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Abstract: Mangroves ecosystems dominate the coastal wetlands of tropical and subtropical regions
throughout the world. They are among the most productive forest ecosystems. They provide various
ecological and economic ecosystem services. Despite of their economic and ecological importance,
mangroves experience high yearly loss rates. There is a growing demand for mapping and assessing
changes in mangroves extents especially in the context of climate change, land use change, and related
threats to coastal ecosystems. The main objective of this study is to develop an approach for mapping
of mangroves extents on the Red Sea coastline in Egypt, through the integration of both L-band
SAR data of ALOS/PALSAR, and high resolution optical data of RapidEye. This was achieved via
using object-based image analysis method, through applying different machine learning algorithms,
and evaluating various features such as spectral properties, texture features, and SAR derived
parameters for discrimination of mangroves ecosystem classes. Three non-parametric machine
learning algorithms were tested for mangroves mapping; random forest (RF), support vector machine
(SVM), and classification and regression trees (CART). As an input for the classifiers, we tested various
features including vegetation indices (VIs) and texture analysis using the gray-level co-occurrence
matrix (GLCM). The object-based analysis method allowed clearly discriminating the different land
cover classes within mangroves ecosystem. The highest overall accuracy (92.15%) was achieved by
the integrated SAR and optical data. Among all classifiers tested, RF performed better than other
classifiers. Using L-band SAR data integrated with high resolution optical data was beneficial for
mapping and characterization of mangroves growing in small patches. The maps produced represents
an important updated reference suitable for developing a regional action plan for conservation and
management of mangroves resources along the Red Sea coastline.

Keywords: mangroves mapping; Polarimetric SAR; ALOS PALSAR; RapidEye; OBIA; Red Sea

1. Introduction

Mangroves are highly productive ecosystems located in the intertidal tropical and subtropical
regions. They act as buffer zones between terrestrial and marine ecosystems, and therefore, play an
important role in the functioning of adjacent ecosystems, such as salt marshes, seagrass beds, and coral
reefs [1]. Mangroves support the conservation of biological diversity by providing habitats, nurseries,
and nutrients for a number of animals and marine organisms [2]. They are considered of a great
ecological importance in coastlines stabilization, reduction of coastal erosion, sediment, and nutrient
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retention, flood and flow control, and water quality [3–5]. They are also of a high economic importance
and often provide valuable ecosystem goods and services for local communities [6].

Despite of their economic and ecological importance, mangroves experience high yearly loss
rates of 1–2% [7,8]. High population pressure in coastal areas has led to the conversion of many
mangroves areas to other uses, and numerous case studies described mangroves losses over time [9].
Among the reasons for this loss are the over exploitation, unsustainable wood extraction; conversion
by urbanization, aquaculture; and alteration of the hydrological system [10,11]. In addition, long-term
climatic change and the different interacting effects associated with global temperature increase and
sea level rise are deemed as a global hazard to mangroves [12]. Degradation and loss of these coastal
buffering systems due to climate change and direct human impacts contradict the coastal protection
they provide and increases their vulnerability, with significant environmental, economic and social
consequences for indigenous people in the coastal areas [13].

Mangroves in Egypt represent the northern latitudinal limits of the Endo-Pacific East African
mangroves. Due to area’s extreme environmental conditions (high salinity, low rainfall, and extreme
temperatures), the trees are generally stunted, rarely exceeding five meters in height [9]. They are
found scattered along the Red Sea coastline, and their usual habitat is shallow water, such as lagoons,
or sand bars parallel to the shoreline. Two of the four mangrove species known to occur in the Red Sea
were recorded in Egypt; Avicennia marina (Forssk.) Vierh, and Rhizophora mucronata [14].

There is a growing demand for integrated assessment to address the risk on mangroves
ecosystems, especially in the context of climate change, seal level rise, and related threats to coastal
ecosystems. Therefore, mapping and retrieval of up-to-date information regarding the extent and
conditions of mangroves is essential for conservation and sustainable management of mangroves
ecosystems on the Red Sea coastline. Mapping of mangroves requires frequent and spatially detailed
assessments; such information can be prohibitively expensive to be collected directly. Remote sensing
is the most appropriate tool for mapping and assessment of mangroves, due to its ability to capture
high spatio-temporal variability over large geographical scales [15]. Remote sensing provides a
fast, cost-effective, and efficient methods for mangroves mapping, it is particularly useful since many
mangroves extents are located in remote areas, where field measurements are difficult, time-consuming,
and expensive [16]. Remote sensing data offers many advantages in this respect and has been used in
several studies for mangroves mapping [17]. However, the accuracy of the mangroves maps is affected
by the ability of the classification procedure to discriminate between various elements and vegetation
types in the mangroves ecosystem, which is partly a function of the sensors’ resolution, and the image
processing method or classification procedure adopted. This gap remains to be addressed to be able
to produce more accurate spatially explicit information based on remote sensing data to eventually
support sustainable management of mangroves ecosystems.

A variety of sensors and image processing methods have been used in the remote sensing of
mangroves, such as SPOT (Système Pour l’Observation de la Terre) [18,19] and Landsat Thematic
Mapper (TM) [20,21]. Since mangroves along the Red Sea coastline often grow in narrow small patches,
high-resolution remotely sensed data are required to capture the newly colonized individual stands or
relatively small patches of mangroves stands that cannot be captured with medium spatial resolution
satellite data e.g., Landsat imagery. High-resolution data provide opportunities for mangroves
mapping and interpretation, as well as it can be used to recognize, identify, and delineate mangroves
at the individual tree level [22].

Object-based image analysis (OBIA) is a suitable approach for classification of high resolution satellite
images, it allows extraction of meaningful objects, rather than single pixels during image segmentation
because the spectral response of individual pixels no longer represents the characteristics of a target of
interest e.g., tree canopies [23,24]. OBIA involves the identification of homogeneous groups of pixels that
have similar spectral and/or spatial characteristics [25]. In addition, the object-based image analysis
offers various advantages of using spectral characteristics, texture, shape, and context information
with adjacent image objects that can be used in mapping of mangroves extents [26].
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Although there are many advantages of using optical remote sensing data for mapping of
mangroves, a major limitation is the availability of cloud-free scenes, which stimulates usage of other
remote sensing datasets, such as the Synthetic Aperture Radar (SAR) data, and its more advanced
operational mode polarimetric SAR (PolSAR) for mapping and characterization of mangroves extents.
Several studies have demonstrated the potential of SAR data for mapping of mangroves indicating
that SAR-based methods can potentially outperform the optical remote sensing data especially in the
tropical areas, where cloud coverage restrain application of optical satellite images [27–29].

SAR sensors are particularly used for woody structural mapping, because of their capacity to capture
within-canopy properties [30–32], and lack of sensitivity to cloudy conditions. L-band SAR provided by
the Advanced Land Observing Satellite (ALOS) Phased Array L-band Synthetic Aperture Radar (PALSAR)
has been proven to be the most effective in forests mapping and characterization [33–35] due to the high
penetration of L-band into the canopy. L-band SAR data have been shown to be useful for mangroves
mapping as a function of structural differences between species and growth stages [36]. Using SAR
data in mapping of mangroves is challenging because of the complexity of the backscatter signal
received from mangroves ecosystems. Different bands of radar backscatter are affected differently by
the interactions between the transmitted signal and biophysical properties of mangroves, such as size,
geometry, orientation of leaves, trunks, branches, different types of roots, and the moisture content of
both mangroves trees and the underlying soil [36,37].

The main objective of this study was to develop an approach for mapping of mangroves extents
on the Red Sea coastline through the integration of both L-band SAR data of ALOS/PALSAR,
and high resolution optical data of RapidEye. We applied object-based image analysis method and
assessed different machine learning algorithms, as well as we evaluated various input features for
discrimination of mangroves ecosystem classes in the study area. The performed tests allowed to
produce accurate mangroves maps in the study area as well as to make recommendations on the
suitability of remote sensing data and selection of the classification methods for accurate mangroves
mapping. This information is important for the development of a regional action plan for conservation
and management of mangroves resources along the Red Sea coastline as well as it could be applied for
similar applications worldwide.

2. Materials and Methods

2.1. Study Area

Wadi Lehmy stand is located on the Red Sea coastline in Egypt (latitude 24◦13′, longitude 35◦25′,
Figure 1). It is one of the few mangroves stands growing along the Red Sea coastline. The study area
is divided into three main units: The Red Sea Mountains, the coastal plain, and the Red Sea coast.
The coastal plain reaches in width from 15 to 25 km, and it is made of undulating sand and gravels
that separates the mountainous range from the Red Sea coast. Mangroves grow in small patches along
the Red Sea coast. As halophytes, mangroves thrive well in saline water, but require fresh water to a
certain extent in order to maintain an optimum salinity balance and to get nutrients, which explains
why mangroves grow on the mouths of wadis (seasonal riverbeds), where suitable sediments and
sources of freshwater allow the mangroves to grow in a high-saline substrate frequently inundated
by seawater.

Wadi Lehmy stand is dominated by Avicennia marina; it is a tolerant species to the relatively high
salinity, low rainfall and high temperature conditions [38]. Avicennia grows on a sandy substrate at
the mouth of W. Lehmy, surrounding a shallow lagoon. The trees have developed morphological,
physiological and reproductive adaptations to the high salinity of the swamp. Climatologically,
the Egyptian Red Sea coast, which supports the distribution of mangroves, belongs to the category of
warm coastal deserts. The climate of Ras Banas in the south, shows an annual mean of minimum and
maximum temperature of 19.1 ◦C and 32.4 ◦C with annual mean of 17.4 mm year−1 rainfall.
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Figure 1. (a) Location of the study area on the Red Sea coastline in Egypt; (b) the study area overlaid 
on SRTM digital elevation model, and footprints of the remote sensing data used in this study; FBD: 
fine beam dual-polarization of ALOS/PALSAR, FBS: fine beam single polarization, RE: RapidEye, and 
WV-1: WorldView-1; and (c) Subset of the RapidEye high resolution image showing W. Lehmy stand. 

2.2. Remote Sensing Data 

This work is based on the integration of three different remote sensing datasets; SAR data 
provided by ALOS/PALSAR, high resolution optical data of RapidEye, and very high resolution data 
of WorldView-1. ALOS/PALSAR data used in this work was acquired at L-band (~23.6 cm 
wavelength), in a fine-beam dual-polarization mode (HH and HV), and fine-beam single polarization 
mode (HH), in an ascending orbit, with off-nadir angle of 34.3°. Data were acquired in a slant range 
single-look complex format (SLC, L1.1) acquired on 22 June 2007. Each scene covers an area of 
approximately 60 × 70 km.  

RapidEye is a commercial optical Earth observation mission that consists of a constellation of 
five satellites [39]. The sensors deliver high spatial resolution imagery with a ground sampling 
distance of 6.5 m at nadir. RapidEye image was acquired on 25 February 2015. It is a 3A product from 
the RapidEye Science Archive (RESA) of the German Aerospace Centre (DLR). At this processing 
stage, the image was already radiometrically and geometrically corrected for sensor related issues 
and aligned to a cartographic map projection (WGS 1984/UTM zone 36N) [40]. WorldView-1 data 
with 0.5 m spatial resolution was acquired on 21 November 2015, the image was radiometrically and 
geometrically corrected. Our focus in the current study was on SAR data availability, particularly L-
band; therefore, there is unavoidable time of eight years between the acquisition times of PALSAR 
data and the optical data, assumed to be insignificant for observation and mapping of mangroves as 
woody vegetation [41]. 

ALOS/PALSAR images were pre-processed from the SLC format according to the following 
steps; (a) SAR images for a given acquisition mode (FBD) were co-registered using a cross-correlation 
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Figure 1. (a) Location of the study area on the Red Sea coastline in Egypt; (b) the study area overlaid on
SRTM digital elevation model, and footprints of the remote sensing data used in this study; FBD: fine
beam dual-polarization of ALOS/PALSAR, FBS: fine beam single polarization, RE: RapidEye, and WV-1:
WorldView-1; and (c) Subset of the RapidEye high resolution image showing W. Lehmy stand.

2.2. Remote Sensing Data

This work is based on the integration of three different remote sensing datasets; SAR data provided by
ALOS/PALSAR, high resolution optical data of RapidEye, and very high resolution data of WorldView-1.
ALOS/PALSAR data used in this work was acquired at L-band (~23.6 cm wavelength), in a fine-beam
dual-polarization mode (HH and HV), and fine-beam single polarization mode (HH), in an ascending
orbit, with off-nadir angle of 34.3◦. Data were acquired in a slant range single-look complex format
(SLC, L1.1) acquired on 22 June 2007. Each scene covers an area of approximately 60 × 70 km.

RapidEye is a commercial optical Earth observation mission that consists of a constellation of five
satellites [39]. The sensors deliver high spatial resolution imagery with a ground sampling distance of
6.5 m at nadir. RapidEye image was acquired on 25 February 2015. It is a 3A product from the RapidEye
Science Archive (RESA) of the German Aerospace Centre (DLR). At this processing stage, the image
was already radiometrically and geometrically corrected for sensor related issues and aligned to a
cartographic map projection (WGS 1984/UTM zone 36N) [40]. WorldView-1 data with 0.5 m spatial
resolution was acquired on 21 November 2015, the image was radiometrically and geometrically
corrected. Our focus in the current study was on SAR data availability, particularly L-band; therefore,
there is unavoidable time of eight years between the acquisition times of PALSAR data and the optical
data, assumed to be insignificant for observation and mapping of mangroves as woody vegetation [41].

ALOS/PALSAR images were pre-processed from the SLC format according to the following
steps; (a) SAR images for a given acquisition mode (FBD) were co-registered using a cross-correlation
algorithm [40]; (b) each SLC image was then calibrated to convert the DN values to radar backscatter
coefficients (σ◦) in decibels (dB) using the following formula [42]:

σo(dB) = 10× log10 (DN2)− 83.4, (1)

where DN is the image pixel digital number measured in the SAR image, and−83.4 dB is the calibration
factor of ALSO/PALSAR data; (c) multi-looking was carried out using mode-specific factors aiming at
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achieving roughly squared pixels of 12.5 m in range and azimuth [42,43], followed by subset of the
obtained backscatter images to the boundaries of the study area; (d) 5 × 5 Lee filter was applied to the
images to reduce the effect of speckle noise, Lee filter was selected because it preserves polarimetric
information [44]; (e) H/A/Alpha polarimetric decomposition parameters were extracted based on
eigenvector decomposition of the (2 × 2) complex covariance matrix [C2] [45,46] to be used along
with the other derived SAR parameters for mangroves mapping; (f) terrain-correction was carried
out to remove the effect of geometric distortions, such as foreshortening, layover, and shadow; and
(g) geocoding of the images to the UTM projection (zone 36N and WGS-84 datum) using SRTM
Digital Elevation Model (DEM) using Sentinel application platform (SNAP) V5.0 toolbox provided by
European Space Agency (ESA). In addition to HH and HV, the ratio HV/HH, total power HV + HH
and difference HV − HH were calculated. Finally, the HH, HV polarizations and all the derived
parameters were stacked to one multi-layered image for further analyses.

In addition to remote sensing data, other ancillary data were used in the current study including
the SRTM DEM data, it was used to identify the potential mangrove areas based on the elevation,
mangroves normally survive in the intertidal zones; therefore, SRTM could be used to identify the
potential mangrove areas [47].

Data Analysis

Following image pre-processing, various procedures were performed to prepare the multi-sensor
with multi-resolution input bands alongside with the derived and calculated features and parameters
of both SAR and optical data for the subsequent analysis and categorization for mangroves mapping
and characterization.

Two different methods were used to combine information from the remote sensing datasets used
in the current study. The first method is data fusion; it combines information from multi-source
images to obtain a new image with more information that can be separately derived from the original
images [48–50]. This method was used to combine the optical data of RapidEye image with five-meter
spatial resolution, and the Worldview-1 image with 0.5 m spatial resolution, to enhance the visual
interpretation, and improve the quantitative analysis performance of both datasets for mangroves
mapping. Several data fusion techniques have been tested including; the intensity-hue-saturation
(IHS), Brovey transformation, Gram Schmidt fusion, and Ehlers fusion techniques [48–52], the IHS
method was applied in this study for preserving the multispectral characteristics and improving the
spatial features in the output. The second method is data integration, it combines images in different
layers algorithmically, without creating a new set of images [48,49]. It was applied to combine both
SAR data of ALOS/PALSAR and optical data of RapidEye to investigate the potential of the integrated
SAR and optical data for mapping of mangroves, while optical data represent the reflective properties
of ground cover, SAR data are sensitive to the shape, roughness and moisture content of the observed
objects [49] (Figure 2).
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and the main geographical features in the study area, as well as vegetation patterns, species 
distribution, and identification of the mangroves ecosystem classes (Figure 3). Five classes were 
identified within the mangroves ecosystem in the study area, these classes are; mangroves (MV), 
water (WT), intertidal zone (TZ), waterlogged areas (WG), and coastal plain (CP). Additionally, a 
part from the GPS-based sampling, the higher resolution optical data were utilized for ground 
truthing purposes especially within the mangroves swamps and remote areas that were not accessible 
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Figure 2. Remote sensing data covering the study area (a) WorldView-1 image; (b) RapidEye image
(RGB); (c) Pan-sharpened RapidEye image (NIR, R, G); and (d) dual-polarization ALOS/PALSAR data
in RGB (HH, HV, HV/HH).

2.3. Field Data

Field data were obtained from a field expedition carried out in the study area in June 2013. During
this expedition, field measurements including; ground truth data (GPS points) with a corresponding short
description were collected randomly to determine topographic reference points, and the main geographical
features in the study area, as well as vegetation patterns, species distribution, and identification of the
mangroves ecosystem classes (Figure 3). Five classes were identified within the mangroves ecosystem
in the study area, these classes are; mangroves (MV), water (WT), intertidal zone (TZ), waterlogged
areas (WG), and coastal plain (CP). Additionally, a part from the GPS-based sampling, the higher
resolution optical data were utilized for ground truthing purposes especially within the mangroves
swamps and remote areas that were not accessible during the field work (Figure 4).
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2.4. Object-Based Image Analysis and Feature Extraction

Object-oriented approach was applied in this study for mapping of mangroves extents. This
approach is based on classifying objects that are delineated as homogeneous units with similar spectral
characteristics, called segments. Segmentation provides the building blocks of the object-based image
analysis [25,51]. This approach is suitable for classification of high-resolution satellite images, as it
allows the extraction of meaningful objects, rather than classifying individual pixels [23]. Segmentation
enables the acquisition of a variety of spectral, spatial, and textural features, resulting in improved
classification accuracy [52,53].

Image pixels of the optical and SAR data with relative homogeneity were clustered using the
multi-resolution segmentation algorithm MRS [54] in eCognition Developer V9 [55]. MRS is an
ascending area-merging technique where smaller objects are progressively merged into larger objects
controlling the advancement in heterogeneity based on three user-defined parameters: scale, shape
and compactness [56]. Scale parameter, which regulates the size and homogeneity of image objects [57],
was adjusted until the obtained image objects visually represented the features of interest (canopy
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cover of mangroves trees). All layers were given equal importance in the segmentation settings, except
NIR Infrared, and Red bands, which received double weighting to increase their response signal to
vegetation greenness. A bottom-up, region-growing segmentation approach was used to produce
consistent results across the relatively heterogeneous study area [58]. Figure 5 provides an overview of
the entire approach adopted in this study.
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Several object-based features can be calculated and extracted in eCognition and applied
during the classification procedure. In this study, various features were extracted, including:
vegetation indices (VIs), principal component analysis (PCA) [59], and gray-level co-occurrence matrix
(GLCM) [60]. VIs and PCA are widely used for retrieval of vegetation structure as well as land cover
classification [61]. We have selected the following VIs (Table 1): The Normalized Difference Vegetation
Index (NDVI), Green Normalized Difference Vegetation Index (gNDVI), Enhanced Vegetation index
(EVI2), Soil-adjusted Vegetation Index (SAVI), and Modified Soil-adjusted Vegetation index (MSAVI).
NDVI was selected to separate mangroves from other non-vegetated areas. To address the limitations
of NDVI that is affected by soil brightness [62] and saturates in high biomass areas [63,64], EVI2
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was calculated as it shows greater sensitivity to vegetation and reduces atmospheric effects on
vegetation index values [64]. SAVI [65] was computed as a corrective index on soil brightness for
areas with low vegetation cover and exposed soil surface. The brightness algorithm was calculated to
represent the reflectance intensity of bare rocks and soils among other features sharing similar spectral
radiance [66,67].

GLCM texture measures make use of grey-tone spatial dependence matrix to quantify texture
features. The GLCM expresses texture in a user defined kernel size and considers the spatial
co-occurrence of pixel grey levels [68]. A kernel size of 7 × 7 was applied to avoid exaggeration
of variations with smaller kernel size, or inefficient quantification of texture because of smoothing
with larger kernel size [69]. In addition to the mean (MEN) and variance (VAR), other texture features
were also computed for each band including: homogeneity (HOM), contrast (CON), entropy (ENT),
dissimilarity (DIS), correlation (COR), and second moment (SEC) as shown in Table 1.

Table 1. Vegetation indices, and texture features used in this study.

Categories Variables Algorithm Reference

VIs NDVI (NIR− R)/(NIR + R) [70]
gNDVI (NIR− G)/(NIR + G) [71]

EVI2 2.5(NIR− R)/(NIR + 2.4× R + 1.0) [72]
SAVI 1.5(NIR− R)]/[NIR + R + 0.5 [73]

MSAVI 2(NIR + 1)−
√
{(NIR + 1)2 − 8(NIR− R)}/2 [74]

GLCM texture MEN f men =
N−1
∑

i,j=0
i(pij) [60]

VAR f var =
N−1
∑

i,j=0
pij (i− µi)

2

HOM f hom =
N−1
∑

i,j=0
pij/1 + (i− j)2

CON f con =
N−1
∑

i,j=0
pij (i− j)2

ENT f ent =
N−1
∑

i,j=0
pij (− ln pij)

DIS f dis =
N−1
∑

i,j=0
pij |i− j|

COR f cor =
N−1
∑

i,j=0
pij [(i− µi)(j− µj)/

√
{(σi

2)(σj
2)}]

SEC f sec =
N−1
∑

i,j=0
pij

2

NDVI: Normalized difference vegetation index; gNDVI: green Normalized difference vegetation index; EVI2:
Enhanced vegetation index; SAVI: Soil adjusted vegetation index; MSAVI: Modified soil adjusted vegetation index;
NIR: Near Infrared; R: Red; G: Green. pi,j = vi,j/ ∑N−1

i,j=0 vi,j, where vi,j is the value in the cell, i, j of the moving
window and N is the number of rows or columns.

Backscattering characteristics of mangroves were investigated using the HH, and HV polarizations
offered by the FBD mode of ALOS/PALSAR data, and their polarimetric parameters were retrieved.
Decomposition features of, co-, and cross-polarized SAR data were retrieved according to the
Alpha-Entropy decomposition proposed by Cloude and Pottier [45], including; entropy (H), anisotropy
(A), and alpha angle (α), and the class separability offered by their different feature spaces was
analyzed. GLCM texture measures were applied also for the SAR bands and their derived parameters
to evaluate their influence on classification of mangroves ecosystem. Extracted and calculated features
were then evaluated to determine the importance of the predefined variables of both SAR and optical
data for distinguishing between the different classes in mangroves ecosystem.

2.5. Image Classification

Three classification scenarios were applied in the current study; Scenario 1 (GA) used only
optical images information with the five multispectral bands of RapidEye (blue, green, red, red-edge,
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and near-infrared) and its calculated features and indices including VIs, PCA as well as texture GLCM
features. Scenario 2 (GB) used all the available features from ALOS/PALSAR data; SAR bands,
and SAR derived parameters including PolSAR and decomposition parameters, as well as the texture
GLCM features. Scenario 3 (GC) integrated both optical and SAR data as well as the calculated and
derived features, parameters and texture of both datasets to examine the potential of the integrated
optical and SAR data in mapping of mangroves extents. Table 2 show the three proposed scenarios
with different categories, datasets, and selected features and combinations.

Table 2. Proposed scenarios for the classification schemes using optical data of RapidEye, SAR data of
ALOS/PALSAR, and the integrated optical and SAR data.

Category Datasets Selected Features and Combinations

GA
GA1 Spectral bands B, G, R, Red Edge, and NIR
GA2 Spectral bands, VIs, and PCA B, G, R, Red Edge, NIR, VIs, pc1, and pc2
GA3 Spectral bands, VIs, PCA, and texture B, G, R, Red Edge, NIR, VIs, pc1, pc2, and texture

GB
GB1 SAR bands HH and HV

GB2 SAR bands, PolSAR parameters,
and GLCM texture

HH, HV, HV/HH, HV + HH, HV − HH, H, A, α,
and GLCM texture

GC

GC1 Spectral bands, and SAR bands B, G, R, Red Edge, NIR, HH, and HV

GC2 Spectral bands, VIs, SAR bands,
and PolSAR parameters

B, G, R, Red Edge, NIR, VIs, HH, HV, HV/HH,
HV + HH, HV − HH, H, A, and α

GC3 Spectral bands, SAR bands,
and PolSAR parameters

B, G, R, Red Edge, NIR, HH, HV, HV/HH,
HV + HH, HV − HH, H, A, and α

GC4 Spectral bands, VIs, and SAR bands B, G, R, Red Edge, NIR, VIs, HH, and HV

GC5 Spectral bands, VIs, SAR bands, PolSAR
parameters, and texture

B, G, R, Red Edge, NIR, VIs, HH, HV, HV/HH,
HV + HH, HV − HH, H, A, α, and GLCM texture

GA: optical data; GB: SAR data; GC: integrated optical and SAR data; PCA: principle components; B: blue; G: Green;
R: Red; NIR: near infrared; PolSAR: Polarimetric SAR; VIs: vegetation indices; H: entropy; A: anisotropy; and α:
alpha angle.

Because of the variability of the data proposed in the classification schemes (Table 2), a comparison
of machine learning algorithms was conducted for choosing suitable classification algorithms.
We evaluated three different non-parametric classifiers: random forest (RF), support vector machines
(SVM), and classification and regression trees (CART). RF is a machine ensemble approach that makes
use of multiple self-learning decision trees to parameterize models and use them for estimating
categorical or continuous variables [75]. SVM is a non-parametric statistical learning approach, which
can resolve complex class distribution in high dimensional feature spaces [76]. SVM algorithms
discriminate the classes by fitting an optimal separating hyperplane (OSH) between classes using the
training samples within feature space and to maximize the margins between OSH and the closest
training samples [77,78]. The points lying on the boundaries are called support vectors and the middle
of the margin is the OSH [79]. CART are increasingly being used for analysis and classification of
remotely sensed data. It has been used successfully for classification of multispectral imagery [80–82],
incorporation of ancillary data with multispectral imagery for increased classification accuracy [83],
and change detection analysis [84].

2.6. Accuracy Assessment

Accuracy assessment was carried out for the classified images using the high spatial resolution
pan-sharpened RapidEye image to check the correspondence of the produced classes to real objects in
the study area. If the results were not satisfactory, the classification was improved by selecting more
features for better separation of the different classes of mangroves ecosystem. During the classifiers
training, there was an independent test set for the classification accuracy. Tuning of the classifiers was
carried out in a systematic way to identify the most suitable tuning parameters; the number of trees
built in the forest (ntree), and the number of possible splitting variables for each node (mtry). Finally,
a statistical accuracy assessment was conducted using a confusion matrix. The accuracy assessment



Sustainability 2018, 10, 646 11 of 22

was carried out through splitting the data into 70% for training of the classifiers, and the other 30%
for testing the classification results [84,85]. The parameters of the overall accuracy, producer accuracy,
user accuracy, and Kappa coefficient [86] were derived from the confusion matrix and used for the
accuracy assessment of the classified images.

3. Results

3.1. Backscattering Characterization and Polarimetric Parameters Description

Mean backscattered coefficients were identified for the five main land-cover types of the
mangroves ecosystem in the study area: mangroves (MV), water (WT), intertidal zone (TZ),
waterlogged areas (WG), and coastal plain (CP). Table 3 shows the variation of backscattering
coefficients for each class at different polarizations HH and HV. It was observed that the class of
water (WT) showed the lowest backscattered intensities. The majority of the pixels lying in the range
from −26.54 dB to −18.59 dB and from −29.40 dB to −25.96 dB from both HH and HV respectively,
a smooth water surface results in no scattering back to the sensor in both HH and HV polarizations.
Coastal plain (CP) also showed low backscattered values but slightly higher than WT due to the
involvement of soil surface roughness. While higher values were observed in dense homogenous
mangroves cover (MV) −8.19 dB and −16.86 dB for both polarizations HH and HV respectively.
HV backscattered is closely correlated with mangroves structure and above-ground biomass, with HV
reaching higher σo values due to higher sensitivity to volumetric scattering influenced by the random
distribution of branches and leaves. The intertidal zone (TZ) and waterlogged areas also showed high
backscattering values (WG). Reflections between the vertical aerial roots of mangroves and the water
surface of the flooded intertidal zone can result in a strong HH backscatter (Table 3).

Table 3. Backscatter statistics of PALSAR data for each of the five classes in the mangroves ecosystem.

Class HH Backscattering (dB) HV Backscattering (dB)

Range Mean SD Range Mean SD

WA −26.54 to −18.59 −23.66 2.15 −29.40 to −25.96 −28.04 1.07
MV −10.98 to −05.72 −8.19 1.35 −20.37 to −14.60 −16.86 1.18
TZ −18.77 to −15.51 −16.10 3.36 −27.96 to −24.99 −26.38 0.65
WG −18.67 to −15.30 −17.15 1.14 −28.81 to −26.68 −27.77 0.55
CP −24.27 to −20.58 −22.46 0.94 −29.11 to −27.44 −28.26 0.48
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The Alpha-Entropy decomposition was generated from eigenvalues-based target decomposition
(Figure 6). The different classes of mangroves ecosystem overlap each other showing predominantly
surface scattering with moderate alpha values and relative high entropy values in the dual polarization
mode. Volume scattering characterize the mangroves stand with higher biomass values and multiple
canopy [45]. The low values of alpha represent surface scattering characterizing the plane surfaces
found in WA and CP classes (Figure 6).

3.2. Segmentation and Feature Extraction

The pan-sharpened RapidEye image (Figure 7a) achieved the best segmentation results and
produced fine units (Figure 7b). Shape and compactness were weighted at 0.1 and 0.5, respectively,
and scale was set to five due to land cover heterogeneity in the study area. The segments were relatively
well divided where mangroves appeared on the coastline. This is because the pan-sharpened RapidEye
image has the highest spatial resolution compared to the other optical and SAR data used in this study,
and at the meantime keeping the spectral information of the RapidEye multi-spectral image, while
the segmentation of SAR data did not divide the vegetation units into much details despite using the
same parameter settings. Furthermore, since SAR data contain speckle noise, using SAR imagery for
segmentation resulted in obtaining objects that do not correspond to the real-world objects.
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Figure 7. (a) Pan-sharpened RapidEye image used for segmentation; (b) the results of segmentation at
[0.1, 0.5, and 5] for shape, compactness, and scale parameters; (c) using the object-feature (NIR band) for
mangroves feature extraction; and (d) delineation of the canopies of mangroves trees in the study area
on the Red Sea coastline based on the selected segmentation parameters and extracted object-feature.

3.3. Classisifcation Results and Accuracy Assessment

Table 4 provides a summary of the classification results achieved for all data categories;
classification of optical data, classification of SAR data, and classification of the integrated SAR
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and optical data. In category GA (optical data only), the highest overall accuracy achieved was 86.78%
in subgroup GA1. The addition of the derived features VIs and PCA to the spectral bands improved the
overall accuracy to 89.26% in subgroup GA2. This shows the influence of the derived features (VIs and
PCA) on improving the classification accuracy. Classification results indicate that high resolution
optical data of RapidEye has the potential to categorize land cover classes within the mangroves
ecosystem efficiently (Table 4, Figure 8).

Table 4. Classification Overall accuracies and Kappa coefficient of the classified datasets based on RF,
CART, and SVM classifiers.

Categories Subgroups Overall Accuracy (OA) % Kappa Coefficient (K) %

RF CART SVM RF CART SVM

GA
(Optical data)

GA1 86.78 74.42 60.33 83.44 68.14 50.73
GA2 89.26 83.72 74.79 86.57 79.68 68.63
GA3 82.23 26.03 76.45 77.86 9.02 70.63

GB
(SAR data)

GB1 59.92 53.31 38.43 50.15 42.71 21.19
GB2 69.83 54.65 45.04 62.21 44.36 32.31

GC
(Integrated optical

and SAR data)

GC1 74.42 63.95 75.97 68.28 54.74 70.23
GC2 84.71 68.18 80.23 80.89 60.62 75.29
GC3 92.15 88.43 62.02 90.18 85.53 52.32
GC4 87.60 84.11 52.71 84.55 80.04 38.83
GC5 84.30 78.10 79.25 80.42 72.78 74.04
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In category GB (SAR data only), the overall accuracy of the RF, CART, and SVM classifications
with SAR inputs were 59.92%, 53.31%, and 38.43% respectively in subgroup GB1, and improved to
69.83%, 54.65%, and 45.04% respectively in subgroup GB2 after using PolSAR parameters and texture
feature derived from both polarizations (Table 4, Figure 8).

In category GC (integrated SAR and optical data), the results obtained in this category indicated
that the average overall classification accuracies of the data in subgroups GC1–GC5 ranges between 74%
and 92% using RF classifier. SAR derived parameters combined with derived features of optical data
improved the classification accuracy as indicated in subgroup GC2. The highest overall classification
accuracy was achieved in subgroup GC3 based on the integration of SAR backscattering and PolSAR
parameters, with surface reflectance of the optical data (92.15%). These results indicate that separability
tends to increase, and an improvement in terms of classification accuracy could be achieved when SAR
backscattering, and SAR derived parameters combined with surface reflection of optical data. The use
of VIs in GC2 and GC4, and texture feature in GC5 slightly improved the accuracy to 84.71%, 87.60%,
and 84.30% respectively (Figure 8).

In general, results of the classification of the three datasets and their accuracy assessment indicated
that the derived vegetation indices improved the classification accuracy of the optical dataset in GA,
similarly in SAR dataset GB the accuracy increased after including the derived PolSAR parameters
and texture feature into the SAR backscattering. The integrated SAR and optical datasets achieved the
highest overall accuracies, and the addition of PolSAR parameters and texture feature improved the
accuracy as shown in (GC3), and (GC5) respectively (Figure 8).

Figure 9 shows the producer’s accuracy (PA) and user’s accuracy (UA) based on RF, CART and SVM
classifications. Based on the producer’s accuracy; the class(MV) achieved the highest accuracy of more
than 90%, followed by the class of (WA), and the lowest producer’s accuracy achieved by the class (WG).
Regarding to the user’s accuracy, the class (WA) achieved the highest accuracy of more than 90%,
followed by the class (CP), and the lowest user’s accuracy of less than 70% achieved by the class (MV).
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We compared the performance of the three machine learning classifiers used in the current
study, RF achieved the highest overall classification accuracy (92.15%) followed by CART with
88.43%, and SVM with 80.23%. Similarly, for the kappa coefficient, RF achieved the highest kappa
90.18% at GC3, while CART and SVM achieved 85.5% and 75.3% at GC3 and GC2, respectively.
The highest performance was achieved using the integrated SAR and optical data (GC), the RF
increased significantly the accuracy compared to CART and SVM. For SAR data (GB), RF increased
the accuracy in the range of 9.91% compared to SVM in the range of 6.61% and CART in the range
of 1.34% (Table 4). We calculated the variable importance for the different variables evaluated in the
current study. Of all variables of optical data, the vegetation indices, particularly gNDVI was found to
be the most valuable for class discrimination, while in SAR data, SAR band VH contributed to better
class separation. Classification results displaying the distribution of the different land cover classes
over the study area, and mapping the mangroves extents are presented in Figure 10. The map was
produced using the integrated SAR and optical dataset.
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4. Discussion

This study demonstrates how remote sensing of the polarimetric SAR data and high resolution
optical data can be used for mapping of mangroves extents growing in small patches. In the current
study, L-band SAR data of ALOS/PALSAR dual-polarization, and high resolution optical data of
RapidEye were used for accurately mapping mangroves extents on the Red Sea coastline in Egypt,
showing the effectiveness of integrating different data types for mangroves mapping.

We found that the integrated SAR and optical data achieved the highest accuracy in classifying
the five land cover types in the mangroves ecosystem in the study area. The obtained accuracy value is
similar to other classifications based on integrated SAR and optical data in African environments [87,88].
Data integration improved the classification accuracy by using different data sources to increase the
dimensionality of the available information [89–91]. The integration of SAR and optical data, has been
shown to be a good strategy for overcoming the limitations of the optical data, including the availability
of cloud-free scenes, and also coping with the limitations of SAR data for a single-date information.
Our findings are in agreement with [91], they mapped 8 classes of land cover near the mouth of the
Amazon River using supervised classification of Landsat ETM and a merged ETM–SAR product.
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The integrated product increased the accuracy and provided additional information, permitting a
more efficient identification and mapping of tropical coastal wetlands.

Random Forest classifier achieved the highest accuracy brought in an improvement in the results
with respect to other used classifiers. In certain studies, SVM and RF achieved similar performance [92],
in other studies, SVM classifier outperforms RF classifier [93]. Unlike the traditional and fast learning
decision trees CART, RF is insensitive to small changes in the training datasets and are not prone to
overfitting [94,95]. Additionally, RF is less complex and less computer intensive in comparison to the
long training times for SVM [96]. Other studies such as [97] achieved a success with an ANN algorithm
to map mangroves species from multi-seasonal IKONOS imagery. The decision to adopt machine
learning algorithms should take into consideration the need for expert knowledge, for classifiers
optimization and avoiding overfitting.

We applied an object-based approach for mangroves mapping in the current study. This approach
allowed to clearly discriminate the different land cover classes within the mangroves ecosystem. Our
results are in agreement with [98], they applied object-based approach for multi-scale mangrove
composition mapping using multi-resolution data (Landsat TM, ALOS AVNIR-2, and WorldView-2) in
two study sites in Australia and Indonesia, the results demonstrated the effectiveness of object-based
analysis for mangroves mapping. Our results also are in agreement with [5], they applied multi-resolution
segmentation for mangroves mapping in the Mekong Delta using SPOT5 data, and successfully detected
areas with mixed aquaculture-mangrove land cover with high accuracies. The main limitation of the
mapping approach related to the classification rule set was its site, sensor and time dependency. This
limitation was due to the spectral reflectance variations of the images captured by different sensors and
the variations of the mangrove environmental settings. The only uncertainty introduced in the accuracy
assessment in the current study was attributed to the time gap of eight years between the acquisition
times of PALSAR data and the optical data. Some level of change in mangrove condition may have
occurred within this time gap. However, we notice that there was no major disturbance affecting
the study areas within this time gap. This difference assumed to be insignificant for observation and
mapping of woody vegetation in arid and semi-arid environment [41,98].

With regards to the techniques tested in the current study to improve the mapping accuracy, we
found that the addition of different features derived from both optical and SAR data was effective
in improving the overall accuracy; VIs improved the classification accuracy of optical data, texture
features improved the classification accuracy of SAR data, and also the accuracy of the integrated
SAR and optical data, similarly to what has been found by [99] in tropical forests, confirming the
value of textural information when this data type is used singularly, and especially for discriminating
classes of dense and tall vegetation. Our results are in agreement with several studies which used
derived features and parameters for improving classification accuracy. In the study carried out
by [100], the authors found that inclusion of image texture information improved the classification
accuracy, and produced promising results. On the other hand, texture features were much less effective
when included with optical data, perhaps due to the fact that very high values of accuracy were
already reached and thus the margins of improvement were limited. PolSAR parameters improved
the classification accuracy of both SAR data, and the integrated SAR and optical data. We realized
also the addition of different features improved the overall accuracy into a certain margin as seen in
GC3, and addition of more features after this margin reduced the overall accuracy as seen in GC4 and
GC5 (Table 4).

In this study we showed that using SAR data only can still provide important landscape
information. This result confirms SAR role in forest and vegetation mapping of tropical regions,
and suggests that in the areas affected by optical data loss because of the atmospheric conditions,
SAR data can be integrated with the available optical data. Using L-band SAR data was beneficial for
mapping of mangroves because of the high penetration of L-band into the canopy, HH polarization
has been found to be sensitive for detecting water beneath canopy [101], whereas HV polarization
has been known for its sensitivity to volume scattering and biomass [102]. Compared to single
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polarized SAR data, the dual-polarimetric SAR data provided much more information about the
backscattering mechanism of the mangroves ecosystem. Therefore, dual-polarimetric SAR data enables
more detailed mapping of mangroves. These results are in agreement with [103], they determined the
best polarization configurations (HH, VV, or HV) to discriminate different types of coastal Amazon
wetlands, the classification accuracy was slightly improved when combining polarizations, with an
overall accuracy of 83% versus single-pol accuracies between 78% and 81%.

The current study shows that using L-band SAR data provided by ALOS/PALSAR combined
with the high-resolution optical data of RapidEye is very useful in mapping of mangroves extents
growing in fractions and small patches on the Red Sea coastline, as it provides information on the
spatial distribution of mangroves and mangroves ecosystem, which is required for conservation and
management of mangroves in this area. In the future work, we will continue using the next generation
of L-band SAR data; ALOS-2 PALSAR. It will allow comprehensive monitoring of the Earth surfaces
by providing users with more detailed SAR data than ALOS data, allowing continued mapping and
monitoring of mangroves ecosystems with higher spatial and temporal resolution.

5. Conclusions

In this study we investigated the contribution of the dual-polarimetric L-band SAR data of
ALOS/PALSAR and the high resolution optical data of RapidEye for mapping mangroves extents on
the Red Sea coastline. The study also assessed the contribution of various features derived from both
SAR and optical datasets including VIs, PCA and GLCM texture as well as the PolSAR parameters
derived from the ALOS/PALSAR data to the overall accuracy, using different machine learning
algorithms and comparing their performance. The highest overall classification accuracy 92.15% was
achieved by the integrated SAR and optical data. The VIs improved the overall accuracy of optical
data classification. Texture features, and PolSAR parameters improved the overall accuracy of SAR
data, and the integrated SAR and optical data classifications. RF classifier has the highest performance
followed by CART, and the lowest accuracy achieved by SVM. The study showed that using SAR data
of ALOS/PALSAR integrated with optical data of RapidEye was very useful in mapping of mangroves
extents growing on the Red Sea coastline. The produced maps provided accurate information on the
spatial distribution of mangroves in the study area, which is required for conservation and sustainable
management of mangroves in this area.
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