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Abstract: This study aims to develop a regional freight-shipment model to forecast freight movement
within freight-delivery regions and examine the relationship between regional freight-shipment
activities and the related environmental problems such as greenhouse gas emissions. A methodology
for freight distribution and collection within geographical regions is proposed, in which a significantly
large number of freight demand or supply points needs to be served. This problem can be considered
as a large-scale vehicle routing problem and solved by an asymptotic approximation method. A set of
closed-form formulas is constructed to obtain a near-optimal total travel distance of a fleet of trucks
from multiple distribution centers. A case study is conducted to forecast regional freight-delivery
cost in the selected metropolitan areas in the United States. Numerical results under three urban
development scenarios show that the proposed methodology can be used to estimate the total cost
and related vehicle CO2 emissions effectively.

Keywords: urban freight delivery; vehicle CO2 emission; sustainable urban development; large-scale
vehicle routing problem; asymptotic approximation method

1. Introduction

Freight-shipment activities within large urban areas are critical because emissions from the
freight-delivery trucks comprise a large share of toxic air pollutants and greenhouse gases in most
metropolitan areas worldwide [1]. Due to a rapid increase in freight demand and significant growth in
delivery activities, concerns about air-quality problems in urban areas have become more serious [2,3].
The residents in metropolitan areas are more likely to be affected by air pollution and greenhouse gas
emission problems than those in rural areas since most of them live very close to the emission sources
(e.g., commercial vehicles operated by diesel engines). However, only a few studies have investigated
the development of urban freight-shipment models and their application due to a lack of data [4].
This motivates us to develop freight-shipment modeling and logistics planning at the regional level to
estimate greenhouse gas emissions from freight trucks. Besides, various urban development scenarios
are incorporated in this analysis since freight-shipment activities will be directly affected by different
urban forms.

In this paper, a freight-delivery problem to (and from) a large number of freight demand (and supply)
points within major freight zones in the United States (U.S.) is investigated. This problem can be defined
as a large-scale vehicle routing problem (VRP) and a ring-sweep algorithm [5] is adopted and modified
to estimate the total shipment cost in an urban transportation network. A case study is conducted to
estimate not only future regional freight activities, but also the related CO2 emissions from 2010 to
2050 in 30 freight zones which cover 22 major metropolitan areas in the U.S. The modeling framework
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presented in this study can be used to infer CO2 emission distributions and eventually estimate human
exposures to the various emissions from the freight-delivery activities in large urban areas.

The exposition of this paper is as follows. Section 2 reviews the related literature. The proposed
methodology including brief review of the ring-sweep algorithm is presented in Section 3. Section 4
conducts a case study where detailed data preparation and assumptions made in this study are
provided. Finally, Section 5 concludes the study and discusses related future work.

2. Literature Review

The VRP is one of the combinatorial optimization problems closely related to our logistics
system model where a fleet of vehicles that start and end their delivery service at a central terminal
need to serve spatially distributed customers. Since Dantzig and Ramser [6] introduced the VRP,
numerous studies have been presented to solve the problem. For example, Solomon [7] and Potvin
and Rousseau [8] proposed constructive heuristics, and Thompson and Psaraftis [9], Potvin and
Rousseau [10], and Taillard et al. [11] studied local search algorithms to solve the VRP. The VRP with
time windows is an extension of the traditional VRP in which each customer needs to be visited within
a certain time interval that is called as a time-window constraint [7,12,13]. Another variation of the
VRP is a VRP with pickup and delivery in which each customer has two types of demand including a
pickup and delivery service [14–16]. Although extensive studies have been conducted on the VRP and
its variations and numerous solution algorithms have been proposed by many researchers, they are
practically hard to implement in our problem which is based on a large-scale demand distribution
logistics system.

Various heuristics and meta-heuristics approaches have been developed and implemented to
solve the large-scale VRP [17]. Among them, a cluster-first route-second algorithm is one of the
comprehensible methods, in which the total delivery region is partitioned into many vehicle-routing
zones (VRZs) such that each zone contains a given number of delivery demand points and the VRP is
conducted within each zone. Daganzo [18,19] presented an easy manual recipe to construct the tour
zones and a near-optimal travel cost was obtained from simple formulae provided in the literature.
Newell and Daganzo [5,20] developed guidelines for constructing the VRZ in a large-scale network
assuming stochastic delivery points can be represented by a continuous customer demand density
function. Since it is an asymptotic approximation method for large-scale problems, better results can
be obtained as more delivery points are included in the delivery area. Recently, Ouyang [21] suggested
methodologies to automatically design the VRZ and obtain near-optimal solutions for the large-scale
problems. A set of zoning techniques including a disk model from Ouyang and Daganzo [22] was used.

A comprehensive overview of various urban freight tour models has been provided in
Holguín-Veras et al. [23] and a system of models able to simulate urban freight-shipment tours
to estimate freight vehicle origin–destination flows is presented in Nuzzolo and Comi [24]. Among
those previous studies, a ring-sweep algorithm [5] is adopted in this research to estimate the total
freight-delivery cost within various freight regions in the U.S. since we consider a large number of
supply or demand points in delivery regions. Then, the amount of CO2 emission production in the
study regions caused by freight-delivery activities can be computed by applying appropriate emission
factor [25]. Since the ring-sweep algorithm assumes freight demand points are homogeneous, the same
amount of identical freight is required to be delivered from a single terminal in a freight region.
However, this assumption might not be true in real-world situations, since customers in different
industries comprise each freight demand point. Besides, multiple distribution centers can be observed
in most real-world freight regions. Thus, in this study, the ring-sweep algorithm is modified to address
these issues. We consider employees in wholesale trade, retail trade, and manufacturing industries to
represent each freight demand point. Also, large numbers of truck and railroad terminals are included
in the proposed model. To obtain the total cost for collecting the freight, we can assume the large
number of supply points at an origin region (instead of demand points at a destination region) need to
be served and the same approach can be applied.
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3. Model Formulation

The ring-sweep algorithm is briefly introduced to explain the basic concept of the methodology
in this study. Then, the original ring-sweep algorithm is modified to be applied to the regional
freight-delivery problem.

3.1. Ring-Sweep Algorithm Review

The ring-sweep algorithm proposed by Newell and Daganzo [5] is based on an asymptotic
approximation method, which assumes customer demand follows a continuous density function
that may vary slowly over space. This algorithm is suitable for problems that involve a significantly
large number of demand or supply points in the VRP. The fundamental idea of the algorithm is
demonstrated in Figure 1, adapted from Ouyang [21].

Figure 1. Delivery zone construction and shipment activity example.

In Figure 1, a freight-delivery region is described by a square with solid lines, and a grey
circle at the right-hand corner represents a distribution center. A large number of freight demands
(i.e., customers) are assumed to be randomly distributed within the solid-line square. Trucks from
the distribution center need to deliver the products to the customers, some of which are represented
by small black squares in this figure. The objective of this problem is to minimize the total cost,
the total truck-shipment distance, in order to satisfy the freight demand of the large number of
customers. The ring-sweep algorithm assumes identical customers comprise each freight demand
point, and the same products are distributed from a single distribution center to each demand point.
The freight-delivery region represented by a square with solid lines splits into many delivery zones
such as small trapezoids with broken lines. Freight demand in one trapezoid need to be satisfied by
one freight truck, i.e., the total demand in one delivery zone is the same as the capacity of one freight
truck. Then, a set of trucks needs to travel back and forth between the distribution center and the
border of their assigned delivery zones, which is generally described as the line-haul movement. Also,
each truck has to visit every demand point within a zone to serve the customer, which is generally
described as the local travel. A near-optimal solution to this problem can be computed by summing
the line-haul movement distance and the local travel distance across all the divided freight zones in a
given region without actual vehicle movement tracking. A set of equations to obtain the near-optimal
total vehicle-distance with proof are provided in Newell and Daganzo [5]. To compute the total cost for
collecting the freight, the same methodology can be applied assuming that significantly large number
of supply points (i.e., producers), instead of demand points, need to be served in a freight region, i.e.,
an origin of the freight shipment. Note that this study can be considered as the routing problem at the
second level in a two-echelon distribution system [26,27] since the distribution centers in this study
correspond to the intermediate depots in two-echelon VRP and the location of each distribution center
is assumed to be given.
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3.2. Regional Freight Distribution and Collection Modeling

In an arbitrary freight-delivery region, let J be the total number of randomly distributed freight
demand points. Define oj as distance from a distribution center to the demand point j. Also, let Q be a
capacity of the delivery truck and λ be the demand point density in a given region. Then, the total
line-haul movement distance (L1) and the total local travel distance (L2) are proposed as follows
in Newell and Daganzo [5], and the near-optimal total vehicle travel distance in a region is sum of
Equations (1) and (2):

L1 =
2∑J

j=1 oj

Q
(1)

L2 =

√
2

3λ
(2)

The ring-sweep algorithm assumes the demand points in a freight region are homogeneous,
which means that the amount of freight required for each demand point is identical. This assumption
might not be true in practice since customers in different industries comprise freight demand points.
Besides, multiple distribution centers can be observed in most freight-delivery regions. In this study,
the original ring-sweep algorithm is modified to resolve these issues and to be applied to real-world
freight distribution and collection modeling, in which numbers of truck and railroad terminals are
included. Employees in wholesale and retail trade industry as well as manufacturing industry are
considered separately, which cover most of the employees across all business sectors in the U.S.
For conciseness of presentation, procedures only related to freight distribution from truck terminals
are explained.

To construct the regional freight-delivery model from truck terminals, we assume a set of truck
terminals K is given, which is composed of arbitrary located multiple terminals in the given freight
region. Then, each freight demand point is assigned to the closest terminal. We let Ik be the total
number of demand points assigned to the truck terminal k ∈ K, dki be the distance (miles) from the
terminal k ∈ K to the demand point i. Also, the number of employees in a wholesale and retail trade
industry and a manufacturing industry in the demand point i are respectively denoted by E1i and E2i.
The truck capacity is represented by C (tons). Additionally, the total daily freight demand of wholesale
and retail trade industry and manufacturing industry in the freight-delivery region are denoted by
D1 and D2 (tons per day). Parameters α1 and α2 represent percentage of employees in wholesale and
retail trade industry and manufacturing industry that are served from the truck terminals, respectively.
The average number of employees per firm in the wholesale and retail trade industry is represented
by a1 and that in the manufacturing industry is denoted by a2 to show how many employees are
served on average by one delivery across different industries. The sum of the total area assigned to the
terminal k is represented by Ak (square miles).

Considering previous Equations (1) and (2), the total line-haul movement distance and the total
local travel distance can be constructed for a specific truck terminal k in the form of (3) and (4) for
commodities related to the wholesale and retail trade industry, and (5) and (6) for commodities related
to the manufacturing industry; Equations (3) and (5) are related to the line-haul movement and
Equations (4) and (6) are for the local travel distance:

Lk
f 1 =

2α1D1∑Ik
i=1 E1idki

C∑I
i=1 E1i

(3)

Lk
f 2 =

0.57Nk
f√

δk
f

, where Nk
f =

α1

a1

Ik

∑
i=1

E1i and δk
f =

Nk
f

Ak
(4)

Lk
p1 =

2α2D2∑Ik
i=1 E2idki

C∑Ik
i=1 E2i

(5)
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Lk
p2 =

0.57Nk
p√

δk
p

, where Nk
p =

α2

a2

Ik

∑
i=1

Ei3 and δk
p =

Nk
p

Ak
(6)

Finally, summing Equations (3)–(6) across all terminals, k ∈ K yields the total freight-delivery cost
(GT) from truck terminals in the given freight-delivery region as follows:

GT =
K

∑
k=1

(
Lk

f 1 + Lk
f 2 + Lk

p1 + Lk
p2

)
(7)

Note that above procedures are only for the total cost of the truck terminals. A significant share of
regional freight demand is also distributed from railroad terminals. Delivery trucks start their travel
from several railroad terminals in a region, and each demand point is assigned to the closest railroad
terminal. The total freight demand will be combined into two industry groups as well (i.e., wholesale
and retail trade industry and manufacturing industry). A set of equations similar to (3)–(7) can be
formulated to compute the total freight-delivery cost from railroad terminals in the freight-delivery
region. Finally, the atmospheric impact levels caused by freight movement from both truck and
railroad terminals can be estimated for each study region using appropriate emission factor.

In this study, other transportation modes such as an intermodal system [28], waterway, coastal
shipping, or pipeline are excluded due to the lack of freight-flow data [29]. This paper assumes
the haulage networks are operated based on the form of common ownership. When the freight
transportation networks are dominated by single private company or shared by multiple operators,
the freight demand zones need to be categorized considering which haulage networks they are mostly
assigned on. Then, the proposed modeling framework can be applied to each group of freight zones to
obtain the freight-delivery cost.

4. Case Study

A case study is conducted to estimate regional freight-delivery activities under different urban
development scenarios and the related vehicle CO2 emissions from 2010 to 2050 in 30 freight-delivery
regions in the U.S. which cover 22 major metropolitan areas.

4.1. Data Preparation and Assumptions

The concept of the freight analysis zone (FAZ), originally defined in Freight Analysis Framework
version 3 (FAF3) [27], is adopted to represent geographical regions with regard to freight activities
(i.e., origins and destinations of freight shipment). Figure 2, adapted from FAF3 [29], shows a map
of the 123 domestic FAZs. Note that the regions in grey represent the study sites investigated in this
paper. Also, the East Coast areas are magnified to improve recognition accuracy.

Total freight-shipment distance in a delivery region will be significantly affected by different
patterns of urban spatial structure, which will eventually determine the total vehicle-emission
estimation in freight regions. In this regard, the urban spatial structure model [30] provided three
urban development scenarios as follows: (1) “business as usual” in which the urban sprawl and the
following employment decentralization in 1990s and 2000s continues in most U.S. metropolitan areas;
(2) “polycentric development” in which the development of a central business district (CBD) follows
the current decentralization trend, but sub-centers experience high-growth which induces population
and employment concentration; and (3) “compact development” in which both CBD and sub-centers
follow high growth. The urban spatial structure model is based on the employment density gradient
model combined with a dynamic spatial method [31], which considers the locations of the CBD and
sub-centers as independent variables to estimate the spatial autocorrelation and examine the durability
of the built environment (i.e., time-series effect).
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Figure 2. Domestic freight analysis zones (FAZs) in the U.S.

The urban spatial structure model provided a forecast of employment distributions at the census
tract level for each scenario from 2010 to 2050 in 10-year increments in 30 major FAZs. The FAZs
considered in this study cover 22 selected metropolitan statistical areas (MSAs) where the number of
total populations are greater than or equal to 2,000,000 in the year 2000. In most cases, one FAZ includes
one MSA. However, three MSAs at Chicago, Philadelphia and St. Louis are each associated with two
FAZs; New York MSA is associated with three FAZs; and Washington, D.C. MSA is associated with four
FAZs. Table 1 illustrates how the total number of employers and employment density change as the
distance from the CBD increases in four example MSAs. Column (a) presents the MSAs investigated in
this analysis and column (b) shows the three urban development scenarios such that scenario 1 is the
“business as usual”, scenario 2 is “polycentric development” and scenario 3 is “compact development”.
Column (c) describes the distance from the CBD (DCBD) in miles. Columns (d) and (e) represent the
total number of employers and the employment density (i.e., total number of employees per square
mile), respectively. The results show that the highest employment density is observed under the
compact development scenario, while the lowest employment density can be found under the business
as usual scenario across all radii around the CBD for all four example MSAs.

We assume truck terminals are located on the points near major highway junctions, and railroad
terminals are assumed to be located near major railway junctions. Each FAZ is made up of mutually
disjointed census tracts. Freight demand in every census tract is assumed to be centered on the
centroid of the census tract. Distances from truck and railroad terminals to each census tract centroid,
total number of census tract in the FAZs, and the areas of census tract assigned to each truck and
railroad terminal are measured using a geographic information system (GIS) database. The four-step
inter-regional freight demand forecasting model [32] composed of trip generation, trip distribution,
mode split and traffic assignment procedures provides truck and rail freight attraction and production
data for each FAZ from 2010 to 2050 using the FAF3 [29], database which contains information
on the freight movement in terms of tonnage and value between all shipment origin-destination
pairs in 2007. The database contains 43 kinds of commodities such as agriculture products, fish,
grain, wood products, textile, leather, coal, petroleum products and so forth. The freight demands
in different commodity types are assigned to two industry groups, i.e., wholesale and retail trade
industry and manufacturing industry, using data from the multi-region and multi-sector computable
general equilibrium model [33]. Results from the freight demand forecasting model include amount of
freight flow between all shipment origin–destination pairs (i.e., FAZs) in the U.S., which are used to
estimate various parameters as well as future truck and rail freight movement in the proposed model.
We assume light and medium trucks at a speed of 30 miles per hour are used for freight delivery in
urban areas and their capacity is 4 tons [34,35].
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Table 1. Total number of employers and employment density in four example metropolitan statistical
areas (MSAs).

(a)
MSA

(b) (c) (d) Total Number of Employers (e) Employment Density (# emp/sqml)

Scenario DCBD 2010 2020 2030 2040 2050 2010 2020 2030 2040 2050

Atlanta

1
3 328,300 349,474 362,889 374,372 383,460 11,617 12,366 12,841 13,247 13,569
6 538,336 583,925 613,019 638,024 657,878 4762 5166 5423 5644 5820
9 810,257 887,933 937,660 980,462 1,014,494 3186 3491 3687 3855 3989

2
3 367,829 444,817 496,818 542,820 580,137 13,016 15,740 17,580 19,208 20,529
6 588,253 705,080 783,944 853,721 910,339 5204 6237 6935 7552 8053
9 865,562 1,021,932 1,126,477 1,218,513 1,292,924 3403 4018 4429 4791 5083

3
3 426,352 589,958 658,156 678,477 646,046 15,087 20,876 23,289 24,008 22,861
6 686,339 973,424 1,188,407 1,388,267 1,556,274 6072 8611 10,513 12,281 13,767
9 951,096 1,256,260 1,480,259 1,686,834 1,859,622 3739 4939 5820 6632 7312

Boston

1
3 544,170 548,477 522,083 498,015 470,746 19,256 19,408 18,474 17,623 16,658
6 733,460 739,884 704,952 673,070 636,919 6488 6545 6236 5954 5634
9 936,928 945,527 901,301 860,921 815,120 3684 3718 3544 3385 3205

2
3 572,925 589,092 571,391 555,019 536,215 20,273 20,845 20,219 19,640 18,974
6 761,858 779,962 753,680 729,447 701,699 6740 6900 6667 6453 6208
9 963,439 982,925 946,938 913,842 876,030 3788 3865 3723 3593 3444

3
3 593,708 618,720 604,880 592,045 577,281 21,009 21,894 21,404 20,950 20,427
6 781,009 807,273 784,553 763,592 739,589 6909 7141 6940 6755 6543
9 981,404 1,008,558 976,057 946,144 911,983 3859 3965 3838 3720 3586

Cleveland

1
3 188,218 186,454 182,791 179,558 176,260 6660 6598 6468 6354 6237
6 308,921 306,123 300,295 295,153 289,907 2733 2708 2657 2611 2565
9 459,488 455,381 446,826 439,273 431,570 1807 1790 1757 1727 1697

2
3 188,403 187,052 184,232 181,727 179,170 6667 6619 6519 6431 6340
6 309,149 306,846 302,045 297,779 293,428 2735 2714 2672 2634 2596
9 459,697 456,095 448,600 441,948 435,167 1807 1793 1764 1738 1711

3
3 188,568 187,422 185,035 182,913 180,747 6673 6632 6548 6473 6396
6 309,269 307,102 302,609 298,616 294,537 2736 2717 2677 2642 2606
9 459,803 456,323 449,094 442,678 436,137 1808 1794 1766 1740 1715

Dallas

1
3 221,022 232,142 239,793 246,398 251,647 7821 8215 8485 8719 8905
6 468,259 504,205 529,136 550,761 568,007 4142 4460 4681 4872 5025
9 740,872 810,539 859,366 901,988 936,176 2913 3187 3379 3546 3681

2
3 223,109 256,603 280,606 301,836 319,024 7895 9080 9929 10,681 11,289
6 471,382 540,858 590,444 634,164 669,472 4170 4785 5223 5610 5922
9 745,615 866,639 955,805 1,036,285 1,102,671 2932 3407 3758 4074 4335

3
3 231,068 306,652 368,326 403,977 402,803 8177 10,851 13,033 14,295 14,253
6 483,298 685,995 863,376 1,038,421 1,191,599 4275 6069 7638 9186 10,541
9 756,542 999,235 1,201,957 1,397,199 1,565,329 2975 3929 4726 5493 6154

4.2. Results and Discussion

Numerical results from the proposed model are described in Table 2. Columns (a) and (b) list the
22 MSAs and the three urban development scenarios considered in this study. Columns (c) and (d),
respectively, describe the total regional freight-delivery cost in miles and ton-miles. Column (d) also
includes percentage differences of the total freight-delivery ton-mile cost from the one associated with
scenario 3 for each MSA. Note that mile and ton-mile costs in columns (c)–(d) are on a daily basis.
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Table 2. Total regional freight-delivery cost in 22 MSAs.

(a)
MSA

(b) (c) Total Travel Distance (103 m Per Day) (d) Freight Shipment (103 ton-mile Per Day)

Scenario 2010 2020 2030 2040 2050 2010 % 2020 % 2030 % 2040 % 2050 %

Atlanta
1 1818 2579 3417 4390 5488 3636 7.3 5157 38.4 6834 47.0 8780 53.7 10,976 57.8
2 1723 2063 2641 3312 4082 3445 1.6 4126 10.7 5282 13.7 6624 16.0 8164 17.4
3 1695 1863 2324 2856 3478 3390 3726 4648 5712 6955

Boston
1 551 664 780 909 1053 1102 4.5 1328 11.3 1560 12.3 1819 13.4 2106 14.4
2 535 622 727 844 972 1069 1.4 1244 4.2 1454 4.7 1687 5.2 1944 5.6
3 527 597 695 802 920 1054 1193 1389 1604 1841

Cleveland
1 554 661 781 916 1072 1109 5.8 1,323 7.8 1,562 8.3 1,832 8.6 2,143 8.7
2 529 624 734 860 1005 1058 1.0 1,247 1.6 1,469 1.8 1,719 1.9 2,009 1.9
3 524 614 721 844 986 1048 1,227 1,443 1,687 1,971

Dallas
1 949 1414 1897 2462 3112 1897 2.9 2828 28.5 3793 35.5 4924 40.3 6223 43.2
2 925 1142 1471 1861 2318 1850 0.3 2283 3.8 2942 5.1 3722 6.1 4635 6.7
3 922 1100 1400 1754 2173 1844 2200 2799 3509 4346

Denver
1 603 825 1070 1359 1696 1206 1.1 1649 14.4 2141 16.6 2718 18.4 3392 20.1
2 598 763 979 1231 1523 1197 0.3 1525 5.8 1958 6.6 2462 7.3 3047 7.9
3 597 721 918 1147 1412 1193 1442 1837 2295 2825

Detroit
1 1249 1500 1781 2084 2409 2498 5.7 3000 7.4 3563 8.2 4168 9.0 4819 10.1
2 1196 1413 1665 1931 2211 2391 1.2 2826 1.2 3330 1.1 3862 1.0 4422 1.0
3 1182 1397 1647 1911 2189 2363 2793 3294 3822 4378

Houston
1 1793 2452 3067 3776 4591 3586 1.4 4904 28.3 6135 28.6 7553 29.5 9182 31.2
2 1776 2174 2715 3330 4020 3552 0.4 4349 13.8 5430 13.8 6660 14.1 8041 14.9
3 1768 1911 2385 2917 3500 3537 3821 4771 5834 7000

Los Angeles
1 1707 2240 2762 3364 4042 3414 3.9 4480 14.9 5525 16.3 6729 18.0 8085 19.7
2 1658 2030 2483 2996 3567 3317 1.0 4060 4.2 4966 4.6 5993 5.1 7134 5.6
3 1642 1949 2374 2851 3377 3284 3898 4749 5702 6754

Miami
1 1622 2448 3321 4359 5554 3243 0.9 4896 3.0 6642 3.6 8718 4.0 11,108 4.3
2 1616 2386 3216 4197 5326 3231 0.5 4772 0.4 6432 0.3 8394 0.1 10,653 0.0
3 1608 2376 3207 4192 5324 3215 4752 6414 8383 10,648

Minneapolis
1 1412 1874 2307 2786 3295 2824 2.7 3747 26.0 4614 29.4 5573 33.1 6589 37.0
2 1379 1518 1826 2152 2481 2757 0.2 3036 2.1 3652 2.5 4305 2.8 4962 3.1
3 1375 1487 1782 2093 2406 2751 2973 3564 4187 4812

Phoenix
1 440 598 750 976 1282 879 0.2 1197 19.8 1500 20.7 1953 21.6 2565 22.2
2 439 521 649 841 1100 877 0.0 1042 4.3 1299 4.5 1681 4.7 2200 4.9
3 439 500 621 803 1049 877 999 1243 1605 2098

Pittsburgh
1 880 1019 1155 1317 1518 1760 3.1 2038 16.9 2310 18.2 2634 19.6 3035 21.0
2 869 960 1082 1227 1406 1738 1.8 1919 10.1 2164 10.7 2453 11.4 2811 12.1
3 854 872 977 1101 1254 1708 1743 1954 2203 2508

Portland
1 528 699 853 1025 1222 1057 0.4 1398 18.4 1707 18.8 2051 19.5 2444 20.6
2 527 627 763 915 1085 1055 0.2 1253 6.1 1527 6.3 1829 6.6 2170 7.1
3 526 591 718 858 1013 1052 1181 1437 1716 2027

San Diego
1 939 1263 1546 1878 2253 1878 3.3 2526 32.6 3093 35.2 3756 37.7 4506 40.1
2 914 995 1196 1428 1685 1828 0.6 1991 4.5 2392 4.6 2855 4.7 3371 4.8
3 909 952 1143 1363 1608 1818 1904 2287 2727 3216

San
Francisco

1 830 1014 1220 1468 1749 1661 4.3 2029 6.6 2439 7.2 2935 8.0 3498 8.8
2 800 960 1147 1371 1622 1600 0.5 1919 0.8 2294 0.8 2742 0.9 3243 0.9
3 796 952 1138 1359 1608 1593 1903 2275 2718 3215

Seattle
1 516 731 934 1171 1454 1032 3.7 1462 27.3 1868 31.1 2343 34.1 2907 36.3
2 500 614 768 948 1161 1000 0.4 1228 6.9 1537 7.8 1895 8.5 2322 8.9
3 498 574 712 873 1066 995 1148 1425 1747 2133

Tampa
1 1175 1581 2043 2609 3288 2351 6.1 3162 26.5 4086 37.2 5218 49.6 6576 62.0
2 1137 1395 1727 2105 2531 2273 2.6 2789 11.5 3454 16.0 4210 20.7 5062 24.7
3 1107 1250 1489 1744 2030 2215 2501 2978 3488 4059

Chicago
1 2858 3594 4373 5261 6258 5715 6.0 7189 15.3 8746 16.9 10,522 18.4 12,516 19.5
2 2708 3172 3817 4548 5369 5415 0.4 6344 1.8 7634 2.1 9096 2.3 10,738 2.5
3 2696 3117 3739 4444 5237 5391 6234 7479 8888 10,474

Philadelphia
1 2039 2563 3108 3741 4490 4079 3.2 5127 14.1 6216 14.6 7481 15.2 8980 15.7
2 1993 2342 2831 3397 4066 3987 0.8 4684 4.2 5661 4.4 6793 4.6 8132 4.8
3 1977 2247 2711 3247 3881 3954 4494 5423 6495 7762

St. Louis
1 1151 1424 1664 1933 2231 2301 1.9 2848 11.5 3327 12.1 3865 12.7 4461 13.4
2 1130 1287 1494 1723 1974 2261 0.1 2575 0.8 2988 0.7 3446 0.5 3947 0.4
3 1129 1277 1484 1714 1967 2258 2554 2968 3428 3933

New York
1 2807 3756 4727 5847 7151 5614 4.1 7513 17.0 9455 19.4 11,695 21.3 14,301 22.6
2 2712 3278 4050 4933 5963 5424 0.5 6557 2.1 8101 2.3 9866 2.3 11,927 2.2
3 2697 3210 3960 4821 5833 5395 6421 7920 9642 11,666

Washington,
D.C.

1 1626 2256 2832 3498 4256 3251 0.9 4512 24.0 5663 25.5 6996 26.9 8512 28.3
2 1607 1773 2196 2678 3219 3214 −0.2 3546 −2.5 4392 −2.7 5356 −2.8 6439 −3.0
3 1611 1819 2257 2756 3318 3222 3,639 4,514 5512 6635
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In most cases, scenario 1, business as usual, shows the largest and scenario 3, compact
development, shows the least total freight-delivery cost in miles and ton-miles. Results from the
paired t-test presented in Figure 3 statistically support mean differences among the three groups, each
of which is composed of the total travel distances (miles) in 2050 from the given scenario. All pairs
from the three groups are shown to be significantly different under the significance level of 0.01.
Results from scenario 1 are significantly larger than those from scenarios 2 and 3 by 490 and 629
(103 m) on average, respectively. Results from scenario 2 are also significantly larger than those from
scenario 3. The same trends are observed from 2010 to 2050; analysis using freight-shipment ton-mile
cost generates the same trends as well. The results demonstrate significant advantage of compact
as well as polycentric urban forms, which are known to lead to high-density and sustainable urban
development by combining residential and commercial zones [36]. Note that the percentage differences
in column (d) grow significantly faster over the years in Atlanta, Dallas, Denver, Houston, Minneapolis,
Phoenix, Portland, Seattle, Tampa, and Washington. This is caused by a rapid increase in the number
of employees located far from the truck or railroad terminals, which results in a prompt increase in
the total long-haul movement distance. Table 3 shows the total distance from all employees to the
assigned terminals in four example MSAs.

Table 3. Total distance to the assigned terminals in four example MSAs.

(a)
MSA

(b) (c) Total Distance to the Assigned Terminals (103 Mile)

Scenario 2010 % 2020 % 2030 % 2040 % 2050 %

Atlanta
1 28,765 5.5 46,200 28.6 50,599 35.0 54,009 40.0 56,155 43.1
2 27,801 2.0 40,198 11.9 43,152 15.2 45,420 17.7 46,853 19.4
3 27,266 35,926 37,473 38,576 39,246

Boston
1 20,670 5.1 24,131 12.8 23,929 14.1 23,660 15.5 23,127 16.8
2 20,221 2.8 23,032 7.7 22,759 8.5 22,412 9.4 21,831 10.2
3 19,665 21,390 20,978 20,481 19,804

Cleveland
1 13,461 3.7 13,896 5.0 13,866 5.4 13,810 5.6 13,719 5.8
2 13,225 1.9 13,589 2.7 13,542 3.0 13,475 3.1 13,380 3.2
3 12,979 13,228 13,153 13,071 12,971

Dallas
1 25,625 1.8 39,375 17.2 42,971 21.6 45,471 24.8 46,780 26.9
2 25,266 0.4 34,892 3.9 37,265 5.5 38,910 6.8 39,734 7.8
3 25,168 33,595 35,326 36,426 36,872

Figure 3. Cont.
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Figure 3. Paired t-test results. (a) Paired t-test results of the total travel distance in 2050 between
scenario 1 and scenario 2; (b) paired t-test results of the total travel distance in 2050 between scenario 1
and scenario 3; (c) paired t-test results of the total travel distance in 2050 between scenario 2 and
scenario 3.

Column (c) of Table 3 presents the total distance in thousand miles and percentage differences of
the total distance from that obtained from scenario 3. Note that the total distance for all employees to
reach their assigned terminals rapidly increases in Atlanta and Dallas, indicating that the number of
employees far from the terminals increases fast for those two MSAs.

Vehicle CO2 emission estimations resulting from future freight activities in 22 MSAs are presented
in Table 4. Column (a) shows the 22 MSAs under investigation and the three urban form scenarios
are described in column (b). Column (c) in Table 4 presents CO2 emission estimations associated with
freight-delivery activities in each urban development scenario. Emission factor for light and medium
trucks is obtained from research on vehicle emissions and energy consumption [37] and a stochastic
urban freight-truck routing study [25] such that each truck produces 717.10 grams of CO2 for each mile
shipment at a speed of 30 miles per hour.
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Table 4. CO2 emission estimations related to regional freight activities in 22 MSAs.

(a)
MSA

(b) (c) CO2 (103 kg per day) (a) (b) (c) CO2 (103 kg per day)

Scenario 2010 2020 2030 2040 2050 MSA Scenario 2010 2020 2030 2040 2050

Atlanta
1 1304 1849 2450 3148 3936

Pittsburgh
1 631 731 828 944 1088

2 1235 1479 1894 2375 2927 2 623 688 776 880 1008
3 1215 1336 1666 2048 2494 3 612 625 701 790 899

Boston
1 395 476 559 652 755

Portland
1 379 501 612 735 876

2 383 446 521 605 697 2 378 449 547 656 778
3 378 428 498 575 660 3 377 423 515 615 727

Cleveland
1 398 474 560 657 768

San Diego
1 673 906 1109 1347 1616

2 379 447 527 616 720 2 656 714 858 1024 1209
3 376 440 517 605 707 3 652 683 820 978 1153

Dallas
1 680 1014 1360 1765 2231

San
Francisco

1 596 727 875 1052 1254
2 663 819 1055 1335 1662 2 574 688 823 983 1163
3 661 789 1004 1258 1558 3 571 682 816 975 1153

Denver
1 432 591 768 975 1216

Seattle
1 370 524 670 840 1042

2 429 547 702 883 1092 2 358 440 551 680 833
3 428 517 658 823 1013 3 357 412 511 626 765

Detroit
1 896 1076 1277 1494 1728

Tampa
1 843 1134 1465 1871 2358

2 857 1013 1194 1385 1585 2 815 1000 1238 1509 1815
3 847 1001 1181 1371 1570 3 794 897 1068 1251 1455

Houston
1 1286 1758 2200 2708 3292

Chicago
1 2049 2578 3136 3773 4488

2 1274 1559 1947 2388 2883 2 1942 2275 2737 3261 3850
3 1268 1370 1711 2092 2510 3 1933 2235 2682 3187 3756

Los
Angeles

1 1224 1606 1981 2413 2899 Phila-
delphia

1 1462 1838 2229 2682 3220
2 1189 1456 1781 2149 2558 2 1429 1679 2030 2436 2916
3 1178 1398 1703 2044 2422 3 1418 1611 1944 2329 2783

Miami
1 1163 1756 2381 3126 3983

St. Louis
1 825 1021 1193 1386 1600

2 1159 1711 2306 3010 3819 2 811 923 1071 1236 1415
3 1153 1704 2300 3006 3818 3 810 916 1064 1229 1410

Minnea-
polis

1 1012 1344 1654 1998 2363
New York

1 2013 2694 3390 4193 5128
2 989 1088 1310 1543 1779 2 1945 2351 2905 3537 4276
3 986 1066 1278 1501 1725 3 1934 2302 2840 3457 4183

Phoenix
1 315 429 538 700 920

Washington,
D.C.

1 1166 1618 2031 2509 3052
2 315 374 466 603 789 2 1152 1272 1575 1920 2309
3 315 358 446 576 752 3 1155 1305 1618 1976 2379

Since the amount of emissions generated from vehicles at a constant mild speed are proportional
to the freight-delivery activities, the largest and the least amount of CO2 emissions are observed in
scenario 1 and scenario 3 in general. In terms of freight-transport operations, a compact urban form
enables freight-delivery companies to consolidate their products and maximize their truck-capacity
utilization. As such, operating a full truck load typically leads to reducing empty mileage, which
increases energy efficiency and decreases greenhouse gas emissions as well.

5. Conclusions

Freight transportation is well known as a major cause of environmental problems. A great number
of small- or medium-size trucks have been used in last-mile delivery, especially in large urban areas,
and they have contributed to large share of various emissions since most of them use diesel engines as
a power supply. Residents in metropolitan areas can be affected easily by the air-pollution problems,
and greenhouse gas emissions are often concentrated in urban areas, which motivated us to investigate
the regional freight distribution and collection modeling problem in a large urban area. This problem
is addressed by the large-scale VRP since the number of randomly distributed demand points in a
freight-delivery region is assumed to be extremely large. The ring-sweep algorithm [5] is adopted
and modified to incorporate inhomogeneity of demand points in a real-world situation; multiple
distribution centers in a delivery region are also considered in the proposed model. A set of formulas is
constructed to estimate large-scale freight-delivery efficiency, in which the total travel distance of a fleet
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of trucks within each FAZ is obtained as a sum of the total line-haul movement distance and the total
local travel distance; the obtained freight-delivery cost for each study region is used to estimate vehicle
CO2 emissions. Since it is an asymptotic approximation method and the number of demand points in
our setting is significantly large, the output is expected to be quite accurate. A case study is conducted
to forecast daily regional freight-delivery cost from 2010 to 2050 using employment distribution data
under three urban form scenarios in 30 FAZs, which include 22 major MSAs in the U.S. The numerical
results are found to estimate future regional freight-delivery cost and the related CO2 emissions for
each urban form scenario effectively. It was also found that the spatial distribution of freight demand
impacts greatly on the freight-delivery efficiency and the following vehicle emissions; compact urban
development leads to low vehicle delivery cost in ton and ton-mile, which will be able to reduce
CO2 emissions in large urban areas. This reduction in emissions would affect air pollutants as well.
The results in this study will be useful for transportation planners and decision makers in public or
private sectors when estimating human exposure to emissions from freight delivery in metropolitan
areas, thereby eventually enhancing the public benefit and social welfare.

In future studies, freight movement or routing modeling among different metropolitan areas can
be considered in order to complete the comprehensive modeling framework. The current study only
addresses freight distribution and collection problems in freight destination or origin regions. This
limitation could be resolved by incorporating long-distance freight movement into the proposed model,
which will be able to provide more precise freight activities as well as following emission estimations.
The results can also be combined with the business models in Perboli et al. [38] to further develop
regional as well as continental sustainable freight-transportation systems. Second, the extension
and application of the proposed methodology to the metropolitan areas in other countries will be
possible. The final results from the proposed model include useful information such as predicted
freight-shipment cost in mile and ton-miles, which can be used to estimate the related vehicle emissions.
Such modeling framework eventually could be applied to address many environmental problems, for
instance recent severe air-pollution and human health problems in Seoul, South Korea [39].
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