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Abstract: Actions to reduce carbon emissions often entail co-benefits for environmental protection,
like air pollutants reduction. Previous studies made contributions to estimate these co-benefits,
but few considered the feedbacks from the socioeconomic system and the natural system. This
paper extends the Dynamic Integrated model of Climate and the Economy (DICE) model, a classical
Integrated Assessment model (IAM), into the Dynamic Integrated model of Climate, Air pollution
and the Economy (DICAE) model. Through the hard link between a new air pollution module and the
other modules in the original DICE, this paper quantifies the co-benefits of mitigating CO2 emissions
for NOX emission reduction, and compares the predicted climate change, economic output and social
utility under seven mixed policy scenarios. In addition, uncertainty analysis based on Monte Carlo
simulation is carried out to verify the robustness of the DICAE model. The results indicate that the
NOX emissions co-emitted with CO2 emissions would be over 0.6 Gt/year in a no-policy scenario.
In policy scenarios, mitigating CO2 emissions can simultaneously reduce at least 15% of the NOX

emissions, and the more severe the climate mitigation target is, the more obvious co-benefits for
NOX emission reduction. Although these co-benefits can offset some mitigation costs, it will not be
cost-effective when NOX emission reduction is achieved completely depending on ambitious carbon
mitigation, so the end-of-pipe technology for NOX emission is also indispensable. For policymakers,
they should recognize the co-benefits of climate policies, actively taking mitigation actions. Moreover,
they are encouraged to combine CO2 mitigation with NOX emission reduction and coordinate their
policy intensities to make wise use of the co-benefits.

Keywords: climate mitigation; co-benefits; air pollution; integrated assessment model; uncertainty
analysis

1. Introduction

The world today faces the dual challenge of global warming and air pollution, and the two
issues are not independent. Major sources of greenhouse gases (GHG) and air pollutants are both the
combustion of fossil fuels, so actions to mitigate carbon dioxide often reduce air pollutant emissions at
the same time. Previous studies demonstrate that climate mitigation can bring positive impacts for air
pollution control and improve human welfare in addition to its initial climate goals, and these indirect
benefits are often referred to as “co-benefits” [1–3].

The earliest research on co-benefits can be traced back to the work of Davis et al., in which
the positive impacts of global climate policies on particulate-matter (PM) exposures and public
health were discussed [4]. Since then, more and more scholars from diverse disciplines begun to

Sustainability 2018, 10, 1109; doi:10.3390/su10041109 www.mdpi.com/journal/sustainability

http://www.mdpi.com/journal/sustainability
http://www.mdpi.com
http://www.mdpi.com/journal/sustainability
http://www.mdpi.com/2071-1050/10/4/1109?type=check_update&version=1
http://dx.doi.org/10.3390/su10041109


Sustainability 2018, 10, 1109 2 of 18

identify and quantify co-benefits, so that a series of methodologies emerged in this research field.
The commonly used modeling tools can be divided into two categories: the top-down model (TD
model) and bottom-up model (BU model). They have differences in characterizing the avoided cost
of air pollutant reduction due to the co-benefits from mitigation actions. Specifically, TD models
often reflect the co-benefits with the avoidance of total economic output loss or total social utility
loss [5], while BU models represent the avoided cost of certain mitigation technologies [6]. As both
kinds of models have inevitable limitations, some researchers began to use hybrid models in recent
years, which combine the TD model with the BU model and capture both macroeconomic changes
and technology details [7,8]. After nearly 20 years of development, the academic studies concerning
co-benefits of climate mitigation have become comprehensive and widely covered, including cases of
the whole world, countries, regions and cities. Among previous co-benefit research, several studies
have shown that climate policy will generate co-benefits of the same magnitude as mitigation costs,
especially in developing countries [9,10]. Even in developed countries such as the United States, there
are studies which have found that co-benefits will significantly offset the net cost of greenhouse gas
mitigation [11].

The Integrated Assessment Model (IAM) is a main tool for assessing climate policy, which has
been widely used by researchers [12–14]. Compared with traditional TD, BU or hybrid models, IAM
can represent the interactions and feedbacks between the economics, policy, and scientific aspects of
climate change, bringing together the costs and benefits of climate policies in a systematic framework.
However, although the co-benefits for air quality due to climate actions have gained widespread
recognition in academia, and some papers did analyze these co-benefits based on IAMs [15–17], few
IAM tools consider these benefits in the policy assessment framework. Nemet et al. conducted a
review about 13 IAM-based climate policy assessment models (including 10 TD models, two BU
models and one cost-benefit analysis). Among them, 12 models estimate greenhouse gas emissions,
but only three models assess the lost value of climate change, and only two out of these three models
estimate the co-benefits for air pollution. Lastly, only one model put these co-benefits into the final
value assessment of climate mitigation [18]. Even some of the existing models have shortcomings. For
instance, the Greenhouse gas-Air pollution INteraction and Synergies (GAINS) model, an integrated
model developed by International Institute for Applied Systems Analysis (IIASA) based on the
Regional Air Pollution INformation and Simulation (RAINS) model, fails to point out the ultimate
impact of co-benefits on social utility [19].

Besides, as climate change itself has uncertainties, plus the absence of full understanding of climate
processes and the way in which human activities affect global climate, the entire IAM modeling process
does introduce lots of uncertainties. Therefore, the results of quantifying co-benefits from different
assessments vary greatly because of the models and parameters chosen in different studies [18]. In this
case, these uncertainties need to be recognized and reduced. For policymakers, they also need to know
about the robustness and credibility of the simulation model, which helps to minimize the risks of
decision making.

The DICE (Dynamic Integrated model of Climate and the Economy) model is one of the most
classical IAMs in the field of climate change research [20]. Its structure is relatively simple and clear
when compared with others, and the model results can reflect the impact of different climate policy
scenarios on economic output and social utility. To date, it has many developed versions through
adjustment and update, with higher time resolution, more accurate forecast of output, population and
emissions, and monetized estimate of climate damage. Moreover, the DICE model itself has good
scalability, which makes it easy to adjust the existing model framework. Zhang has used an extended
DICE model to study the co-benefits of CO2 emission reduction for SO2 emission reduction, but her
work didn’t extend to other air pollutants and lack the uncertainty analysis [21].

In this context, this study aims to address the literature gap by extending the DICE model into the
DICAE (Dynamic Integrated model of Climate, Air pollution and the Economy) model, which can
quantify the co-benefits of mitigating CO2 emissions for air pollution reduction. Moreover, to identify
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the optimal pathway to address the climate change and air pollution issues, some model outputs
like predicted climate change, economic output and social utility are compared under seven mixed
policy scenarios. In this paper, we only select NOX as a case study because of data limitation for other
pollutants. More specifically, this paper attempts to solve four sub-questions: (1) How much NOX

emissions can be reduced due to CO2 mitigation, and will these co-benefits change under different
policy scenarios? (2) After incorporating co-benefits into the IAM framework, what would happen to
the model results of climate change prediction? (3) If both CO2 mitigation and NOX emission reduction
are implemented, how will the joint policy affect the economic output and social utility? (4) How
about the model robustness as well as the uncertainty ranges? The rest of this paper is organized as
follows. Section 2 describes the methodology. Section 3 presents the model results under different
policy scenarios and detailed interpretations. Finally, Section 4 addresses the main conclusions and
some policy recommendations.

2. Methods

2.1. The DICAE Model

The DICE model consists of three modules: objective function module, global economic module
and the climate change module [22]. Through the monetization of climate change damages and
mitigation costs, the climate module is linked to the economic module, then the whole model seeks
for the optimal economic development and climate mitigation pathway under the goal of social
utility maximization.

Our study is based on the DICE-2013R version [23]. The original time step of DICE-2013R is five
years, but it takes a long time for the computer to solve the nonlinear optimization problem (NLP),
especially when we do Monte Carlo simulations by interfacing General Algebraic Modeling System
(GAMS) and MATrix LABoratory (MATLAB) (which will be explained in detail in Section 2.3). As
the choice of time step does not affect the model results, this paper sets it to 10-year to improve the
computing efficiency. Accordingly, the parameters and initial variables relating to time step need to be
adjusted (See Table A1 in Appendix A).

In this paper, the main work about the modeling is designing an air pollution module and realizing
the hard-link with the original DICE model (as shown in Figure 1). In the DICAE model, the economy
module and the climate module are same as that in the DICE model [23], so we do not introduce them
in this paper. Besides, the explanations of the objective function, as well as how to construct the air
pollution module and how it connects with other modules are given in the next sections.

Figure 1. Basic structure of the Dynamic Integrated model of Climate, Air pollution and the Economy
(DICAE) model. Source: own elaboration.
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2.1.1. The Objective Function

The DICAE model assumes that economic and climate policies should be designed to optimize the
flow of consumption over time. It is important to emphasize that consumption should be interpreted
as “generalized consumption,” which includes not only traditional market goods and services like food
and shelter but also non-market items such as leisure, health status, and environmental services [23,24].

The mathematical representation of this assumption is that policies are chosen to maximize a
social utility function. The following equation is the mathematical statement of the objective function:

maxU =
∑Tmax

t=1 L∗(t)
[
c(t)1−α/(1 − α)

]
(1 + ρ)t (1)

where U is the present value of total social utility; L∗(t) is the effective labors/population; c(t) is the
per capita consumption; α and ρ represent the marginal utility elasticity of consumption and pure
social time preference, respectively.

2.1.2. The Air Pollution Module

The air pollution module includes the quantitative description of air pollutant emissions
co-emitted with CO2 emissions, their damages to the socioeconomic system and the costs of abatement.
It should be noted that we only analyze one type of air pollutant, NOX, in this study because of data
limitation, and we hope to incorporate more air pollutants, expanding the scope of model applications
in future work.

NOX emissions

Nitrogen oxides co-emitted with carbon dioxides mainly come from the combustion of coal, oil
and natural gas [25], and carbon emissions from energy consumption are also mainly derived from
these three major fossil fuels. In this context, we can build the relationship between CO2 and NOX

based on the homology of emissions.
Assuming that the total energy consumption of the economy is EC(t), and the proportions of

coal, oil and natural gas are Coal(t), Oil(t), Gas(t); The proportion of CO2 emissions produced by
energy consumption is w; CO2 emission factors (emissions from per unit of fuel) of coal, oil and natural
gas are EFC

coal , EFC
oil , EFC

gas, and NOX emission factors are EFN
coal , EFN

oil , EFN
gas; CO2 emissions and NOX

emissions are EC(t) and EN(t), respectively. Thus, we can use two equations below to represent
the emissions.

EC(t)× w = EC(t)×
[
Coal(t)× EFC

coal + Oil(t)× EFC
oil + Gas(t)× EFC

gas

]
(2)

EN(t) = EC(t)×
[
Coal(t)× EFN

coal + Oil(t)× EFN
oil + Gas(t)× EFN

gas

]
(3)

Please note that the NOX emissions calculated in Equation (2) are only the emissions from
fossil fuel combustion, under the assumption that all the NOX co-emitted with CO2 comes from
the combustion of coal, oil and natural gas. According to Equations (2) and (3), we can get another
equation to express NOX emissions:

EN(t) = EC(t)× w ×
Coal(t)× EFN

coal + Oil(t)× EFN
oil + Gas(t)× EFN

gas

Coal(t)× EFC
coal + Oil(t)× EFC

oil + Gas(t)× EFC
gas

(4)
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Then we use αCN to indicate the amount of NOX emissions co-emitted by a unit of CO2 emission,
calling it co-emit coefficient.

αCN = w ×
Coal(t)× EFN

coal + Oil(t)× EFN
oil + Gas(t)× EFN

gas

Coal(t)× EFC
coal + Oil(t)× EFC

oil + Gas(t)× EFC
gas

(5)

EN(t) = EC(t)αCN (6)

Based on the above equations, it is possible to calculate the NOX emissions based on the CO2

emissions and the energy consumption structure. In addition, if there are actions to reduce CO2

and NOX, Equation (6) needs to be modified. Here we use µC(t) and µN(t) to indicate the emission
reduction rates of CO2 and NOX, respectively, so now their relation satisfies the following equation.

EN(t) = [1 − µC(t)]× [1 − µN(t)]× EC(t)αCN (7)

The emission factors in this paper are collected from IPCC EFDB (Emission Factor Database) [26],
and their values are shown in Table 1.

Table 1. The values of emission factors.

Emission Factor EFC
coal EFC

oil EFC
gas EFN

coal EFN
oil EFN

gas

Value (KG/TJ) 94,600 73,300 56,100 300 200 150

According to the IPCC AR4 report, CO2 emissions produced by fossil fuels account for more than
80% of the total anthropogenic CO2 emissions. Therefore, we set the parameter w as 0.8.

This study assumes that the changes of the energy consumption structure are exogenous.
Considering the time span and fitting effect of the energy structure data, we choose the data from
the baseline scenario of the Emissions Prediction and Policy Analysis (EPPA) model developed by
Massachusetts Institute of Technology (MIT) [27], and get the proportion trends of fossil fuels in the
energy consumption structure through the Curve Fitting Toolbox in MATLAB [28] (the coefficient of
determination R-square is over 95%). The precise expressions are shown below:

Coal(t) = b1t2 + b2t + b3 (8)

Oil(t) = c1tc2 (9)

Gas(t) = d1t + d2 (10)

The coefficients in the above equations are obtained from data fitting, and their values are shown
in Table 2.

Table 2. The values of coefficients in energy structure equations.

Coefficient b1 b2 b3 c1 c2 d1 d2

Value −0.000225 0.01245 0.2438 0.4058 −0.082 −0.0027 0.218

NOX damages

Inspired by the DICE model, which divides the impacts of carbon dioxide on the socio-economic
system into two parts—environmental damages caused by emissions and control costs of mitigation
measures, we divide the impacts of NOX into damages and costs in the DICAE model. As for damages
of air pollutants, many studies have approximated them as human health losses. For example,
Yang et al. represented the environmental damages of SO2, NOX and PM10 by the value of premature
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deaths [29]. Thus, in this paper, we also indirectly quantify the environmental damages of NOX

emissions through health impairment. Meanwhile, in terms of abatement costs, this paper fits a cost
curve of NOX abatement, which will be described in detail in the next sub-section.

To evaluate the health impacts caused by NOX, the inhalation factor method inferred by Li was
adopted [30]. Inhalation factor refers to the proportion of total pollutants absorbed by the human
body, so it is a dimensionless parameter and can also be called exposure efficiency [31]. This method
calculates the inhaled dose in human body firstly, then calculates the health impacts through a
dose-response coefficient, and it can be used to evaluate the economic losses further.

The formula for calculating the health damages of NOX is as follows:

HE = γ × IF × EN(t) (11)

where HE is the health losses (incidence and mortality); γ is the coefficient of dose-response, which
represents the health impacts caused by per unit of inhaled NOX; The inhalation factor is IF, and
the value is 2.47 × 10−6 [32]; EN(t) indicates the NOX emissions which we have discussed in the
previous section.

NOX reduction costs

In this paper, the reduction costs are calculated based on the NOX emission data in the RAINS
model developed by IIASA [33]. Figure 2 shows the NOX reduction cost curve, and the corresponding
function of the curve is:

TCN(t) = θ3 + θ4 × [µN(t)]
θ5 (12)

where θ3 = 1.280, θ4 = 1643.047, θ5 = 2.584; µN(t) refers to the reduction rate of NOX, and TCN(t)
refers to the reduction costs.

Figure 2. NOX reduction cost curve.

2.1.3. Linking with the DICE Model

After creating the air pollution module, we can extend the DICE model into the DICAE model.
As shown in Figure 1, carbon emissions in the climate module connect with NOX emissions in the air
pollution module, which has already been realized through Equation (7). And environmental damages
and reduction costs of air pollutants would influence the final output in the economic module through
the following Equations (13)–(18).
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In the original economic module, the production function is based on a Cobb-Douglas function
which is fixed-scale returns, and then we introduce a climate-feedback coefficient to form an expression
of the aggregate output:

Y(t) = ϕ(t)A(t)K(t)δL(t)1−δ (13)

where Y(t) is the total economic output at time t; A(t), K(t) and L(t) represent the total factor
productivity, capital stock and labors (population) at time t; δ represents the capital elasticity; ϕ(t) is
the climate-feedback coefficient which is calculated by environmental damages DA(t) and mitigation
costs TC(t) of CO2, and its specific expression is:

ϕ(t) =
1 − TC(t)
1 + DA(t)

(14)

After introducing the air pollution module, we update the above equations:

Y∗(t) = ϕ∗(t)A∗(t)K(t)δL∗(t)1−δ (15)

ϕ∗(t) =
1 − TCC(t)− TCN(t)

1 + DA(t)
(16)

L∗(t) = L(t)× [1 −ω(t)] (17)

A∗(t) = A(t)× [1 − v(t)] (18)

By adding NOX reduction costs TCN(t), Equation (16) adjusts the climate-feedback coefficient
into a climate & environment-feedback coefficient ϕ∗(t). Then this paper reflects the health damages of
NOX on the population and productivity. Concretely, the mortality rate ω(t) would affect the effective
labors L∗(t), while the incidence rate v(t)) could reduce the actual productivity A∗(t).

Consequently, the two-way feedback between the air pollution module and the original DICE
model is realized in the DICAE model. The DICAE model totally includes 45 parameters and 29
variables, since the number of equations is greater than the number of variables, the optimal solution
for each variable can be obtained. We solve this NLP problem using the GAMS software [34].

2.2. Scenarios

To discuss the influence of adding NOX on the model results and compare the implementation
effects of CO2 reduction policies, as well as NOX control policies with different intensity levels, setting
different scenarios for future emission target is extremely necessary. Therefore, seven mixed emission
scenarios are developed in this paper to compare the effects of different emission reduction policies for
CO2 and NOX. These scenarios are made up of three CO2 emission scenarios: reference scenario (REF),
mitigation scenarios (MIT550 and MIT450), and three NOX emission scenarios: no policy (NP), relaxed
policy (RP), and stringent policy (SP). The specific meanings of each scenario are listed in Table 3.

Table 3. Overview of emission scenarios in the DICAE model.

Scenario CO2 Emission Policy NOX Emission Policy

REF-NP No policy No policy
MIT550-NP Achieve 550 ppm stabilization No policy
MIT550-RP Achieve 550 ppm stabilization Reduction rate is 20%
MIT550-SP Achieve 550 ppm stabilization Reduction rate is 60%
MIT450-NP Achieve 450 ppm stabilization No policy
MIT450-RP Achieve 450 ppm stabilization Reduction rate is 20%
MIT450-SP Achieve 450 ppm stabilization Reduction rate is 60%
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2.3. Uncertainty Analysis

In the DICAE model, in addition to the deviation of the model assumptions from the scientific
facts, some parameters are collected from expert evaluation or data fitting, which also contains a certain
degree of subjectivity and bias. In this case, it is worth doing uncertainty analysis of free parameters.

The framework of uncertainty analysis is shown in Figure 3. Since the DICAE model consists
of the DICE model and an air pollution module, so we filter sensitive parameters from these two
parts, respectively. First, we filter the sensitive parameters of the air pollution module by single-value
sensitivity analysis, and then identify the parameters which have relatively great impacts on model
outputs in the climate module and the economy module based on the previous literature [35–38].
After defining the probability density functions (PDFs) of these selected free parameters, Monte Carlo
simulation is applied to spread the joint uncertainties of all the sensitive parameters through interfacing
GAMS and MATLAB software [39]. Finally, we compare the new outputs with the original results.
Figure 3 shows the framework of uncertainty analysis.

Figure 3. The framework of uncertainty analysis. Source: own elaboration.

3. Results

This section reports the model results under different emission scenarios to answer the four
sub-questions proposed in the introduction section. Hence, the results are presented in four sections:
(1) co-benefits for NOX emission reduction across scenarios; (2) predicted climate change across
scenarios; (3) effects of joint policies for CO2 and NOX emission reduction, and; (4) results of the
uncertainty analysis.

3.1. Co-Benefits for NOX Emission Reduction

In this section, we quantify the co-benefits of climate mitigation for NOX abatement and compare
the co-benefits under different policy scenarios. We unify NOX emissions into the no policy scenario
(NP) and divide CO2 emissions into three scenarios of different policy intensity (REF, MIT550 and
MIT450), so that we can discuss the co-benefits under three combined scenarios (REF-NP, MIT550-NP
and MIT450-NP).

Figures 4 and 5 illustrate that climate mitigation can effectively reduce carbon dioxide emissions
and significantly reduce nitrogen dioxides emissions, realizing coordinated emission reduction of
both greenhouse gases and air pollutants. In Figure 6, if we do not take any mitigation actions, the
CO2 emission shows an increase tendency, reaching 157.48 Gt in 2050 and nearly 250 Gt in 2150. If
the mitigation target is set at 550 × 10−6CO2e, the CO2 emissions will still increase slightly at the
initial stage but decline thereafter, and finally become stable after realizing the mitigation target.
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When the target is set to be more ambitious, at 450 × 10−6 CO2e, the emissions decline rapidly in
the early periods, and gradually be stabilized at around 10 Gt. As for NOX (Figure 5), the changes of
NOX emissions are largely the same as CO2. In the absence of carbon mitigation, a great amount of
CO2 emissions will co-emit lots of NOX, and the quantity can be 0.6 Gt/year. Fortunately, reducing
CO2 emissions can at least cut down 15% of the NOX emissions in the first two periods. Comparing
MIT550-NP and MIT450-NP, it is not difficult to find that the more severe the climate mitigation target,
the more obvious co-benefits for NOX abatement. However, finally, NOX emissions can be stabilized at
a low level in both cases.

Figure 4. Global CO2 emissions in the CO2 mitigation scenarios.

Figure 5. Global NOX emissions in the CO2 mitigation scenarios.
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Figure 6. Atmospheric CO2 concentration.

3.2. Climate Change Prediction

To answer question 2 raised in the introduction section, we compare the CO2 concentration and
global temperature increase of the reference scenario in DICE model (not listed in Table 3, this scenario
means no climate mitigation in DICE model) and the REF-NP scenario in DICAE model.

From Figure 6, we can find that in the first three periods, the atmospheric CO2 concentration
after considering NOX (DICAE-REF-NP scenario) is basically the same as it does when NOX is not
considered (DICE-REF scenario). But later, the concentration in the DICAE model is lower than that in
the DICE, and the gap is gradually increasing. Correspondingly, the global temperature rise in the
DICAE-REF-NP scenario is also progressively lower than that in the DICE-REF scenario over time
(indicated in Figure 7). By 2150, the difference reaches approximately 0.103 ◦C.

Figure 7. Global temperature increase (compared with 1990).

After considering the co-emitted NOX from CO2, per unit CO2 emissions will bring greater losses
to the whole economy, as it includes damages from both carbon dioxide and nitrogen dioxides. With
the increase of CO2 emissions from human activities, it can produce more co-emitted air pollutants,
then, the negative impacts on the economic output becomes increasingly severe. Therefore, under the
goal of maximizing the discounted sum of the utilities of per capita consumption in the DICAE model,
less anthropogenic CO2 would be emitted as considering the co-benefits of CO2 mitigation, even in the
no mitigation policy scenario (DICAE-REF-NP). As a result, less CO2 is emitted in DICAE-REF-NP,
which leads to lower concentration and lower temperature rise in the middle and later periods.
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3.3. Effects of Joint Policies

Since climate mitigation can bring co-benefits for air pollutant management, in turn, will air
pollution policies affect CO2 emissions? Figure 8 states the answer. Since NOX emissions associated
with CO2 emissions from combusting fossil fuels can be reduced through end-of-pipe technology, some
of them will not emit into the atmosphere, so the environmental damages can be decreased, which
means the negative impact of per unit CO2 emission can be weakened. Hence, the amount of CO2

emissions in the early periods is larger than that under the no NOX policy scenario. When we compare
MIT550-SP with MIT550-RP or MIT450-SP with MIT450-RP, it reveals that stricter NOX reduction
policies will allow for more CO2 emissions. Nevertheless, this situation will change later (after about
2070), because for the aim of achieving the climate goal, CO2 emissions must be drastically reduced at
that time, which can compensate for the previous over-emissions. Now the more severe NOX reduction
policy corresponds to a lower level of CO2 emissions, although the gaps among different scenarios are
not obvious. In this case, in terms of CO2 emissions, there is no evidence to prove that the end-of-pipe
technology for NOX will have absolute positive or negative synergies on CO2 mitigation, because the
short-term impacts are different from that in the long term.

Figure 8. Global CO2 emissions in the NOX mitigation scenarios.

Now we explore the impacts of joint policies on world economic output and social utility From
Figure 9, we can see that the total outputs in different scenarios all have an increase trend, and the
gaps are totally negligible in the early periods but become bigger in the later periods. For ease of
comparison, the total output in 2150 is enlarged to the upper left corner of Figure 9, so it is easy to
find that the outputs from high to low are: MIT550-RP > MIT450-RP > MIT550-SP > MIT450-SP >
REF-NP. It suggests that no emission reduction actions or radical reduction measures cannot bring the
highest economic output, while the relatively moderate emission reduction policies for CO2 and NOX

can produce the greatest economic benefits. The reason behind this phenomenon is clear. Without
mitigation, the environmental damages of CO2 and NOX will affect the economic growth, but if people
make ambitious efforts to reduce CO2 emissions, they need to invest a lot, which may reduce the net
economic output and affect economic growth when the co-benefits cannot cover the mitigation costs.
For instance, in the MIT450-RP scenario, people need to invest 8 trillion USD/year more for mitigation
than that in the MIT550-RP scenario, which can produce more co-benefits for NOX emission reduction.
However, the overall economic output would reduce by 0.43% in MIT450-RP even if the co-benefits
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of mitigation have been added. In contrast, modest joint policies can balance the environmental
damages caused by emissions and the fiscal costs of emission reductions, and ultimately maximize the
total output.

Figure 9. Total output in different scenarios.

Comparing the social utilities (the mathematical statement is shown in Equation (1)) in each
scenario, as shown in Table 4, the quantities from high to low are: MIT550-SP > MIT450-SP > MIT550-RP
> MIT450-RP > REF-NP > MIT550-NP > MIT450-NP. It illustrates that the combination of a modest
CO2 policy and a stringent NOX policy yields the greatest utility and other joint policies can also make
higher social utilities than the no policy scenario (REF-NP). It is worth noting that the social utility in
the case of only reducing CO2 emissions but without NOX abatement (MIT550-NP) would be even
lower than the REF-NP scenario. On the one hand, the costs of carbon mitigation cause a burden on
the economy which does harm to the utility growth. On the other hand, it shows that the co-benefits
of CO2 reduction on NOX abatement is not enough to cover the negative externalities caused by air
pollutants. Therefore, the end-of-pipe technology for NOX is still quite necessary.

Table 4. Social utility in different scenarios.

Scenario Social Utility (Rank) Scenario Social Utility (Rank)

REF-NP 6587.163 (5) MIT450-NP 6436.893 (7)
MIT550-NP 6546.670 (6) MIT450-RP 6580.858 (4)
MIT550-RP 6639.827 (3) MIT450-SP 6690.395 (2)
MIT550-SP 6731.567 (1)

3.4. Uncertainties

The single-value sensitivity analysis is carried out by floating ±5% on the free parameters in air
pollution module. According to the fluctuation of model outputs, we select three sensitive parameters:
coal consumption coefficient 2, NOX reduction cost coefficient 1, and the proportion of CO2 emissions
from energy consumption. What’s more, their induced fluctuations of the model outputs are all in
the range of 1%~2%, which means the newly extended air pollution module doesn’t introduce much
uncertainty. As for the other three modules, we select nine sensitive parameters and define their
probability distribution functions (PDFs) based on some previous studies pertaining to uncertainty
analysis of the DICE model [35,36], including some researches discussing fat-tailed probability
distributions and unbounded climate risks [37,38]. Therefore, we filter 12 sensitive parameters in the
DICAE model, and their PDFs are listed in Table 5.
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Table 5. Probability distribution of free parameters.

No. Free Parameter PDF Parameters of the PDF

01 Capital elasticity coefficient Beta distribution up = 0.4, lo = 0.2, µ = ν = 9
02 Capital depreciation rate Beta distribution up = 0.12, lo = 0.08, µ = ν = 4.5
03 Initial productivity growth rate Beta distribution up = 0.19, lo = 0.11, µ = ν = 4.5
04 Decline rate of population growth Beta distribution up = 0.4, lo = 0.2, µ = ν = 6
05 Pure rate of social time preference Beta distribution up = 0.06, lo = 0, µ = 7,ν = 4
06 Growth rate of carbon intensity Beta distribution up = −0.05, lo = −0.2, µ = 4, ν = 6
07 Carbon reduction cost coefficient 1 Beta distribution up = 0.04, lo = 0.02, µ = ν = 5.5
08 Climate sensitivity Logarithmic normal distribution avg = 1.071, sd = 0.527
09 Damage function exponent Triangular distribution max = 5, min = 1, avg = 2
10 Coal consumption coefficient 2 Normal distribution avg = 0.012, sd = 1
11 NOX reduction cost coefficient 1 Normal distribution avg = 1643.048, sd = 0.527

12 Proportion of CO2 emissions from
energy consumption Normal distribution avg = 0.8, sd = 1

Note: µ and ν are two parameters of the beta distribution function, which can control the distribution shape;
up = upper limit, lo = lower limit, avg = average value, sd = standard deviation, max = maximum, min = minimum.
Probability distribution functions (PDFs).

Then, according to the PDFs, we adopt the Monte Carlo simulation to spread the uncertainties of
12 free parameters and focus on three indicate endogenous variables (temperature increase, co-emitted
NOX and total output) from different modules to check the changes of model results. After perturbing
these free parameters randomly by ±5% through 1000 simulations, the distributions of the indicator
variables in the MIT550-RP scenario in year 2050 are shown in Figure 10. Their values can pass the
normal distribution test. Based on the 3σ principle, the 95% confidence intervals for each indicator
variable can be calculated using the mean value and standard deviation. Choosing 2050 as an example,
the confidence interval of temperature increase is (1.432, 1.628) ◦C, and the interval for NOX emissions
is (0.082, 0.120) Gt, as for total output, it is (182.898, 194.439) trillion USD.

Figure 10. Frequency distribution histograms of three indicate variables in 2050. (a) Temperature
increase in 2050, compared with 1990; (b) NOX emissions in 2050; (c) Total output in 2050.
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Similarly, the confidence intervals in each year can be estimated. Figure 11 depicts the original
results of the indicator variables from 2010 to 2150, as well as their 95% confidence intervals from
Monte Carlo simulation. It can be found that after introducing the randomness of free parameters, the
model results would have a great deal of uncertainties. First, for temperature increase, uncertainties in
the later periods are obvious, since the uncertainties gradually accumulate, leading to great deviations
from the original output. Moreover, the blue line is a bit below the center of the light blue shade,
indicating that the mean value of temperature increase in the uncertain condition is higher than that of
the original model. It may relate to our definition about the PDF of the climate sensitivity parameter
based on the fat-tailed distribution. Second, in view of NOX emissions co-emitted with CO2 emissions,
the values fluctuate within the ±20% range of the original result, which means when all the 12 sensitive
parameters in the DICAE model are perturbed randomly by ±5%, it may be difficult to get an accurate
estimation of NOX emissions. Finally, as for economic output, the initial confidence interval is (65.47,
67.58) trillion USD, with a fluctuation range of 3.15%, but the interval becomes larger afterwards.
In 2150, the interval is (828.54, 1011.54) trillion USD, and the fluctuation range is 20.18%. Likewise,
it demonstrates that the uncertainty in subsequent periods of the model is larger than that in the
early years. Although there are lots of uncertainties, if we understand the sources and scope of the
uncertainty, the model results can still have reasonable applications.

Figure 11. Results of Monte Carlo simulation. (a) Temperature increase from 2010 to 2150, compared
with 1990; (b) NOX emissions from 2010 to 2150; (c) Total output from 2010 to 2150. The solid line
indicates the original model results, and the shade part represents the 95% confidence interval of the
model results from Monte Carlo simulation.

4. Conclusions

Integrated Assessment Models (IAM) that do not consider co-benefits would inevitably
underestimate the real benefits of climate mitigation actions and may hamper policy makers from
selecting the optimal mitigation pathways. In this paper, we extend the Dynamic Integrated model of
Climate and the Economy (DICE) model into the Dynamic Integrated model of Climate, Air pollution
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and the Economy (DICAE) model by linking an air pollution module, and taking NOX as an example,
the co-benefits of CO2 mitigation for air pollutants reduction are analyzed. Furthermore, the predicted
climate change, the economic output and social utility of joint policies are also explored. At last, we do
an uncertainty analysis to test the robustness of the DICAE model and give the uncertainty ranges of
model results. The following implications can be drawn from this study.

Firstly, CO2 mitigation has significant co-benefits for NOX emission reduction, which can reduce
at least 15% of the NOX emissions, and the emission reduction rate would be greater if we increase
the climate mitigation intensity. These benefits can invariably occur in the short-term and lower
the net costs of climate mitigation. However, the end-of-pipe technology for NOX emissions is
also necessary, as it will not be cost-effective when NOX emission reduction is achieved completely
depending on ambitious CO2 mitigation. The predominant joint policy is the one that can coordinate
the environmental damages and mitigation costs, maximizing the total output or social utility in a
sustainable pathway. The single-value sensitivity analysis identifies three sensitive parameters from
the air pollution module. After disturbing them by ±5%, respectively, the changes of main output
variables are negligible, which means that the new module doesn’t introduce many uncertainties.
Further, the results of Monte Carlo simulation of 12 selected sensitive parameters manifest that the
uncertainties in the later period of the model are larger than that in the early years. Ignoring these
uncertainties may cause great risks.

Secondly, there are some implications for policy decision. Comparing the climate change
predictions in the DICE model and the DICAE model, the global warming would be relieved to
some extent in DICAE, because humans tend to take active mitigation actions due to the incentives
from co-benefits for NOX emission reduction. Thus, policy makers should recognize the co-benefits of
climate mitigation policies and join in climate actions actively. Especially for developing countries, the
government should be aware that, when compared to the long-term and global features of climate
mitigation, co-benefits for air pollutants can happen quickly and locally, which would offset some
costs of climate policies and strike a balance between short-term interests and long-term development.
Furthermore, in the joint policy scenarios, the economic output and social utility are both higher than
that in single policy scenarios, which indicate the significance of combining climate policies with air
pollution policies and coordinating their intensities to make full use of the co-benefits between them.

Finally, as for modeling work, our study shows the attempt to incorporate co-benefits of climate
mitigation into the IAM framework which can capture the feedbacks between the socioeconomic
system and the natural system, as well as provide cost-benefit analysis for various policy scenarios.
Based on the DICAE model, this paper gives more accurate estimations of these co-benefits for
NOX emission reduction and predicted future climate change after considering the response from
human-beings and the natural system in an integrated policy assessment framework. However, it has
some limitations and more future work needs to be done. For instance, we can apply the framework of
the DICAE model to other air pollutants, getting a more comprehensive analysis about co-benefits for
air pollutants. Another promising area of future research is realizing the partitioning of the model,
to focus on specific mitigation policies within a country or a region, which could lay a more concrete
foundation for informed decision-making.
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Appendix A

Table A1. The adjusted parameters and initial variables in the Dynamic Integrated model of Climate
and the Economy (DICE) model.

Parameter/Variable Value Parameter/Variable Value

Preference Carbon Cycle

Elasticity of marginal utility of consumption 1 Initial Concentration in atmosphere
2010 (GtC) 830.4

Initial rate of social time preference (per year) 0.03 Initial Concentration in upper strata
2010 (GtC) 1527

Decrease in social time preference (per year) 0.002572 Initial Concentration in lower strata
2010 (GtC) 10,010

Population & Technology Carbon cycle transition matrix ϕ11 0.912

Initial population growth rate (per decade) 0.08 Carbon cycle transition matrix ϕ12 0.088
Decrease in population growth rate (per decade) 0.3 Carbon cycle transition matrix ϕ21 0.03833

Initial level of total factor productivity 0.032 Carbon cycle transition matrix ϕ22 0.95917
Initial technical progress rate (per decade) 0.15 Carbon cycle transition matrix ϕ23 0.0025

Decrease in technical progress (per decade) 0.005 Carbon cycle transition matrix ϕ32 0.0034
Initial world gross output (trill 2005 USD) 63.69 Carbon cycle transition matrix ϕ33 0.99966

Initial world population (millions) 6838 Climate

Initial capital value (trill 2005 USD) 135 Initial lower stratum temp change
(◦C from 1900) 0.0068

Depreciation rate on capital (per year) 0.1 Initial atmospheric temp change
(◦C from 1900) 0.8

Capital elasticity coefficient 0.3 Carbon emissions from land in 2010
(GtCO2 per decade) 9

Emission Climate sensitivity 1.41

Initial carbon intensity (emission-output rate) 0.12618 Climate equation coefficient for
upper level 0.226

Growth rate of carbon intensity (per decade) -0.15 Transfer coefficient upper to
lower stratum 0.44

Decline rate of decarbonization (per period) 0.0065 Transfer coefficient for lower level 0.02

Damage Reduction cost

Coefficient of damage function 0 Coefficient of reduction
cost function 0.03

Exponent of damage function 0.00267 Exponent of reduction cost function 2.15
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