room volume will be divided, used for computing the simulation parameters,
initial temperature at the beginning of the simulation, air substance characteristics and input airflow
velocity vector and temperature. The solver will calculate the physical parameters of the simulation
in each defined homogeneous block, the simulation accuracy depending on the size and number
of these blocks. If they are smaller, the simulation is more accurate but takes longer to finish the
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calculations. Inside the server room, the server racks are defined as parallelepipeds with coordinates
in tri-dimensional space having the reference frame the server room (X-coordinate, Y-coordinate,
Z-coordinate), physical dimensions of each server rack expressed in meters (length, width and height),
and average temperature of each rack due to server loads (HServer).

Cold air is pumped in the room through raised floor perforated tiles and hot air is extracted
through the ceiling. The heat reuse and cooling of the server room is performed using a heat pump
similar to the solution presented in [9] featuring coefficients of performance for cooling and heating.
The heat pump transfers the heat absorbed from the DC server room to the thermal grid by using a
refrigerant-based cycle to increase its temperature and consuming electrical energy. The cooling system
parameters are the input air velocity vector, defined as a vector in tri-dimensional space showing the
direction and the speed of the air, the origin of the air velocity vector defined as a position in the server
room space, and finally the temperature of the air supplied in the server room.

The control variables of the simulation are the two cooling system parameters (input airflow
air f low and temperature TIN) and the matrix of VMs scheduling on servers (S) from which the rack
temperature is derived. From a thermodynamic point of view, the system operates as follows: cold air
enters the cold aisle of the server room through the floor perforated tiles, passes through the racks,
removing the heat generated by the electrical components. The hot air is eliminated behind the racks
in the warm aisle. Due to its physical properties, the hot air rises, being absorbed by the ceiling fans
and redirected to the main cooling unit containing cold water radiators that take over the heat from the
air. The excess thermal energy from the air is passed to the water from the radiators that increases its
temperature, while the air lowers its temperature and is pumped back to the room. The warm water is
sent to the evaporator part of the heat pump that extracts the excess heat, lowering its temperature.
The cold water is then pumped again back to the radiators, while the thermal energy extracted is
transferred to the heat exchanger of the heat pump that heats water at the other end to temperatures as
high as 80 degrees Celsius. Figure 4 presents the server room thermodynamic processes simulation
view using OpenFoam [35].

Figure 4. Server room thermal flexibility simulation.

The advantage of using such a CFD-based simulation for determining the temperatures in the
server room is the accuracy of the results, with the main drawback being the long execution time
that makes it unsuitable for real-time iterative computations needed when solving the optimization
problem described in Section 3. Thus, we have used deep neural networks-based technique to learn
the TSIM function from a large number of samples, while using the OpenFoam CFD-based simulation
to generate the training dataset (see Figure 5).
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Figure 5. Estimating server room thermal flexibility-CFD simulation and deep neural networks.

We have chosen the deep neural networks because they provide low time overhead during
runtime (i.e., after training) and because the relations between the inputs and the outputs are non-linear
and highly complex. The inputs of the neural network is represented by: (i) the matrix S εRN ∗ M

representing the VMs allocation on servers together with the array HServeri representing the estimated
heat generated by each of the N servers in the server room as result of executing the allocated workload;
(ii) the airflow (air f low) and temperature of the air fed (TIN) into the room by the cooling system and
(iii) the time interval for thermal flexibility estimation. From a structural point of view, the network
used is a fully-connected one having N + 3 inputs and N + 1 outputs and two hidden layers.
The neurons use Rectified Linear Unit (ReLU) activation functions and for training the network the
ADAM optimizer [49] is used with the Mean-Square-Error (MSE) loss function.

The time complexity of the TSIM function is different in the two implementation cases. In the
first case when CFD is used for implementation, the time complexity depends on the number of
iterations of the simulation process and the complexity of an iteration. At its turn, the complexity of
an iteration depends on several parameters, the most important being the accuracy of the surfaces
modeled, while the number of iterations varies according to the convergence time of the model. In our
implementation, a step of the simulation took about 1.5 s, and simulations converged in 100 up to
500 steps, so the simulation time could take up to 12 min. In the second case when neural networks
have been used the complexity depends on the number of neurons of the network. However, the neural
network call from Java environment was measured to be between 1 and 2 ms, with an average of
1.73 ms which represents a significant improvement in comparison to the CFD implementation.

5. Validation and Results

We have conducted numerical simulation-based experiments to estimate the potential of
our techniques for exploiting the DCs thermal energy flexibility in reusing waste heat in nearby
neighborhoods. The simulation environment is leveraging on a nonlinear programming solver
to deal with the DC heat generation optimization as presented in Figure 2. For estimating the
thermal flexibility of the server room the CFD-based techniques for simulating the thermodynamic
processes involved were implemented using OpenFoam Open Source CFD Toolbox. It provides
a set of C++ tools for developing numerical-based software simulations and utilities for solving
continuous mechanics problems, including CFD related ones. Among the many solvers available in
OpenFoam libraries we choose the BouyantBoussnesqSimpleFoam solver, which is suitable for heat
transfer simulations and uncompressible stationary flow. The OpenFoam simulation process involves
the following steps: (i) setting the parameters of the physical process underlying the simulation;
(ii) setting the computational and space parameters of DC server room used in simulation and
(iii) unning the simulation and add the results to the neural network training data set. The neural
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network was implemented in Keras [50] with a Tensorflow [51] backend and was loaded in a Java
application containing the solver for the optimization problem. For loading the network in Java,
the Deeplearining4J framework [52] was used, that converts a JSON model of the network exported
from Keras to the Java implementation.

In our experiments, we have modeled a DC server room of 6 m long, 4 m width and 4 m
height, having a surface of 24 square meters and a volume of 96 cubic meters. The server room
contains 4 standard 42U racks of servers (see Table 1) with the following dimensions: width −600 mm
and depth-1000 mm, with both front and rear doors. The racks contain 10U Blade Systems servers
with full-height and half-height blade servers featuring multiple power sources: 2U servers with
2 redundant power supplies or 1U servers with a single power supply.

Table 1. Server Room Equipment Description.

Rack Type Total Rack Idle
Power [W]

Total Rack Max
Power [W] # Servers Server Type Server Idle

Power [W]
Server Max
Power [W]

# CPU
Cores

HP Bladesystem
C7000 2000 3000 10 IBM Blade 200 300 4

IBM Bladecenter S 4000 6000 20 IBM Blade 200 300 4

HP Bladesystem
C7000 2550 4350 15 HP DL 360 G7 170 290 4

IBM Rack 5200 7200 20 IBM X3650 M4 260 360 4

The considered electrical cooling system (see Table 2) is based on indirect free cooling technology
and consists on a set of redundant external chillers. Inside the server room, cooling is done by pumping
cold air through the raised floor perforated to the server racks. The server racks are grouped in cool
aisles, as shown in Figure 3.

Table 2. Electrical cooling system characteristics.

Energy Consumption Heat Generation COPcooling COPheating Min Airflow Max Airflow Min TIN Max TIN

5 kWh 7.5 kWh 3.8 2.3 ~0.6 kg/s ~6 kg/s 14 ◦C 30 ◦C

The server racks are rear-to-back, being isolated from each other. Cold air enters a lane through
the slopes of the floor, passes through the racks, taking over the heat of the electrical components.
The hot air is discharged behind the racks in the warm corridor. Due to its physical properties, the hot
air rises, being absorbed by the ceiling fans and redirected to the main cooling unit containing cold
water radiators that take over the heat from the air as well as electric compressors used to cool the
water. The heat reuse and cooling of the server room is performed using a heat pump having the
characteristics presented in Table 3. There are two heat exchanges on the server room side of the
cooling process: heat exchange between hot air extracted from the server room by the cooling system
and cold water inside the radiators and heat exchange between cold air that is pumped into the room
and IT servers to be cooled.

Table 3. Heat exchange circuits characteristics.

Cooling System Cooling Capacity
(Operational Level) 24 kWh (Normal Operation) 4 kWh (Minimum) 48 kWh (Maximum)

Water Circuit

Water Flow 4120 L/h 687 L/h 8240 L/h

Input Air Temperature 10 ◦C 10 ◦C 10 ◦C

Output Air Temperature 15 ◦C 15 ◦C 15 ◦C

Air Circuit

Airflow 9340 m3/h 1600 m3/h 18,680 m3/h

Input Air Temperature 17 ◦C 17 ◦C 17 ◦C

Output Air Temperature 24 ◦C 24 ◦C 24 ◦C

Air Mass ~3.18 kg/s ~0.6 kg/s ~6.5 kg/s
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To train the neural network, a data set was generated by running 15,000 OpenFoam simulations
considering different values of the input parameters such as workload scheduling matrix S,
input airflow and temperature (TIN and air f low). The simulation results were generated as tuples of the
form < Timestamp,< TOUT , Track−1, Track−2, Track−3, Track−4 > >, where Timestamp is the simulation
time instance when results are generated, TOUT represents output temperature of the air leaving the
room, and Track−1, Track−2, Track−3, Track−4 represent the surrounding temperatures of the 4 racks of
server. Thus, a time log showing the progress of the server room temperatures is created containing
more than 50,000 different data samples. The generated data set, together with the values of OpenFoam
simulation input parameters is converted into a format accepted by the neural network, being split
in 80% training data samples and 20% as test data samples for the neural network. When evaluating
the precision of the temperature predictions using the trained neural network against a number
of reference OpenFoam simulations we obtain the mean square error (MSE) and mean absolute
percentage error (MAPE) values shown in Table 4. They are computed using relations (14) and (15)
where: n is the number of samples considered, TempRe f erence is the reference temperature of one of the
parameters generated from OpenFoam simulations (i.e., TOUT , Track−1, Track−2, Track−3, Track−4, etc.)
and TempPredicted is the temperature predicted by our neural network model.

MSE =
1
n
×

n

∑
i=1

(
TempRe f erence − TempPredicted

)2
(14)

MAPE =
100
n
×

n

∑
i=1

|TempRe f erence − TempPredicted|
TempRe f erence

(15)

Table 4. Temperature Prediction based on Neural Network Model Evaluation.

Metric Tout Track − 1 Track − 2 Track − 3 Track − 4 Tout

MSE 0.19 2.21 0.08 0.53 0.11 0.11
MAPE 1.48% 3.26% 0.93% 2.26% 1.02% 1.05%

The temperatures are measured on the Celsius scale and vary from 18 to 60 degrees, thus an
error of 2% means a temperature miss prediction of about 1 degree Celsius. As it can be noticed from
Table 4, the mean absolute error percentage of the predictions is less than 2% for the rack temperature
prediction, meaning that the temperatures are predicted with an accuracy of 1 degree Celsius for the
racks. The prediction error is the cost of cutting down the OpenFoam simulation time to less than
2 milliseconds needed to predict the temperatures using neural networks, being a reasonable tradeoff
in case of DC optimization where multiple evaluations have to be carried out fast to determine an
optimal parameter setting for DC operation.

5.1. Workload Scheduling and Temperature Set Points

This section evaluates the relation between the DC workload scheduling on servers (S allocation
matrix control variable defined in Section 3), heat generation in the server room and temperature
set points. We aim to determine workload deployment strategies on servers which will allow us to
maximize the average temperature in the server room without impacting the IT server operation
through overheating (i.e., hot spots avoidance). To estimate the heat generated by the servers as result
of workload execution we have used the relation between CPU (Central Processing Unit) usage and
temperature presented in Table 5. The values are reported in the Processors Thermal Specifications
sheets [53–55].
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Table 5. CPU Usage vs. Temperature.

Server Type Processor
Family PMAX [W] Temperature vs.

Power Relation Typical Thermal Profile

IBM Blade Intel Xeon
E5-2600 135 W CPUTemp = 0.205

*CPUPower + 48.9

HP DL 360 G7 Intel Xeon 5600 130 W CPUTemp = 0.190
*CPUPower + 55.7

IBM X3650 Intel Xeon X5400 120 W CPUTemp = 0.221
*CPUPower + 43.5

We have defined and used a set of 10 simulation scenarios. The cooling system is set to pump air
in the room at a speed of 0.1 m/s and a volume of 3 kg/s at a temperature set point of 20 ◦C. The initial
room temperature is also 20 ◦C. A set of 50 up to 65 synthetic VMs having 1 CPU core, 1 GB of RAM
and 30 GB for HDD must be deployed in the virtualized environment running on the server racks.
Each VM will run a synthetic workload that will keep its CPU between 80% and 100%.

Table 6 matrices of the VMs allocation on servers have been considered using two main workload
scheduling strategies: either group the VMs on servers leading to an increased CPU usage (>50%) and
increased CPU temperatures (Scenarios 1–3) or spread the VMs among more servers within each rack
and have a lower CPU usage (<40%) and a lower CPU temperature (Scenarios 4–10). After simulating
each workload scheduling configuration for 400 s, enough time to reach a thermal equilibrium for
most scenarios, the average and maximum temperatures are plotted in Figure 6, respectively Figure 7.

Table 6. Workload Deployment in the DC and corresponding CPU usages.

Scenario
Rack 1 Rack 2 Rack 3 Rack 4 Total VMs

WorkloadVMs CPU Usage VMs CPU Usage VMs CPU Usage VMs CPU Usage

1 0 0 64 80 0 0 0 0 64
2 0 0 56 70 0 0 0 0 56
3 20 50 0 0 30 50 0 0 50
4 0 0 32 40 24 40 0 0 56
5 12 30 24 30 18 30 0 0 54
6 10 25 20 25 0 0 20 25 50
7 10 25 20 25 15 25 20 25 65
8 8 20 16 20 12 20 16 20 52
9 8 20 32 40 12 20 0 0 52
10 0 0 24 30 12 20 24 30 60

Figure 6. Average temperature variation in server room.
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Figure 7. Maximum temperature variation in the server room.

As it can be seen from Figure 6, the highest average temperature in the server room is
reached in the Scenarios 5–8, which disperse the workload among more servers with a lower
utilization. The allocation technique that consolidates the workload on servers with high CPU usage,
such as scenarios 1 and 2 show a smaller average temperature in the server room. Furthermore,
by analyzing Figure 7 that displays the peak temperature in the server room, the situation is reversed.
The deployment strategies in which the workload is consolidated on servers with high CPU usage
exhibit the largest peak temperatures while the scenarios where the workload is spread on more
servers with lower CPU usage show a lower maximum temperature in the server room. Even if at first
sight these results are counter-intuitive, they can be explained. By distributing the workload on more
servers with lower CPU usage, more thermal energy is released, because according to Equation (5)
from Section 3, a server consumes electrical energy even in idle state, energy that will be converted in
thermal energy which in turn will lead to a temperature increase in the server room. Thus, when the
workload is consolidated on the minimum number of servers that run at high CPU usage, less electrical
energy is consumed, and thus less thermal energy is eliminated in the room, a situation illustrated by
a lower temperature in these scenarios. However, in these cases, because the energy is concentrated in
a small number of points in the server room, hot spots might occur, as illustrated in Figure 7 by higher
temperatures achieved by deployment strategies that overload the servers to use fewer resources.

In conclusion to transform the DCs in active thermal energy players which may provide heat in
nearby neighborhoods the deployment strategies that maximize the average room temperature and
minimize the maximum room temperatures are desired, for two reasons. Firstly, by having a higher
average temperature in the server room, the exhaust air from the room is hotter and more heat can be
recovered for heat reuse. Secondly, by minimizing the peak temperatures from the room, hotspots can
be easily avoided in case of cooling system adjustments, such as pre- and post-cooling presented in the
following section.

5.2. DC Thermal Profile Adaptation

This section aims at evaluating the DC capability of adapting its thermal energy generation to
match a given heat demand by using only the cooling system control variables: input air temperature
(TIN) and input airflow (air f low). By adjusting these two variables, the temperature in the server
room can be increased for limited time periods allowing the DC to reuse the heat generating more
efficiently through the heat pump and provide it to the nearby neighborhood. We have created four
scenarios with a different combination of control variables adjustment (see Table 7). For each of them
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we have evaluated the DC thermal flexibility over a period of two hours, with a five-minute time step,
considering the same workload allocation matrix on servers (about 25% of the servers used).

Table 7. Scenarios defined and control variables settings.

Scenarios
Heat Demand Matching
(Before Optimization)

Control Variable Heat Demand Matching
(After Optimization)TIN airflow

Post-cooling
Scenario 1 63% Constant at 20 ◦C First decrease and

then increase 98%

Post-cooling
Scenario 2 79% First increase and

then decrease Constant at 2.89 kg/s 97%

Pre-cooling
Scenario 3 78% Constant at 20 ◦C First increase and

then decrease 98%

Pre-cooling
Scenario 4 86% First decrease and

then increase Constant at 2.89 kg/s 99%

Scenarios 1 and 2 investigate the server room “post-cooling” mechanism as a source of thermal
energy flexibility. In Scenario 1 the electrical cooling system usage is reduced for a short period of time
to accumulate residual heat that can be later used to meet the heat demand. The cooling system input
airflow (air f low) is steadily decreased in the first 35 min, as shown by the yellow line in Figure 8-left,
leading to an increase in the maximum temperature in the server room, as shown in Figure 8-right.
Then, the airflow starts to steadily increase and to eliminate the excess residual heat from the server
room, leading to a temperature decrease below the normal operating temperature shown by the blue
line in Figure 8-right. Finally, in the last 15 min, the airflow is brought back to normal values leading
to a rebalance of the server room operating temperature. By using this intelligent airflow management
technique, the DC heat generation matches more than 98% the given heat demand profile.

Figure 8. DC thermal profile adaptation in Scenario 1 (left—heat produced by the DC; right—server
room maximum temperature).

In Scenario 2 we evaluate the DC thermal energy profile adaption by modifying the cooling
system input air temperature (TIN). Initially, the input airflow temperature is increased, as shown by
the yellow line in Figure 9-left, a process that leads to an increase of the overall maximum server room
temperature, is shown by the red line in Figure 9-right. The heat accumulates in the first hour in the
server room. In the second hour, the input air temperature is steadily decreased below the normal
operating set point temperature of 22 ◦C, shown by the blue line in Figure 9-left, increasing the amount
of thermal energy removed from the server room. This thermal energy is transported to the heat pump
that converts it to heat that can be reused to meet the nearby neighborhood heat demand profile with a
matching degree of 97%.
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Figure 9. DC thermal profile adaptation in Scenario 2 (left—heat produced by the DC; right—server
room maximum temperature).

Scenarios 3 and 4 investigate the server room pre-cooling mechanism as a source of thermal
energy flexibility. In scenario 3, as shown in Figure 10-left and Figure 10-right this is achieved toggling
the airflow (air f low) in the server room. To meet the increased heat demand of 7 kWh in the first 30 min
of the simulation, the airflow is increased accordingly leading to an excess heat removal from the
server room, as shown in Figure 10-right. Next, the heat demand is decreasing to 3 kWh, less than
the normal 5.5 kWh heat generation of the servers. To meet this low heat demand, the cooling system
airflow is drastically decreased, thus less heat is removed from the server room and the temperature
increases. Finally, the airflow is brought back to normal values bringing back the temperature from the
server room to the initial values. In this case, the heat demand is matched with an accuracy of 98%.

Figure 10. DC thermal profile adaptation in Scenario 3 (left—heat produced by the DC; right—server
room maximum temperature).

Scenario 4 presented in Figure 11 shows the DC response to an increased heat demand by adjusting
the cooling system input air temperature (TIN). In the first 30 min of the response period, the heat
demand increases above 7 kWh, much higher than the 5.5 kWh normal thermal generation of the
servers. To collect the necessary thermal energy, the cooling system decreases the input air temperature
in the server room, removing more heat than generated, leading to a decrease in the server room
temperature, as shown in Figure 11-right. In the second part of the response period, the heat demand
decreases, thus the input air temperature is adjusted accordingly to remove less heat from the server
room. As an impact, the average server room temperature increases and exceeds the normal operating
temperature by 3◦. In the last 15 min of the response, the DC adjust again the input air temperature to
bring back the server room to normal operating parameters. In this case, the heat demand is matched
with an accuracy of 99%.
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Figure 11. DC thermal profile adaptation in Scenario 4 (left—heat produced by the DC; right—server
room maximum temperature).

6. Conclusions

In this paper, we have proposed techniques that will allow the DCs equipped with heat reuse
technology to adapt their thermal energy profile and provide heat to nearby neighborhoods on demand.
We have defined a mathematical model for describing the thermodynamics processes inside the server
room and used it to decide on the optimal shifting DCs thermal energy profile to meet expected heat
demands. CFD and neural networks have been employed to estimate the thermal flexibility of the DC
considering the cooling system air temperature and flow level as control variables as well as workload
allocation on servers to avoid hot spots. The validation conducted using the characteristics of a small
DC was promising the results showing the DCs potential in acting as thermal energy players in their
nearby neighborhoods. In our tests, the DC could meet the heat demand with an accuracy of over
90% in all the defined scenarios. As future work, we will investigate new business scenarios for DC
operation which will allow them to cooperate and jointly exploit their thermal flexibility in providing a
more stable heat supply and as result to gain new revenue streams. At the same time, we will address
the case of fully decentralized DCs and supercomputers case which may provide free and efficient
heating for residential buildings.
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