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Abstract: China has proposed an ambitious high-speed rail (HSR) program by 2030 to connect
all provincial capitals (excluding Lhasa) and large cities with more than half million people.
Little attention has been paid to evaluate its potential impacts on ground transportation accessibility.
To answer this question, we adopted a door-to-door approach to calculate two indicators:
the weighted average travel time and daily accessibility. The results show that the HSR network
follows the same spatial patterns of population size and regional development, thus preferentially
serving eastern China. The two accessibility indicators suggest that the large-scale construction of
HSR network by 2030 will substantially improve accessibility and alter the spatial disparities of
accessibility. On average, accessibility of all cities will increase by 61.7%. Geographically, cities with
higher accessibility are located in the quadrilateral area of ‘Wuhan-Zhengzhou-Jinan-Nanjing’ on the
southeastern section of the ‘Hu Line.’ While the least accessible cities are distributed in peripheral
areas. Although the HSR development can benefit accessibility throughout the country, the disparities
of accessibility would widen slightly among regions, provinces and cities.
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1. Introduction

Compared with other forms of ground transportation (e.g., bus, car and conventional rail), the
new high-speed rail (HSR) can reduce journey time, offer a higher level of safety and comfort, and
lower costs for passengers [1,2]. HSR is also considered a better alternative to air transportation for
short trips (150–800 km), when people take into account urban traffic congestion and potential flight
delays [3]. Because of these advantages, HSR lines has been growing fast across the world in recent
decades [4,5] (Figure 1). The total operating mileage of the worldwide HSR network is predicted
to exceed 80,000 km by 2030–2035, thus revolutionizing land-based travel [6]. By 2015, China had
constructed the longest HSR network (20,743 km) in the world [5]. The country has proposed an
ambitious HSR program by 2030 to link all provincial capitals (excluding Lhasa) and cities with more
than half million people [7] (Figure 2). The expansion of HSR network would inevitably contract
time-space of the country, and alter the spatial pattern (disparities) of regional accessibility [8,9].
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Figure 1. Global high-speed rail (HSR) development by the end of 2015. 

A common goal in almost all transportation plans is to improve accessibility [10,11]. In the 

current literature, a variety of accessibility measures have been developed to evaluate the impacts of 

transportation projects during the past few decades, including projects of highways [12–14], 

conventional rail [15–17], airports [18,19] and seaports [20]. A small number of studies have analyzed 

the impacts of China’s HSR network on accessibility but focused primarily on the current HSR 

network [21,22] and that planned by 2020 [8,23]. Little attention has been paid to the impacts of 

China’s long-term HSR network plan by 2030. Furthermore, few have considered door-to-door 

journey time in HSR accessibility, including inner-city travel time and transfer time at railway 

stations, which offers more realistic estimation. This study aims to address these research gaps by 

analyzing, based on a door-to-door approach, the potential impacts of China’s HSR development on 

accessibility between 2003 and 2030. 

Figure 2. China’s current and planned HSR network over the 2003–2030 period. 

Figure 1. Global high-speed rail (HSR) development by the end of 2015.

A common goal in almost all transportation plans is to improve accessibility [10,11]. In the
current literature, a variety of accessibility measures have been developed to evaluate the impacts
of transportation projects during the past few decades, including projects of highways [12–14],
conventional rail [15–17], airports [18,19] and seaports [20]. A small number of studies have analyzed
the impacts of China’s HSR network on accessibility but focused primarily on the current HSR
network [21,22] and that planned by 2020 [8,23]. Little attention has been paid to the impacts of
China’s long-term HSR network plan by 2030. Furthermore, few have considered door-to-door journey
time in HSR accessibility, including inner-city travel time and transfer time at railway stations, which
offers more realistic estimation. This study aims to address these research gaps by analyzing, based on
a door-to-door approach, the potential impacts of China’s HSR development on accessibility between
2003 and 2030.
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2. China’s Present and Future HSR Network

China started the construction of its first HSR line, the Qinhuangdao-Shenyang line, in 2003. Since
then, its HSR network has expanded rapidly and a total of 62 HSR lines have been completed by the
end of 2015 [5] (Figure 3). Currently, China’s HSR network provides excellent connectivity between
major provincial capitals across the country, but is mainly concentrated in the eastern China, where
population density and economic development are at the highest level. According to the new round of
the ‘Mid-to-Long Term Plan for Railway Network’ issued in 2016, China is about to upgrade its HSR
network to ‘eight-vertical and eight-horizontal’ corridor lines [7]. By 2030, these HSR lines will achieve
45,000 km and link all provincial capitals (except for Lhasa, capital of Tibet autonomous region) and
cities with a population of over half-a-million, particularly those in the central and western regions.
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3. Data and Methodology

3.1. Data Sources

This study includes 31 provinces (with the exceptions of Hong Kong, Macao and Taiwan),
4 municipalities, and 333 prefecture-level cities in mainland China. The geographic data (administrative
divisions, major water bodies, roads, conventional railways, etc.) were sourced from National
Geomatics Center of China [24] and OpenStreetMap [25]. The HSR lines were digitally extracted
from the new round of ‘Mid-to-Long Term Plan for Railway Network’ [7] and ‘13th Five-Year Plan for
Railway Network’ [26]. Economic and demographic data were obtained from the Economy Prediction
System Data Platform [27], China Economic Information Statistics Database [28] and the National
Bureau of Statistics of China [29].

Three scenarios were constructed to assess the accessibility impacts of the proposed HSR lines.
Scenario 1 is the ground transport network in 2015 without HSR; Scenario 2 is the ground transportation
network in 2015 with built HSR network; Scenarios 3 is the planned ground transport network by 2030,
comprising the present transport network in 2015 and the future HSR network by 2030. The changes
from Scenario 1 to Scenario 2, Scenario 2 to Scenario 3 and Scenario 1 to Scenario 3, are defined
as Scenario 2/1 (the first period), Scenario 3/2 (the second period) and Scenario 3/1, respectively.
To be comparable, all three scenarios were controlled for the same population, the same GDP level,
and the same non-HSR ground transport network. As a result, the reduction in travel time and the
improvements in accessibility can be attributed to the expansion of HSR [1,9,23].
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3.2. Methodology

3.2.1. Measurement of Travel Time

Travel time is a widely used measure for accessibility, which reflects the ease of travel as determined
by the quality of service provided by the transportation [23,30]. We employed a door-to-door approach to
calculate times associated with every stage in a journey between origin and destination [31]. The total
journey time when using HSR can be divided into four stages (Figure 4): (i) the time from the traveler’s
origin location to a railway station; (ii) the transfer and waiting time at the railway station; (iii) the
travel time between initial and final railway stations; and (iv) the time from the final railway station to
the traveler’s destination.
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Therefore, the total journey time of the HSR travel can be expressed as:

THSR = Tos + Tss + Tsd + Tt (1)

where THSR refers to the total journey time of the HSR travel mode from origin to destination, Tos is
the travel time from the origin to the railway station, Tss is the travel time between stations by railway,
Tsd is the travel time from the railway station to the destination and Tt is the transfer time at both
railway stations. Here, the transfer time was set to one hour (half-hour per station) [2].

3.2.2. Construction of Frictional Surface

The layered cost distance method [31] was introduced to model accessibility by integrating HSR
with other forms of ground transportation (Figure 5). The study area (entire China) was divided into
raster grid cells with a spatial resolution of 1 km [30] and the cell value indicated the time spent to
traverse a cell. The cell value was calculated as Cost = 100/V × 60, where Cost is the travel time
(min per 100 km) and V calculated based on following speed settings: 90, 70, 50 and 20 km/h for the
expressway, national highway, provincial and county highway and other roads, respectively (Figure 5a).
The average speed of conventional railways was set to 90 km/h [23], whereas the HSR lines were set
to 250, 200 and 160 km/h (Figure 5b), which are within the limits of the maximum design speeds of
350, 250 and 200 km/h [32]. Buffer zones with 5 km width and a minimum access speed (0.1 km/h)
were set at both sides of HSR lines to account for an half-hour transfer time at each railway station,
a buffer with a distance of 5 grid cells surrounding each railway station, and a speed of 10 km/h was
assigned to the buffer (5 km ÷ 10 km/h = 0.5 h) (Figure 5c). Finally, we assigned a speed of 1 km/h for
water bodies, 10 km/h for non-traffic areas and 35 km/h for a ferry.

To calculate travel time and accessibility, we used ArcGIS ‘Cost Distance’ tool to generate cost
raster maps by different mode of ground transportation for each city separately; then, we used ArcGIS
‘Mosaic to New Raster’ tool with ‘MINIMUM’ mosaic parameters to produce cost raster maps by
hybrid travel mode for each city. To validate our estimated travel time, we employed Google Map
service (https://www.google.com/maps) as a reference for comparison.

https://www.google.com/maps
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3.2.3. Selection of Accessibility Indicators

The accessibility of a cell location was evaluated by two classical indicators, weighted average
travel time (WATT) and daily accessibility (DA). The WATT indicator calculates the average travel
time from a specific cell location and all other cell locations, weighted by the ‘mass’ of each destination,
formulated as follows:

WATTi =
∑n

j=1
(
Tij × Mj

)
∑n

j=1 Mj
(2)

where WATTi is the accessibility of raster grid cell i. Tij is the shortest travel time between cell i and
city j (the cell where the city government seats) via ground transportation; n is the number of cities in
the study area; Mj is the mass of destination city j, as the square root of the product of local population
size and GDP [22]. A lower value of WATT indicates a higher accessibility from a location.

The DA indicator represents the total population that can be reached from one location within a
specified limited travel time [2,33], expressed as Equation (3).

DAi =
n

∑
j=1

Pjδij (δij = 1 if Tij < 4 h, otherwise δij = 0) (3)

where DAi is the accessibility of city i. Pj is the resident population of city j; Tij is the shortest travel
time between city i and j; 4 h is specified as a limited travel time for a national level study area of
China [1,2,21]. A lower value of DA suggests lower accessibility of a location.

Based on Equations (2) and (3), we used ArcGIS ‘Raster Calculator’ tool to estimate WATT and DA
for each city. To examine the spatial disparity at each stage of the HSR network extensions, we further
calculated the coefficient of variation (CV) values of WATT and DA among regions and provinces.

4. Results

4.1. Validation of Travel Time and Accessibility

We selected Nanjing City as the starting location, other provincial capitals in China as the
destinations by highway travel mode and some HSR provincial capitals as destinations by HSR travel
mode. The result of the layered cost distance method was obtained from raster maps of travel time
from Nanjing City on ground transportation by the highway travel mode in Scenario 1 (Figure 6a) and
by the HSR travel mode in Scenario 2 (Figure 6b). The result from Google Maps was calculated as



Sustainability 2018, 10, 1270 6 of 16

follows: the shorted travel time was chosen for a pair of cities by the highway travel mode; the travel
time of a pair of cities by the HSR travel mode was calculated using Formula (1), where Tos and Tsd
were obtained from Google Maps, Tss was estimated from the HSR timetable (http://www.12306.cn).
Figure 6c shows that the mean of the difference between two methods by the highway travel modes is
5.6% and by the HSR travel mode is 7.3%, both indicate that the estimated travel time from the Google
Maps and the layered cost distance method are highly consistent.
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Figure 6. Raster maps of travel time from Nanjing City on ground transportation (a) by the highway
travel mode in Scenario 1 and (b) by the HSR travel mode in Scenario 2; and (c) Comparison of the
results of door-to-door travel time by the highway and the HSR travel modes with Google Maps
(acquired at 14:00–15:00, April 13, 2018) and the layered cost distance method from Nanjing to other
provincial capitals in China.

4.2. WATT Accessibility

Table 1 shows a remarkable time-space contraction across entire China by 2030. The average
WATT accessibility among all cities decreased from 18.7 h to 13.1 h (an improvement of 29.8%) in
the first period (Scenario 2/1), and will further drop to 10.3 h (a reduction of 21.4%) in the second
(Scenario 3/2). Clearly, the reduction rate of travel time reduction in the first period is much faster
than that in the second period.

http://www.12306.cn
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Table 1. Accessibility (in hours) for all China’s provinces in Scenarios 1, 2, 3, 2/1 and 3/2, according to
the weighted average travel time (WATT) indicator.

Provinces
WATT Accessibility Scenario 2/1 Scenario 3/2

Scenario 1 Scenario 2 Scenario 3 2–1 % 3–2 %

Average of China 18.7 13.1 10.3 5.6 29.8 2.8 21.4

North China 15.2 10.1 8.0 5.1 33.4 2.1 20.8
Beijing 14.4 8.4 7.1 6.0 41.8 1.2 14.8
Tianjin 13.9 8.6 7.4 5.3 38.2 1.2 14.2
Hebei 14.0 9.0 7.6 5.0 35.4 1.5 16.3
Shanxi 13.4 9.5 7.3 3.9 28.8 2.2 23.2

Inner Mongolia 20.5 15.2 10.8 5.3 25.9 4.4 29.1

Northeast 23.0 14.2 12.0 8.9 38.5 2.1 15.0
Liaoning 18.6 11.5 9.8 7.0 37.9 1.7 14.8

Jilin 22.7 14.1 11.7 8.7 38.1 2.4 17.3
Heilongjiang 27.8 16.9 14.6 10.9 39.3 2.2 13.2

East China 13.4 9.1 7.5 4.3 32.2 1.6 17.6
Shanghai 13.7 8.6 7.2 5.1 37.5 1.4 15.9
Jiangsu 12.5 8.6 7.1 3.9 31.0 1.5 17.0

Zhejiang 14.0 9.2 7.7 4.8 34.1 1.5 16.6
Anhui 11.7 8.4 7.1 3.3 28.4 1.3 15.6
Fujian 16.1 10.4 8.6 5.7 35.5 1.8 17.3
Jiangxi 13.0 9.4 7.4 3.6 27.4 2.0 21.6

Shandong 12.9 9.0 7.3 3.9 30.0 1.7 18.7

Central China 12.3 8.7 7.1 3.6 29.6 1.5 17.6
Henan 11.5 8.1 6.6 3.4 29.9 1.5 18.5
Hubei 11.8 8.7 7.1 3.2 26.9 1.6 18.2
Hunan 13.5 9.3 7.7 4.3 31.6 1.5 16.3

South China 20.3 13.7 10.0 6.6 32.6 3.8 27.4
Guangdong 17.5 10.7 9.1 6.7 38.5 1.6 15.2

Guangxi 18.5 11.9 9.8 6.7 35.9 2.1 17.5
Hainan 25.0 18.5 10.9 6.5 26.0 7.6 40.9

Southwest 23.1 18.2 14.4 4.9 21.1 3.8 20.9
Chongqing 15.3 11.1 7.6 4.3 27.8 3.5 31.6

Sichuan 17.7 13.5 9.6 4.2 23.5 3.9 29.1
Guizhou 17.0 11.3 9.0 5.7 33.7 2.3 20.3
Yunnan 24.0 18.1 13.2 5.9 24.6 4.9 27.3

Tibet 41.3 37.1 32.7 4.3 10.4 4.4 11.8

Northwest 23.5 17.9 13.2 5.6 23.6 4.8 26.5
Shaanxi 13.9 10.1 7.5 3.8 27.2 2.6 25.4
Gansu 19.3 14.6 10.3 4.6 24.1 4.3 29.6

Qinghai 23.3 18.9 13.1 4.4 18.9 5.7 30.3
Ningxia 17.9 14.4 9.3 3.5 19.7 5.1 35.4
Xinjiang 43.1 31.7 25.7 11.4 26.4 6.1 19.1

At the regional level, the high accessibility regions are distributed in Central, East and North
China in all three scenarios (the average WATT values lower than the national average). In Scenario
2/1, remarkable improvements to the HSR network occurred in the Northeast (38.5%), North (33.4%),
South (32.6%) and East China (32.2%). The relative changes in the South (27.4%), Northwest (26.5%),
Southwest (20.9%) and Northeast (20.8%) regions of China are large in the second period, which will
mitigate the deficiencies from the first period. Hence, the rates of change in the accessibility of regions
are balanced (37.6–51.1%) after the construction of the current and planned HSR network.

Similar results derived from provinces and the relative improvements of accessibility for all
provinces are noticeable and balanced (39.6–56.3%), except for Tibet (21.0%), with the expansion of
the HSR network in Scenario 3/1. In all three scenarios, the provinces with better accessibility are
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Henan, Anhui, Hubei, Jiangsu, Shandong and Jiangxi Provinces in the Central and East China regions.
As expected, Xinjiang and Tibet have remained low accessibility, although the absolute change in travel
time of Xinjiang Province is the greatest, with a reduction of 17.5 h (40.5%) overall. In the first period,
the area of high accessibility expands to Beijing, Shanghai and Tianjin municipalities and Zhejiang,
Hebei Provinces and then to Chongqing and Shaanxi with the expansion of the planned HSR network
in the second period.

Although the expansion of HSR network improved the average accessibility across the nation,
it slightly aggravates disparities between regions, between provinces and between cities. The regional
CV value of WATT increases from 26.3% in Scenario 1 to 30.4% in Scenario 2, and then decreases
slightly to 27.6% in Scenario 3, suggesting an increase of spatial imbalance between regions. The CV
value of WATT between provinces increases from 41.7% to 50.6% during the first stage of the HSR
network development and the disparity will be further aggravated with the future HSR network
extension in the second period (53.9%). This reveals a similar trend given that the CV values between
cities from Scenarios 1 to 3 are 43.5%, 50.8% and 54.0%, respectively.

The CV values between provinces in each of the regions (Table 2) show that internal inequalities
in Southwest and Northwest China are high in Scenario 1 and continue to increase as a result of current
and planned HSR networks in Scenarios 2 and 3. In contrast, the disparities in East and Central China
regions are low before the construction of HSR and they continue to decrease with the expansion of the
planned HSR network. Clearly, disparities between the provinces in South China exhibit a different
trend to other regions, increasing in the first period and then sharply decreasing in the second period.
In contrast, the CV values for North and Northeast China remain almost unchanged in Scenario 3/1.

Table 2. Disparities of accessibility between provinces in each of the regions.

Regions
Disparities of WATT Scenario 2/1 Scenario 3/1

Scenario 1 Scenario 2 Scenario 3 2–1 % 3–1 %

North China 19.4% 28.1% 19.1% 0.087 44.7% −0.003 −1.5%
Northeast 20.0% 18.8% 20.2% −0.012 −6.1% 0.002 0.8%
East China 10.6% 7.6% 7.0% −0.030 −28.4% −0.036 −33.6%

Central China 8.8% 6.9% 8.2% −0.019 −21.9% −0.006 −6.5%
South China 20.1% 30.6% 9.3% 0.105 52.3% −0.108 −53.8%
Southwest 46.4% 59.9% 72.3% 0.134 28.9% 0.259 55.7%
Northwest 48.9% 46.3% 55.1% −0.026 −5.2% 0.062 12.7%

Accessibility maps for China, as measured by the WATT indicator, in the three scenarios are
shown in Figure 7a–c. The most accessible cities are mainly concentrated in the southeast of the
‘Hu Line’ and near to the geometric center of China. The map (Figure 7a) exhibits a ‘core-periphery’
structure in Scenario 1 before the construction of HSR. In Scenario 2 (Figure 7b), the contours generally
spread outwards and the area of accessibility between 10 h and 12 h significantly extends from 0.3 to
1.2 million km2 (a three-fold increase). The planned HSR network causes the contours to spread further
in Scenario 3 (Figure 7c) and the area accessible in less than 10 h using HSR will expand from 1.1 to
2.4 million km2 (118.2%), accounting for 25.0% of China’s total area.
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The absolute changes in accessibility (travel time savings) are shown in Figure 7d–f. The map
(Figure 7d) shows that cities in the peripheral Northwest and Northeast regions receive relatively
higher travel time savings in Scenario 2/1, for example, Urumchi (13.2 h) and Harbin (11.2 h) and
changes in travel time of between 4 and 6 h occur for most of the area (4.3 million km2). In Scenario
3/2 (Figure 7e), the improvements in accessibility are less than in Scenario 2/1 and the area of all
intervals is balanced (2.4–2.6 million km2). Cities with much larger increases in accessibility are always
distributed in Xinjiang Province (Figure 7f), followed by parts of Northeast, Southwest and South
China regions overall, such as Urumchi (19.5 h), Haikou (13.6 h), Harbin (13.0 h), Kunming (11.5 h),
Changchun (11.4 h) and Xining (10.7 h).

4.3. DA Accessibility

Table 3 lists the DA accessibility for all provinces in the three scenarios. The average number of
reachable inhabitants within the 4 h limit of all cities in China rises from 61.1 million to 78.5 million
(17.4%) in the first period, with a subsequent increase to 109.1 million (30.6%) following the
implementation of the planned network in the second period and an increase of 78.6% overall
(Scenario 3/1).
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Table 3. Accessibility (reachable inhabitants in millions within 4 h) for all China’s provinces in Scenarios
1, 2, 3, 2/1 and 3/2, according to the daily accessibility (DA) indicator.

Provinces
DA Accessibility Scenario 2/1 Scenario 3/2

Scenario 1 Scenario 2 Scenario 3 2–1 % 3–2 %

Average of China 61.1 78.5 109.1 17.4 28.5 30.6 39.0

North China 79.3 114.1 163.6 34.8 43.9 49.6 43.5
Beijing 87.6 156.6 227.7 69.0 78.8 71.1 45.4
Tianjin 103.5 160.9 213.6 57.4 55.5 52.7 32.7
Hebei 108.5 136.1 179.8 27.6 25.4 43.6 32.1
Shanxi 82.2 102.0 167.8 19.9 24.2 65.7 64.4

Inner Mongolia 14.6 14.6 29.4 0.0 0.0 14.8 101.4

Northeast 32.8 40.0 49.3 7.1 21.8 9.3 23.4
Liaoning 44.6 58.9 74.3 14.3 32.2 15.4 26.1

Jilin 35.5 40.9 50.4 5.4 15.3 9.5 23.2
Heilongjiang 18.4 20.1 23.2 1.7 9.1 3.1 15.6

East China 100.7 132.8 173.9 32.2 31.9 41.1 30.9
Shanghai 108.5 160.9 179.0 52.5 48.4 18.1 11.2
Jiangsu 130.9 163.4 218.7 32.5 24.8 55.3 33.8

Zhejiang 88.2 123.7 144.3 35.4 40.1 20.6 16.7
Anhui 135.7 174.6 244.8 39.0 28.7 70.2 40.2
Fujian 47.6 63.8 79.4 16.2 34.0 15.7 24.6
Jiangxi 67.7 88.7 139.1 20.9 30.9 50.4 56.9

Shandong 126.2 154.9 212.3 28.7 22.7 57.4 37.1

Central China 106.9 134.7 182.6 27.8 26.0 47.9 35.6
Henan 158.7 192.9 260.8 34.2 21.5 67.9 35.2
Hubei 86.6 109.5 157.4 22.9 26.5 47.9 43.7
Hunan 75.3 101.8 129.7 26.4 35.1 28.0 27.5

South China 41.0 52.2 74.1 11.2 27.2 21.9 42.0
Guangdong 67.5 87.5 102.3 20.0 29.7 14.8 16.9

Guangxi 52.4 65.9 80.6 13.5 25.7 14.6 22.2
Hainan 3.2 3.2 39.5 0.0 0.0 36.3 1131.2

Southwest 49.4 55.3 84.7 6.0 12.1 29.3 53.0
Chongqing 100.0 120.5 176.4 20.6 20.6 55.9 46.3

Sichuan 72.8 79.2 110.8 6.4 8.8 31.5 39.8
Guizhou 52.2 55.1 101.1 2.9 5.5 46.0 83.4
Yunnan 21.1 21.1 34.3 0.0 0.0 13.2 62.6

Tibet 0.7 0.7 0.7 0.0 0.0 0.0 0.0

Northwest 17.5 20.2 35.2 2.7 15.5 15.0 74.0
Shaanxi 47.2 58.9 111.2 11.7 24.9 52.2 88.6
Gansu 17.5 18.3 27.9 0.8 4.5 9.5 52.0

Qinghai 6.2 7.2 8.2 1.1 17.3 1.0 14.1
Ningxia 13.8 13.8 25.9 0.0 0.0 12.1 87.3
Xinjiang 2.9 2.9 2.9 0.0 0.0 0.0 0.0

Regionally, the results from the DA indicator have some features in common with the WATT
indicator: Central China, East China and North China have a higher accessibility in all three scenarios,
for example, Henan, Anhui, Jiangsu, Shandong and Hebei Provinces and all four municipalities (Beijing,
Tianjin, Shanghai and Chongqing). Conversely, Northwest, Northeast and part of the Southwest
regions have lower accessibility, particularly in vast areas with a low population density such as Tibet,
Xinjiang, Qinghai, Heilongjiang, Ningxia, Gansu and Inner Mongolia. With a few exceptions, absolute
improvements in accessibility will also be strengthened in North China (84.4), followed by Central
China (75.7) and East China (73.3) by the development of the present and planned HSR networks.
The most notable gains are projected to occur in Beijing (140.1), Tianjin (110.1), Anhui (109.2) and
Shandong (102.0).
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The disparities in accessibility between regions and between provinces, according to the DA
indicator, both deepen in the first period and will be somewhat reversed in the second period.
The regional CV value increases from 56.8% to 60.4% in Scenario 2/1, with a subsequent decrease
to 57.3% by the completion of the HSR plan in Scenario 3. In contrast, the provincial CV values
of Scenarios 1 to 3 are 69.7%, 72.7% and 69.1%, respectively. This means that although the current
HSR enlarges inequalities of accessibility, the proposed HSR network slightly enhances equitable
accessibility between provinces. The CV value between cities increases from 76.6% in Scenario 1 to
79.7% in Scenario 2 and then increases slightly to 80.5% in Scenario 3.

The series of maps (Figure 8a–c) indicate that DA values are high on the southeastern section of
the ‘Hu Line’ and low at the edges. There are a smaller number of cities (87) with DA values exceeding
100 million inhabitants before the construction of HSR. This number increases gradually and reaches
118 in Scenario 2 and 161 in Scenario 3 by the completion of proposed HSR network. The maps of the
absolute changes (Figure 8d–f) show an obvious ‘corridor effect’ [23], in that the top cities with respect
to accessibility changes are mainly concentrated along HSR lines. The distribution of the gains is
consistent with accessibility such that the central and eastern regions along the primary HSR corridors,
especially at the intersections of HSR lines, experience much greater improvements in accessibility.
However, few gains take place in the peripheral provinces such as Tibet and Xinjiang.
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and (f) Scenario 3/1.
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5. Discussion

5.1. Comparison between the Two Indicators

Comparisons between accessibility gains from the WATT and DA indicators share several common
features (Table 4). For example, the most accessible cities are located in the center and eastern regions
of China, particularly in the quadrilateral area of ‘Wuhan-Zhengzhou-Jinan-Nanjing,’ while the least
accessible cities are distributed in peripheral areas. As expected, the accessibility of Henan, Anhui,
Jiangsu and Shandong Provinces are ranked as top ten in all three scenarios. In contrast, Tibet, Xinjiang
and Qinghai are the five least accessible provinces. Finally, although the future HSR network will
lead to a more balanced distribution in terms of accessibility, the unequal gap between the most and
least accessible regions, provinces and cities will remain greater than before the construction of the
HSR network.

There are some differences between the two indicators. For instance, the relative degree of
accessibility benefits as measured by the WATT indicator is lower than that measured by the DA
indicator. Therefore, the HSR network will have a greater impact as measured by the increase in the
reachable population within a certain limited time than by the reduction in travel time. In addition, in
the case of the WATT indicator, the accessibility improvement in Scenario 2/1 is much more than in
Scenario 3/2, while the DA indicator shows the opposite. The most notable gains in accessibility will
be achieved in the more peripheral locations according to the WATT indicator but the DA indicator
suggests that the greatest improvements will appear in cities along the HSR corridors in central and
eastern regions rather than in peripheral areas.

The findings of this study support the results of other relevant literature pertaining to China’s HSR
network in the sense that the network generally improves accessibility across the nation [21–23,32,34]
but the degree of improvement varies (Table 5). We adopted the door-to-door approach to calculate
the times of each stage in a journey for the HSR travel mode, including the inner-city travel time,
the transfer time and the waiting time for connecting services at the railway stations. Thus, realistic
accessibility impacts of the HSR network were better quantified. It can therefore be seen that the
degrees of accessibility gains and disparities in this study, as measured by the WATT and DA indicators,
are much lower than other similar studies using the same timescale.
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Table 4. The top 10 provinces ranked by accessibility in Scenarios 1, 2, 3 and 3/1.

Rank
Scenario 1 Scenario 2 Scenario 3 Scenario 3/1 (Absolute) Scenario 3/1 (Relative)

WATT DA WATT DA WATT DA WATT DA WATT DA

1 Henan Henan Henan Henan Henan Henan Xinjiang Beijing Hainan Hainan
2 Anhui Anhui Anhui Anhui Anhui Anhui Hainan Tianjin Chongqing Beijing
3 Hubei Jiangsu Beijing Jiangsu Hubei Beijing Heilongjiang Anhui Beijing Shaanxi
4 Jiangsu Shandong Shanghai Shanghai Beijing Jiangsu Jilin Henan Jilin Tianjin
5 Shandong Hebei Tianjin Tianjin Jiangsu Tianjin Yunnan Jiangsu Ningxia Jiangxi
6 Jiangxi Shanghai Jiangsu Beijing Shanghai Shandong Qinghai Shandong Guangdong Shanxi
7 Shanxi Tianjin Hubei Shandong Shanxi Hebei Inner Mongolia Shanxi Inner Mongolia Inner Mongolia
8 Hunan Chongqing Shandong Hebei Shandong Shanghai Gansu Chongqing Shanghai Guizhou
9 Shanghai Zhejiang Hebei Zhejiang Tianjin Chongqing Liaoning Jiangxi Heilongjiang Ningxia
10 Shaanxi Beijing Zhejiang Chongqing Jiangxi Shanxi Guangxi Hebei Guizhou Hubei
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Table 5. Comparison with relevant studies on accessibility in relation to China’s HSR network.

Study Phase Key Results

Cao et al. (2013) 2008–2020 Central-eastern cities gain more benefits based on the results of
WATT and contour measures.

Shaw et al. (2014) 2008–2012 Travel time accessibility of all cities improved about 6.3%.

Jiao et al. (2014) 2003–2020 WATT increases 42.3% and DA increases 76.4%
The HSR increases inequality in accessibility.

Wu et al. (2016) 2006–2014 The average accessibility improvements experienced a rise of
19.3% at the national level.

Jin et al. (2017) 2008–2020 WATT increases 42.0% and DA increases 98.7%
The inequality of accessibility is aggravated.

This study 2003–2030 WATT increases 44.9% and DA increases 78.6%
The inequality of accessibility is slightly increased.

5.2. Policy Suggestions

Reduced journey time is one of the main reasons for passengers to choose HSR but there remains
the issue of the amount of time spent before arriving the railway system. It is therefore essential
to improve highway public transport to locations around HSR stations to reduce transfer time
caused by changing from road to railway travel. Thus, railway stations must provide seamless
connections to public transport, convenient access to stations for private cars and taxis, as well as clear
spatial orientation for commuters and other travelers to reduce ‘transfer resistance’ [3]. In addition,
more attention should be paid to the level of HSR services, such as convenient ticketing services,
high-frequency trains and optimized train timetables.

Moreover, because of the fatal HSR crash in Wenzhou, the average operating speeds of HSR
trains were reduced from 350, 250 and 200 km/h to 300, 200 and 160 km/h respectively (depending
on local conditions) by the Chinese Ministry of Railways of the People’s Republic of China in 2011.
However, with the development of HSR technology, China’s new-generation bullet train operates
between Beijing and Shanghai switched to a higher speed of 350 km/h in September 2017, making it
again among the world’s fastest train services after the operational limit was reduced six years ago [35].
Predictably, with the maturity and stability of technologies, more and more HSR lines are expected to
reach its design speed. So, accessibility will be enhanced by future HSR developments, making HSR
even more competitive in the transport market in China.

6. Conclusions

The evolution of HSR network from 2003 to 2030 leads to a progressive contraction of time-space
and increases in the accumulated population. On average, the accessibility of China cities can be
improved by 61.7%. Geographically, the future accessibility will exhibit a ‘core-periphery’ pattern,
in which the most accessible cities are located in the southeastern part of the ‘Hu Line,’ particularly
in the quadrilateral area of ‘Wuhan-Zhengzhou-Jinan-Nanjing.’ Furthermore, the 2030 HSR network
will slightly widen the spatial disparities in term of accessibility. Our analysis shows that such spatial
unevenness can increase by 2.9% between regions, 14.2% between provinces and 14.6% between cities.

In our study, a door-to-door approach was proposed to quantify more realistic accessibility impacts
of China’s HSR network. However, the two indicators only regard journey time as the principal cost
and therefore it has some limitations. We further plan to integrate ticket price to complement travel
time and thus calculate total cost. In addition, railroad timetables should also be reformulated to
ensure that agreement exists between predicted and actual travel times in future research.
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