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Abstract: Throughout its life-cycle, wood contributes to climate change mitigation through carbon
storage and material and energy substitution. Focusing on wood use for piles, check dams,
paved walkways, guardrails, and noise barriers, we quantified the nationwide potential for climate
change mitigation in civil engineering in Japan through 2050. To assess mitigation potential,
we examined life-cycle greenhouse gas (GHG) emissions that are avoided by storing carbon in
wood and forests, substituting wooden materials for non-wooden materials (cement, concrete,
steel, and asphalt), and substituting processing residue and waste wood salvaged from defunct
civil engineering structures for fossil fuels (heavy oil). Our projections suggest that there will be
a maximum potential domestic log volume of 6.80 million m3/year available for civil engineering
use in Japan in 2050, and that it would be possible to produce this volume while increasing Japan’s
forest resources over the long term. A maximum nationwide avoided GHG emissions potential of
9.63 million t-CO2eq/year could be achieved in 2050, which is equivalent to 0.7% of Japan’s current
GHG emissions. The breakdown of avoided emissions is 73%, 19%, and 8% for carbon storage,
material substitution, and energy substitution, respectively, with the greatest contributions coming
from carbon storage through the use of log piles.

Keywords: life-cycle assessment (LCA); carbon storage; material substitution; energy substitution;
log pile; wooden guardrail; wooden check dam; woodchip-paved walkway; wooden noise barrier

1. Introduction

The transition toward a sustainable society requires addressing climate change issues. Wood use
can mitigate climate change through carbon storage, in which CO2 that is absorbed by growing trees is
stored in harvested wood, and by providing a substitute for materials that consume high amounts
of energy and generate high amounts of greenhouse gases (GHGs) in their production. In addition,
wood can be used as an alternative energy source with reduced GHG emissions [1].

In examining the environmental impacts and benefits of wood in the context of climate change,
it is necessary to apply the concept of life-cycle assessment (LCA), in which the environmental burden
of a product throughout its life-cycle, from resource extraction through product manufacture, and,
finally, recycling and/or disposal, is quantified. International LCA standards have been published as
the ISO 14040 series. Under these standards, four general procedure phases are involved in conducting
an LCA: definition of the goal and scoping of the LCA; life-cycle inventory analysis (LCI); life-cycle
impact assessment (LCIA); and, life-cycle interpretation [2]. Several system boundaries can be applied
in LCA, including: “cradle-to-grave”, which covers the entire life-cycle from resource extraction
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to disposal; “cradle-to-gate”, which covers resource extraction through production of the targeted
product, but excludes use and disposal processes; and, “gate-to-gate”, which is limited to a part of
the life-cycle processes (only one process or some processes). In addition, the practice of measuring
carbon footprints (CFs) that only target GHGs has been promoted in recent years as an environmental
burden item in LCI.

Many previous studies have conducted LCA targeting of the GHG balances of individual wood
products and applications, including buildings [3–5], furniture [6,7], paper [8,9], energy [10–14],
and civil engineering [15–17]. In addition, several LCA studies have covered multiple or whole wood
applications [18–21].

Looking specifically at Japan, prior LCA research focusing on GHGs has been applied to wood
use in buildings [22,23], paper [24], energy [25,26], and individual wood products, such as wood-based
boards [27], with one study examining multiple wood applications in buildings, furniture, paper,
and energy [28]. Although wood was once nearly universally used in civil engineering applications,
such as piles and bridges, following the period of high economic growth from the late 1950s to the early
1970s, the primary construction materials in Japan transitioned to concrete and steel [29]. In recent
years, however, wood has again begun to attract attention as a civil engineering material within the
context of addressing the issue of climate change and promoting domestic forestry. The Japanese
government is promoting the increased use of wooden civil engineering structures such as log piles,
wooden guardrails, and wooden noise barriers [29–32]. It is therefore important to use LCA methods
to clarify the potential contribution to climate change mitigation from the use of wood in civil
engineering. There are few prior research cases of LCA targeting wood use in civil engineering in Japan.
Although studies have analyzed the life-cycle GHG emissions from wood use in civil engineering
and the emission reductions resulting from substituting wood for non-wooden materials [33–37],
these studies have targeted only individual applications, including log piles [33], wooden check
dams [34], woodchip-paved walkways [35], wooden guardrails [36], and wooden noise barriers [37].
The future availability of wood for civil engineering structures in the country as a whole and the
associated nationwide potential for climate change mitigation remain unclear.

Many prior studies [3,7,16,27,34–37] assumed the biogenic carbon (CO2) balance of wood in the
LCA and the CFs to be carbon-neutral. In other words, they had no effect on the CO2 concentrations
in the atmosphere; thus, the biogenic carbon balance was considered zero. This is based on the
idea that the carbon emitted by wood incineration or biodegradation in the end-of-life process is
originally absorbed through photosynthesis during the tree growth process. Another way of seeing this
is that carbon emissions are absorbed by the growth of next-generation trees after wood incineration
or biodegradation [38,39]. The similar logic is used in the global warming potential (GWP) and the
international standards of the LCA and the CFs (ISO14067) [40]. As a result, the biogenic carbon balance
was agreed to be consequently omitted. However, this widely used assumption about carbon neutrality
is criticized because it ignored a significant time lag between biogenic carbon absorption and emissions
that is caused by temporary carbon storage [4,15,18,39–41]. Regarding time change, wood continues to
store carbon for a certain period, and the timing of wood incineration or biodegradation and growth
in forests varies. Therefore, the carbon balance of both wood and forests in conjunction with the time
changes within the LCA and CF framework must be considered to precisely comprehend how wood
use mitigates climate change.

Therefore, in this study, we target five representative wooden civil engineering structures—log piles,
wooden check dams, woodchip-paved walkways, wooden guardrails, and wooden noise
barriers [42]—and use the LCA method to quantify the climate change mitigation potential of using
wood in such civil engineering applications in Japan through 2050. In the examined cases, the climate
change mitigation potential includes avoided life-cycle GHG emissions through wood use as a result
of carbon storage in wood and forests and material and energy substitution of non-wooden materials
with wood.
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The main findings of this study are summarized as follows. A likely potential domestic log volume
of 3.40 million m3/year, with a maximum of 6.80 million m3/year, is expected to be available for civil
engineering use in Japan in 2050, and it would be possible to produce these volumes while increasing
Japan’s forest resources. A likely nationwide avoided GHG emissions potential of 4.82 million
t-CO2eq/year was estimated for 2050. Moreover, a maximum nationwide avoided GHG emissions
potential of 9.63 million t-CO2eq/year could be obtained in 2050, which is equivalent to 0.7% of Japan’s
current GHG emissions. The breakdown of avoided emissions is 45%, 28%, 19%, and 8% for carbon
storage in wood, carbon storage in forests, material substitution, and energy substitution, respectively,
with the most significant contributions coming from the increased use of log piles. We noted average
avoided GHG emissions per unit wood use volume of 1.04 t-CO2eq/m3 from the carbon storage
effect, 0.26 t-CO2eq/m3 from the material substitution effect, and 0.11 t-CO2eq/m3 from the energy
substitution effect, adding up to a total mitigation potential of 1.41 t-CO2eq/m3.

2. Materials and Methods

2.1. Wood Use Potential in Civil Engineering in Japan

Wood use volumes in the five civil engineering applications in Japan listed in Section 1 were
currently insignificant and unclear [42]. Therefore, we assumed zero volume of wood use in these
five applications until 2017 because of the lack of reliable figures from statistical data. We estimated
two future wood use potentials for the period from 2018 to 2050: likely and maximum potentials.
The details of the respective estimation methods are described below.

For log piles, an annual piling area for soil improvement through protection against soil
liquefaction of approximately 400 ha/year has been identified [42], reflecting the current total area
that is dedicated to this purpose. Currently, cement (approximately four million t of which were
shipped in 2008) and steel (approximately 600 thousand t in 2006) [42] are primarily used as piling
materials. The likely potential for wood-product substitution was calculated by assuming that log pile
use would be expanded to half of the annual piling area (i.e., 200 ha/year) in 2050. The maximum
potential was calculated by assuming that log piles would be used over the total area (i.e., 400 ha/year)
in 2050. We estimated the potential volume (m3/year) of log pile wood use in 2050 by multiplying the
area (ha/year) for using log piles by the usage volume of logs per unit piling area (1.17 m3/m2) [33].
The values from 2018 to 2049 were interpolated using a sigmoid curve (Figure 1).

To project wooden check dam installation, we primarily looked at check dams with heights below
5 m. The annual installation of <5 m-high check dams is approximately 980 dams/year [42] (currently,
concrete is the primary dam material). Our likely potential assumes that wooden check dams will
constitute half (i.e., 490 dams/year) of the annually installed dams in 2050. The maximum potential
assumes that wooden check dams will account for the total projected installation rate of 980 dams/year
in 2050. We estimated the potential volume (m3/year) of wood use by wooden check dams in 2050 by
multiplying the annual installation rate (dam/year) of wooden check dams by the usage volume of
wood product per unit check dam (186.89 m3/dam) [34]. Again, the values from 2018 to 2049 were
interpolated using a sigmoid curve (Figure 1).

To project woodchip-paved walkway installation, we looked at the annual paving area of
roads covered by the Road Act, which is reported to be approximately four thousand ha/year [42]
(currently, asphalt is the primary paving material). The reported annual paving area of forestry roads
is approximately 400 ha/year [42]. We assumed that woodchip paving can be used in walkways
in urban areas to improve drainage, walkability, and aesthetics, and that it can also be used in
roads with reduced traffic volume such as forestry roads. Thus, our likely potential assumes that
woodchip-paved walkways will account for 5% of the annual paving area of road covered by the Road
Act (i.e., 200 ha/year) and half the annual paving area of forestry roads (i.e., 200 ha/year) in 2050.
The maximum potential assumes that woodchip-paved walkways will account for 10% of the Road Act
coverage annual (i.e., 400 ha/year) and 100% of the annual forestry road coverage (i.e., 400 ha/year)
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in the same year. We estimated the potential volume (m3/year) of wood use for woodchip-paved
walkways by multiplying the annual paving area (ha/year) for such walkways by the usage volume of
woodchips per unit paving area (0.06 m3/m2) [35]. Values from 2018 to 2049 were interpolated using
a sigmoid curve (Figure 1).

To project wooden guardrail installation, we examined the total length of installed guardrails
(currently, steel is used as the primary beam material) of approximately 170 thousand km for roads that
are covered by the Road Act and approximately 30 thousand km for other roads (200 thousand km in
total) [42]. As a likely potential, we projected that half of the total guardrail length (i.e., 100 thousand
km) would comprise wooden guardrails in 2050; for the maximum potential, we projected that
wooden guardrails would cover the total length (i.e., 200 thousand km) in that year. We obtained
an annual installed length of 10 thousand km/year in 2050 for the likely potential and 20 thousand
km/year for the maximum potential by dividing the total projected lengths by a lifetime of 10 years for
a guardrail [36]. We estimated the potential volume (m3/year) of wood used for wooden guardrails
in 2050 by multiplying the annual installed length (km/year) of wooden guardrails by the usage
volume of wood product per unit length (0.05 m3/m) [36]. Once again, values from 2018 to 2049 were
interpolated using a sigmoid curve (Figure 1).

To project wooden noise barrier installation, we looked at the total installed length of substitutable
noise barriers, which are currently primarily constructed from concrete [42]. The likely potential for
wooden barrier installation in 2050 was then set at half of the current total length of three thousand km
(i.e., 1.5 thousand km), while the maximum potential was set as the entire installed length. From this,
we obtained annual projected installation lengths of 50 and 100 km/year for the respective cases by
dividing the total length of wooden noise barriers in each case by a lifetime of 30 years per barrier [37].
We estimated the potential volume (m3/year) of wood use for wooden noise barriers in 2050 by
multiplying the annual installed length (km/year) by the usage volume of wood product per unit
length (0.15 m3/m) [37]. As in the other cases, values from 2018 to 2049 were interpolated using
a sigmoid curve (Figure 1).
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Figure 1. Sigmoid curve to interpolate values from 2018 to 2049.

2.2. Carbon Storage Effect

Prior studies focus on carbon storage in wood and forests using the LCA and CFs [39–41].
The dynamic LCA approach, as proposed by Levasseur et al. [39,41], used a dynamic life-cycle
inventory, including the carbon storage in wood and forests through time, whereas that proposed by
Vogtländer et al. [40] did not account for the changes in the carbon storage in wood and forests over
time. Meanwhile, we herein evaluated the potential carbon storage effect using the approach described
in Sections 2.2.1–2.2.3 because we considered the time change of the carbon storage in wood and forests
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through 2050 to be consistent with the framework in the United Nations Framework Convention on
Climate Change (UNFCCC).

2.2.1. Carbon Storage in Wood

As stipulated in Article 3, Paragraphs 3 and 4 of the Kyoto Protocol [43], the UNFCCC adopts
a modified production approach to calculating GHG emissions and sinks that includes the annual
change in the carbon storage volume in the wood produced domestically by a country’s forests
(including wood exported to other countries). Because the wood that is used in civil engineering in
Japan is almost completely produced from domestic forests [29,42], the modified production approach
can be applied for our calculation as it is consistent with the UNFCCC framework. We estimated the
annual change of carbon storage in wood using Equations (1) through (4):

ACSWt,i = CSWt,i − CSWt−1,i (1)

CSWt,i = WSt,i·DW·CC·CD (2)

WSt,i = ∑n{WUt−n,i·LTt,i(n)} (3)

LTt,i(n) = Exp{−r(n − ai)}/[1 + Exp{−r(n − ai)}] (4)

where ACSW (t-CO2eq/year) is the year-to-year change in the amount of carbon stored in wood,
CSW (t-CO2eq) is the carbon storage in wood in a given year, WS (m3) is the volume of wood stock used
in civil engineering, DW (t/m3) is the density (oven dry mass over air dry volume) of wood (0.45 for
coniferous wood) [43], CC (t-C/t) is carbon content of oven-dried wood (0.50) [43], CD (t-CO2/t-C) is
conversion factor from the weight of carbon to the weight of carbon dioxide (=44/12), WU (m3/year)
is the wood product use potential in civil engineering as described in Section 2.1, LT (-) is the lifetime
function, n (years) is the number of years elapsed, r (-) is the rate of decrease (0.2), and a (years)
is the civil engineering lifetime (half-life) (infinite for log piles and wooden check dams; 10 years
for woodchip-paved walkways and wooden guardrails; 30 years for wooden noise barriers) [33–37].
Additionally, t represents the year, and i is an index denoting the respective wood applications (log pile,
wooden check dam, woodchip-paved walkway, wooden guardrail, and wooden noise barrier).

Meanwhile, the lack of decay over long periods of log piles stored underground has been
reported regarding the biodegradation in wood [44,45]. In contrast, the speed of the decay in the other
applications is not scientifically clear [34–37,46]. Therefore, this study did not consider the decrease of
carbon storage in wood as a result of the biodegradation in wood for the operational period.

2.2.2. Carbon Storage in Forests

We estimated the annual change of carbon storage in forests using Equations (5) through (8) based
on the stock-difference method in the 2006 IPCC Guidelines [47]:

ACSFt,i = CSFt,i − CSFt−1,i (5)

CSFt,i = FSt,i·BEFk·(1 + RBk)·DFk·CC·CD (6)

FSt,i = ∑n{FAt−n,i·FSAt,k(n)} (7)

FAt−n,i = WUt−n,i/YL/YS/FSUk(50) (8)

where ACSF (t-CO2eq/year) is the year-to-year change in the amount of carbon stored in forests,
CSF (t-CO2eq) is the carbon storage in forests in a given year, FS (m3) is the volume of forest growing
stock (stem volume), BEF (-) is the above-ground biomass expansion factor (1.400 for Japanese cedar;
1.325 for Japanese larch) [48], RB (-) is the ratio of the below-ground biomass to the above-ground
biomass (0.25 for Japanese cedar; 0.29 for Japanese larch) [48], DF (t/m3) is the density (oven dry
mass over wet volume) of green wood (0.314 for Japanese cedar; 0.404 for Japanese larch) [48], FA (ha)
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is the area of reforestation (=the area of wood harvesting), FSA(n) (m3/ha) is the forest growing
stock per unit area n years after reforestation following harvesting [48], YL (-) is the yield from
a log to the wood product (1.00 for log piles; 0.64 for squared-off timber for wooden check dams;
0.95 for woodchips used in woodchip-paved walkways; 0.80 for wooden beams used in wooden
guardrails; and, 0.32 for wooden panels used in wooden noise barriers) [33–37], YS (-) is the yield
from a tree stem to a log (0.856) [33], and FSA(50) (m3/ha) is the forest growing stock (stem volume)
per unit area of 50 year-old trees at the time of harvesting (468 for Japanese cedar; 222 for Japanese
larch) [48]. k represents an index denoting the tree species (Japanese cedar for log pile, wooden
check dam, and woodchip-paved walkway; Japanese larch for wooden guardrail and wooden noise
barrier) [33–37].

We used a baseline for carbon storage at the time of wood harvesting in forests (that is, the carbon
storage level of the existing forests) [39]. The 50 year-old for tree age at the time of harvesting was the
generally adopted time of harvesting in Japanese forestry [32]. The tree species for reforestation was
assumed to be Japanese cedar or Japanese larch because they are the same species as the trees that
were harvested [33–37]. The forest growing stock per unit area {FSA(n) and FSA(50)} was adapted
from the average value based on the yield tables, which show the relationship between the tree age
and the standing tree stem volume per unit area, for the whole of Japan [48].

2.2.3. Carbon Storage Effect of Wood and Forests

The carbon storage effect was calculated as the sum of the annual change of carbon storage in
wood, as outlined in Section 2.2.1, and the annual change of carbon storage in forests, as outlined in
Section 2.2.2. An increase in the annual change of carbon storage was evaluated as a positive effect,
whereas a decrease in the annual change was a negative effect. Figure 2 shows the case of wood used
in wooden guardrails installed in 2021 for the maximum potential as an example of carbon storage in
wood and forests.
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Figure 2. Carbon storage in wood and forests in the case of wood used in wooden guardrails installed
in 2021 for the maximum potential.

2.3. Material Substitution Effect

The potential material substitution effect was assessed in terms of the life-cycle GHG emissions
avoided by replacing non-wooden materials with wood. The most commonly used non-wood
materials in civil engineering were targeted for substitution with wood, including: cement by log piles,
concrete by wooden check dams, asphalt by woodchip-paved walkways, steel by wooden guardrails,
and concrete by wooden noise barriers. As we included the processes of raw material procurement
and product production through the construction process within the system boundary, the analysis
could be considered cradle-to-gate; the process of maintenance and management was excluded from
our analysis, because log piles, woodchip-paved walkways, and wooden noise barriers require no
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maintenance [33,35,37]. In addition, GHG emissions from the maintenance and management of
wooden check dams and wooden guardrails are insignificant (approximately 5% of the total life-cycle
emissions) [34,36]. The processes of disposal and recycling are examined in Section 2.4. For each
process, we targeted emissions of CO2, CH4, and N2O originating from the consumption of fossil fuels.
The emissions of each GHG were calculated as a CO2 equivalent (kg-CO2eq) using the respective
100-year time-horizon GWP (CO2: 1; CH4: 34; N2O: 298) [49]. We evaluated the GHG emissions
(t-CO2eq/year) that were avoided as a result of material substitution by multiplying the avoided GHG
emissions per unit wood use volume (kg-CO2eq/m3) for each application shown in Table 1 by the
potential wood use volume (m3/year) for each application examined in Section 2.1, above. The details
of the evaluation methods applied are described the following sections.

Table 1. Avoided life-cycle greenhouse gases (GHG) emission factors for material substitution
(kg-CO2eq/m3-wood product).

Civil Engineering Application Avoided Life-Cycle GHG Emissions

Log pile (cement substitution ) 343.12
Wooden check dam (concrete substitution) 131.75

Woodchip-paved walkway (asphalt substitution) −171.73
Wooden guardrail (steel substitution) 228.36

Wooden noise barrier (concrete substitution) 187.29

Note: The values are rounded off to the second decimal place.

2.3.1. Avoided Life-Cycle GHG Emissions for Log Piles

Our previous study [33] assessed and compared the life-cycle GHG emissions for cement, sand,
and log piles in Japan stored underground for the purpose of soil improvement through protection
against soil liquefaction. The results on GHG emissions from both log and cement piles per unit piling
area (kg-CO2eq/m2) were used in this study and are shown in Table 2. A consistent functional unit
based on equal soil improvement conditions was used for both the log and cement pile methods.
We found that piles that are driven and stored underground are generally left in the ground rather
than disposed of, which is in line with previous experience. Therefore, for lifetime calculations, it was
assumed that the piles would remain permanently in the ground. Our modeling of the raw material
procurement and product production processes considered the stages of silviculture through log
production for log piles and the stages of resource extraction through cement production for cement
piles. Also included in the processes for both log and cement piles were the stages of resource extraction
through the production of light oil (fuels used to operate machinery at the construction site). For the
construction process, we assumed light oil consumption (combustion) from machinery operation.
Our results showed that the GHG emissions by log piles are approximately 14% of those by cement
piles; thus, reductions in GHG emissions can be obtained by replacing cement piles with log piles.
We determined the avoided GHG emission factor (343.12 kg-CO2eq/m3 in Table 1) by dividing the
avoided GHG emissions per unit piling area (401.97 kg-CO2eq/m2 in Table 2) by the usage volume of
logs per unit piling area (1.17 m3/m2). Note that the values are rounded off to the second decimal place.

Table 2. Life-cycle GHG emissions of log and cement piles (kg-CO2eq/m2).

Life-Cycle Process/Stage Log Pile Cement Pile

Raw material
procurement and
product production

Silviculture—log production 32.45 -
Resource extraction—cement production - 353.38
Resource extraction—light oil production 3.66 12.23

Construction Light oil consumption 30.97 103.44

Total 67.09 469.05

Note: The values are rounded off to the second decimal place.
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2.3.2. Avoided Life-Cycle GHG Emissions for Wooden Check Dams

In a previous work [34], we assessed and compared the life-cycle GHG emissions of two types of
wooden check dams with those of concrete and steel check dams in Japan. In this study, we compared
the GHG emissions results for one of the two types of wooden check dams (the all-wood type,
which uses more wood and produces lower life-cycle GHG emissions) with those of concrete check
dams, which is the most common structural type of check dam. The emissions per unit check dam
(kg-CO2eq/dam) are shown in Table 3. A consistent functional unit based on the volume of sediment
runoff at a given site was used for wooden and concrete check dams. The lifetime of a check dam
was assumed to be infinite because they are commonly left in place in the forest rather than disposed
of. The raw material procurement and product production process was assumed to include the
stages of silviculture through wood product (squared-off timber) production for wooden check
dams and the stages of resource extraction through concrete production for concrete check dams.
The processes for both wooden and concrete check dams also include the stages of resource extraction
through the production of light oil and gasoline (fuels used to operate machinery at the construction
site). The construction process was assumed to involve the consumption of light oil and gasoline.
GHG emissions by wooden check dams were found to be approximately 45% of those of concrete check
dam, resulting in a reduction of GHG emissions by substituting the former for the latter. We obtained
the avoided GHG emission factor (131.75 kg-CO2eq/m3 in Table 1) by dividing the avoided GHG
emissions per unit dam (24,622.70 kg-CO2eq/dam in Table 3) by the usage volume of wood product
per unit dam (186.89 m3/dam).

Table 3. Life-cycle GHG emissions of wooden check and concrete check dams (kg-CO2eq/dam).

Life-Cycle Process/Stage Wooden Check Dam Concrete Check Dam

Raw material
procurement and
product production

Silviculture—squared-off timber production 10,108.80 -
Resource extraction—concrete production - 42,202.40
Resource extraction—artificial lawn production 1368.00 842.10
Resource extraction—lag screw production 2373.60 -
Resource extraction—steel bar production 1084.10 -
Resource extraction—vinyl chloride pipe production 780.70 551.10
Resource extraction—light oil production 285.30 79.60
Resource extraction—gasoline production 0.60 0.40

Construction Light oil and gasoline consumption 4029.90 978.10

Total 20,031.00 44,653.70

Note: The values are rounded off to the second decimal place.

2.3.3. Avoided Life-Cycle GHG Emissions for Woodchip-Paved Walkways

In a prior study [35], we assessed and compared the life-cycle GHG emissions of woodchip-paved
with asphalt-paved and artificial turf walkways in Japan. In this study, we used the GHG emissions
results for woodchip-paved and asphalt-paved walkways, as asphalt is most commonly used for paving
roads. The GHG emissions per unit paving area (kg-CO2eq/m2) are shown in Table 4. A consistent
functional unit based on a typical paving thickness of 4 cm was used for woodchip- and asphalt-paved
walkways. We assumed a 10-year walkway lifetime based on the legal service life (the statutory number
of years for depreciation of assets) [50]. For woodchip-paved walkways, the raw material procurement
and product production processes were assumed to include the stages of silviculture, log production,
log transportation from the log production site to the woodchip production site, woodchip production,
and woodchip transportation from the woodchip production site to the walkway construction site.
These processes also include the stages of resource extraction through the production of the adhesive
that is mixed with the woodchips. The construction process was assumed to comprise the stages
of resource extraction to the production and consumption of the light oil and electricity used to
operate machinery. By contrast, there was no breakdown by process for asphalt-paved walkways [35].
We found that GHG emissions by woodchip-paved walkways are approximately 159% of those by
asphalt-paved walkways because the emissions from the adhesive production step in the former
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are significant. This gives a negative value to the avoided GHG emissions obtained by substituting
woodchip-paved roads for asphalt-paved roads. We obtained the avoided GHG emission factor
(−171.73 kg-CO2eq/m3 in Table 1) by dividing the avoided GHG emissions per unit paving area
(−9.68 kg-CO2eq/m2 in Table 4) by the usage volume of woodchips per unit paving area (0.06 m3/m2).
Note that the values are rounded off to the second decimal place.

Table 4. Life-cycle GHG emissions of woodchip-paved and asphalt-paved walkways (kg-CO2eq/m2).

Life-Cycle Process/Stage Woodchip-Paved Asphalt-Paved

Raw material
procurement and
product production

Silviculture—log production 0.08

16.48
Log transportation 0.00
Woodchip production 0.28
Woodchip transportation 0.08
Resource extraction—adhesive production 24.73

Construction Light oil and electricity
production/consumption 0.99

Total 26.16 16.48

Note: The values are rounded off to the second decimal place.

2.3.4. Avoided Life-Cycle GHG Emissions for Wooden Guardrails

In a previous study [36], we assessed and compared the life-cycle GHG emissions of two types
of wooden guardrails with those of steel guardrails and steel guard pipes in Japan. In this study,
we used that study’s GHG emissions results for one of the two types of wooden guardrails (wooden
type no. 3, which uses more wood and produces lower life-cycle GHG emissions) and for steel
guardrails, which are the most common structural type of guardrail. The respective emissions per unit
length (kg-CO2eq/m) are shown in Table 5. The previous study [36] examined the use of both surface
coating with paint and pressure injection with a preservative as wooden beam preservation methods.
The lifetime of guardrails treated by the former method was assumed to be 10 years, while that
for the pressure injection-treated rails was assumed to be 20 years. We assumed the use of surface
coating methods that generate reduced GHG emissions, even if they reduce the length of service life.
A consistent functional unit assuming an equivalent class for roadside earth embedded guardrails
was used for both wooden and steel guardrails. The service life was assumed to be 10 years based
on the legal service life [50]. The raw material procurement and product production processes for
wooden guardrails were assumed to include the stages of silviculture through wood product (wooden
beam) production and the stages of resource extraction through paint production for wooden beam
coating. The steel guardrail processes were assumed to further include the stages of resource extraction
through steel beam production. The construction processes were assumed to include the stages of
resource extraction through the production and consumption of the light oil used to operate machinery.
We found that the GHG emissions from wooden guardrails are approximately 66% of those from steel
guardrails, indicating that reductions in GHG emissions are obtained by replacing steel guardrails
with wooden guardrails. We calculated the avoided GHG emission factor (228.36 kg-CO2eq/m3 in
Table 1) by dividing the avoided GHG emissions per unit length (12.02 kg-CO2eq/m in Table 5) by the
usage volume of wood product per unit length (0.05 m3/m). Note that the values are rounded off to
the second decimal place.
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Table 5. Life-cycle GHG emissions of wooden and steel guardrails (kg-CO2eq/m).

Life-Cycle Process/Stage Wooden Guardrail Steel Guardrail

Raw material
procurement and
product production

Silviculture—wooden beam production 1.49 -
Resource extraction—steel beam production - 20.96
Resource extraction—support post production 14.00 12.72
Resource extraction—connector production 4.83 1.36
Resource extraction—paint production 0.47 -

Construction Light oil production/consumption 2.82 0.59

Total 23.61 35.64

Note: The values are rounded off to the second decimal place.

2.3.5. Avoided Life-Cycle GHG Emissions for Wooden Noise Barriers

In a previous work [37], we assessed and compared the life-cycle GHG emissions of two types
of wooden noise barriers with those of concrete noise barriers in Japan. In this study, we used the
results of GHG emissions for one of the two types of wooden noise barriers (Japanese larch barriers,
which produce lower life-cycle GHG emissions) and for concrete noise barriers, which are the most
common type of noise barrier. The emissions per unit length (kg-CO2eq/m) are shown in Table 6.
A consistent functional unit that is based on equal levels of sound transmission loss and wind load was
used for both wooden and concrete noise barriers. We assumed a 30-year noise barrier lifetime based
on actual data [37]. The raw material procurement and product production processes for wooden noise
barriers were assumed to include the stages of silviculture through wood product (wooden panel)
production and wooden panel transportation from the panel production site to the construction site.
The concrete noise barrier process was assumed to include the stages of resource extraction through
concrete panel production. The construction processes were assumed to include the stage of resource
extraction and to involve light oil production and consumption through machinery use. We found that
the GHG emissions by wooden noise barriers are approximately 94% of those by concrete noise barriers,
indicating a slight reduction in life-cycle GHG emissions from replacing concrete noise barriers with
wooden noise barriers. We calculated the avoided GHG emission factor (187.29 kg-CO2eq/m3 in
Table 1) by dividing the avoided GHG emissions per unit length (27.54 kg-CO2eq/m in Table 6) by the
usage volume of wood product per unit length (0.15 m3/m). The values are rounded off to the second
decimal place.

Table 6. Life-cycle GHG emissions of wooden and concrete noise barriers (kg-CO2eq/m).

Life-Cycle Process/Stage Wooden Noise Barrier Concrete Noise Barrier

Raw material
procurement and
product production

Silviculture—wooden panel production 42.25 -
Wooden panel transportation 1.78 -
Resource extraction—concrete panel production 75.93 147.51
Resource extraction—support post production 94.60 94.60
Resource extraction—foundation production 244.72 244.72

Construction Light oil production/consumption 3.73 3.73

Total 463.01 490.55

Note: The values are rounded off to the second decimal place.

2.4. Energy Substitution Effect

The energy substitution effect potential of substituting processing residue and waste wood for
fossil fuels in energy generation was assessed in terms of the relevant avoided GHG emissions. Most of
the waste wood from construction is currently being used for thermal energy in Japan [51]. Generally
in Japan, wood that is used for thermal energy is converted into chips and used as fuels in a chip boiler
in place of a heavy oil boiler [52]. Therefore, assuming that processing residue and waste wood were
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converted into chips, we estimated the reduction of GHG emissions from substituting for heavy oil
with chips for a boiler using Equations (9) through (13):

GERt,i = GEHt,i − GEWt,i (9)

GEHt,i = (PRt,i + WWt,i)·DW·CW·UW·EH/CH/UH (10)

GEWt,i = (PRt,i + WWt,i)·LU·EL (11)

PRt,i = WUt,i/YLi − WUt,i (12)

WWt,i = WSt−1,i − WSt,i + WUt,i (13)

where GER (t-CO2eq/year) is the annual reduction in GHG emissions as a result of energy substitution,
GEH (t-CO2eq/year) is the emissions of GHGs from production and consumption of heavy oil,
GEW (t-CO2eq/year) is the emissions of GHGs from the production of woodchips for energy use,
PR (m3/year) is the volume of processing residue that is generated during wood product production
from logs, WW (m3/year) is the volume of waste wood generated from civil engineering structures
post-use, CW (GJ/t) is the net calorific value of oven dried-wood (15.34) [53], UW (-) is the average
energy usage efficiency for chip boilers (0.775) [52], EH (t-CO2eq/kl) is the emissions of GHGs from
production and consumption of heavy oil (including the processes of resource extraction through heavy
oil production and combustion) per unit heavy oil volume (3.12) [54], CH (GJ/kl) is the net calorific
value of heavy oil (36.73) [53], UH (-) is the average energy efficiency for heavy oil boilers (0.885) [52],
LU (kl/m3) is the usage volume of light oil in woodchip production from processing residue and
waste wood (0.0015, as obtained from an interview survey of forestry public corporations that own
chip plants), and EL (t-CO2eq/kl) is the emissions of GHGs from the production and consumption of
light oil (including the processes of resource extraction through light oil production and combustion)
per unit light oil volume (2.94) [54].

2.5. Climate Change Mitigation Potential

The climate change mitigation potential was calculated as the sum of the annual change in
carbon storage volume, as outlined in Section 2.2, the avoided life-cycle GHG emissions enabled by
the material substitution, as outlined in Section 2.3, and the avoided GHG emissions from energy
substitution, as outlined in Section 2.4.

3. Results and Discussion

3.1. Wood Use Potential in Civil Engineering in Japan

The wood use potential in civil engineering in Japan through 2050 is shown in Figure 3. Figure 3a,b
represent the wood product volumes for logs for log piles, squared-off timber for wooden check dams,
woodchips for woodchip-paved walkways, wooden beams for wooden guardrails, and wooden panels
for wooden noise barriers. Figure 3c,d indicate converted log volumes obtained as the volumes of
each wood product yielded by a given volume of logs. The likely and maximum potential product
volumes of wood use in 2050 are estimated to be 3.19 and 6.39 million m3/year, respectively. For the
likely and maximum potential scenarios, the estimated log volumes in 2050 are 3.40 and 6.80 million
m3/year, respectively. These potential volumes correspond, respectively, to 16 and 32% of Japan’s
total log production volume (21.58 million m3/year) in 2015 [55]. The 2050 breakdown by application
for both the likely and maximum potentials is 69% for log piles, 4% for wooden check dams, 7% for
woodchip-paved walkways, 19% for wooden guardrails, and 1% for wooden noise barriers, with log
piles accounting for most of the distribution. Although an economics-based feasibility analysis of this
wood use potential is required going forward, these results suggest a significant potential availability
for civil engineering uses.
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The total stock of forests in Japan has continued to increase since the 1960s [29]. The annual growth
(stock increase) of Japan’s total forests in 2015 is reported to be approximately 70 million m3/year,
with growth after 2035 being projected at 54 million m3/year [56]. Japan’s total log production in
2015 [55] was equivalent to only 31% of forest growth in the same year and 40% of projected future
growth. Therefore, there is room for the expansion of domestic wood use, not only in civil engineering,
but also in other fields, while increasing Japan’s forest stock.
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Figure 3. Wood use potential for civil engineering in Japan until 2050: (a) likely potential with wood
product volume; (b) maximum potential with wood product volume; (c) likely potential with log
volume; and, (d) maximum potential with log volume.

3.2. Carbon Storage Effect

The potential carbon storage effect (annual change in carbon storage) in civil engineering-related
wood use in Japan through 2050 is shown in Figure 4a,b. We project total 2030 carbon storage effects
arising from the wood substitution applications discussed in this study of 1.09 and 2.17 million
t-CO2eq/year under the likely and maximum potential scenarios, respectively. In 2050, these effects
are projected to reach 2.18 and 4.36 million t-CO2eq/year, respectively. Of all applications, the effects
of using log piles predominate, accounting for 75–89% of the total effect for the period between 2018
and 2050 under both potential pathways. The effects of wooden guardrails are the second greatest,
accounting for 5–15% of the total effects for the period, while the effects of the other applications
are each less than 10% of the total. Both log piles and wooden check dams are assumed to have
indefinite lifetimes. The confirmed lack of decay over long periods of time of log piles stored
underground [44,45] makes log piles one of the more promising repositories for long-term carbon
storage. By contrast, wooden check dams might experience decreasing carbon storage as a result of
biodegradation, depending on environmental conditions, although it is not scientifically clarified [46].
In this case, our projections of their carbon storage effect would be overestimated. However, the overall
potential effects of wooden check dam storage are an insignificant proportion (less than 3%) of the
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total carbon storage effects under both the likely and maximum potential pathways. Thus, even this
uncertainty would not change our overall results significantly.

Figure 4c,d present the potential carbon storage effect (annual change in carbon storage) in forest
harvested wood that will be used for civil engineering in Japan until 2050. The annual decrease of
carbon storage will be observed until 2033 for both the likely and maximum potential scenarios because
the amount of carbon storage that decreased by harvesting wood exceeded the amount of carbon
storage increased by reforestation after harvesting. However, the annual increase of carbon storage
could be obtained after 2034 because of the greater carbon storage that is caused by growing trees after
reforestation. The carbon storage effects in forests in 2050 are estimated to be 1.35 and 2.70 million
t-CO2eq/year under the likely and maximum potential pathways, respectively. The breakdown by
application is 60% for log piles, 29% for wooden guardrails, and 11% for the other applications in 2050
under both potential pathways. Note that reforestation after harvesting is essential in achieving carbon
storage effects in forests until 2050.Sustainability 2018, 10, x FOR PEER REVIEW  13 of 18 
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Figure 4. Annual change of carbon storage in wood used in civil engineering and forest harvested
wood in Japan until 2050: (a) likely potential for wood; (b) maximum potential for wood; (c) likely
potential for forests; and, (d) maximum potential for forests.

3.3. Material Substitution Effect

The potential material substitution effect (avoided GHG emissions) through 2050 of using wood
in civil engineering in Japan is shown in Figure 5. The avoided life-cycle GHG emissions in 2030
obtained by substituting wooden for non-wooden materials are projected to be 0.40 and 0.80 million
t-CO2eq/year under the likely and maximum potential pathways, respectively. In 2050, the projected
life-cycle emission reductions are 0.90 and 1.80 million t-CO2eq/year under the respective scenarios.
Again, the contribution of log piles is the greatest, reaching 86% of total avoided emissions in 2030 and
2050 under both potential pathways. The effect of wooden guardrails is second highest, accounting
for 13% of total reductions. Conversely, replacing asphalt-paved walkways with woodchip-paved
walkways results in net negative avoided (increased) emissions (see Tables 1 and 4). In this study,
we targeted the types of wooden structures discussed in previous works [33–37] that produce the lowest
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life-cycle GHG emissions (i.e., those with the highest avoided GHG emissions). Thus, the consideration
of types of structures with higher net emissions would diminish the results produced in this study.
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Figure 5. Avoided GHG emissions from material substitution by using wood in civil engineering in
Japan until 2050: (a) likely potential; and, (b) maximum potential.

3.4. Energy Substitution Effect

The potential energy substitution effect (avoided GHG emissions), as obtained through 2050 from
the use of wood in civil engineering in Japan is shown in Figure 6. The projected life-cycle GHG
emissions avoided by replacing heavy oil with processing residue and waste wood in energy use
are 0.10 and 0.20 million t-CO2eq/year in 2030 under the likely and maximum potential pathways,
respectively. In 2050, the avoided emissions are 0.39 and 0.78 million t-CO2eq/year, respectively.
In a breakdown by application, the largest avoided emissions are obtained through wooden guardrail
installation, which accounts for 65–68% of the total reductions for the period from 2018 to 2050
under both of the potential pathways. The second-highest level of reductions is obtained from the
construction of woodchip-paved walkways, which accounts for 13–23% of total reductions for the
period until 2050. This level of avoided emissions by energy substitution—which under the maximum
potential pathway equals 0.18 million t-CO2eq/year in 2050—exceeds the increased emissions resulting
from material substitution (0.08 million t-CO2eq/year in 2050 under the maximum potential pathway,
as shown in Figure 5). Thus, net positive avoided GHG emissions are still obtained by substituting
woodchip paving for asphalt paving. In the case of log piles, processing residue for energy use does
not generate reductions because the logs are still used in the same manner that they would be used
without processing; this is true for waste wood as well as a result of the assumed indefinite lifetime for
logs stored underground. Consequently, there is no energy substitution effect for log piles.
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Figure 6. Avoided GHG emissions from energy substitution by using wood in civil engineering in
Japan until 2050: (a) likely potential; and, (b) maximum potential.
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3.5. Climate Change Mitigation Potential

The climate change mitigation potential (avoided GHG emissions) obtained from the projected use
of wood in civil engineering in Japan through 2050 is shown in Figure 7. Total avoided GHG emissions
in 2050 are estimated to be 4.82 and 9.63 million t-CO2eq/year under the likely and maximum potential
pathways, respectively. The total projected avoided GHG emissions in 2050 under the likely and
maximum potential pathways are 0.4 and 0.7%, respectively, of Japan’s total GHG emissions in 2015 [57].
The effect in 2050 for both of the pathways is broken down as follows: carbon storage accounts for 73%
(wood for 45% and forests for 28%), material substitution accounts for 19%, and energy substitution
accounts for 8%. These figures emphasize the significance of the log pile carbon storage effect.

From our results, we calculated an average avoided GHG emission per unit volume of wood
product used in civil engineering: 1.04 t-CO2eq/m3 from the carbon storage effect, 0.26 t-CO2eq/m3

from the material substitution effect, and 0.11 t-CO2eq/m3 from the energy substitution effect, adding
up to a total mitigation potential of 1.41 t-CO2eq/m3. We compared this value to those found in
previous studies [15–20]. In prior research focusing on civil engineering, Petersen and Solberg [15]
reported that using glulam instead of steel for beams in an airport in Norway could result in emissions
reductions of 0.24–0.97 t-CO2eq/m3 of wood used. Hammervold et al. [16] compared wooden, steel,
and concrete bridges in Norway and reported that the substitution of steel bridges with wooden
bridges resulted in emissions reductions of approximately 0.47 t-CO2eq/m3 of wood (glue-laminated
wood and sawn timber), while substitution for concrete bridges produced reductions of approximately
0.10 t-CO2eq/m3. Lu and Hanandeh [17] compared the use of wood (veneer-based composite), steel,
and concrete as materials in utility power poles in Australia and found that the substitution of steel by
wood resulted in emissions reductions ranging from 0.08–0.10 t-CO2eq/m3 of wood, while substitution
for concrete produced emissions reductions of 0.18–0.20 t-CO2eq/m3. Therefore, the average avoided
GHG emissions of 1.41 t-CO2eq/m3 in our results were higher than those in other studies targeting
civil engineering [15–17]. Furthermore, previous works on other applications, in addition to civil
engineering include Petersen and Solberg [18], who reported that substitution of steel with wood
in Norway and Sweden produced emissions reductions in the range of 0.036–0.53 t-CO2eq/m3 of
wood used, while substitution for concrete produced emissions reductions of 0.093–1.062 t-CO2eq/m3.
Werner et al. [19] reported an emission reduction of 1.3 t-CO2eq/m3 of wood as a result of substitution
for non-wooden materials in Switzerland. Sathre and O’Conner [20] integrated data from 21 different
international studies and found an average emission reduction of 1.9 t-CO2eq/m3 from the use of wood
as a replacement for non-wooden materials. Thus, our result of 1.41 t-CO2eq/m3 was in the middle
range among other studies considering various wood applications [18–20]. This suggests that, although
using wood instead of non-wooden materials in civil engineering in Japan can produce higher avoided
emission factors than in other countries, the improvement in factors involving civil engineering will
not particularly translate to all wood applications. However, the assumptions pertaining to the system
boundaries, targeted wood and substituted non-wooden materials, and LCI data used in this study
differ from those of the previous studies; hence, more detailed comparisons between them are difficult.
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Figure 7. Climate change mitigation potential by using wood in civil engineering in Japan through
2050: (a) likely potential; and, (b) maximum potential.

4. Conclusions

This study used LCA-based analysis to clarify and quantify the climate change mitigation potential
in terms of carbon storage, material substitution, and energy substitution, as obtainable from the use
of wood for five representative civil engineering structures in Japan. The findings of the study are
summarized as follows:

1. The maximum potential domestic wood use in civil engineering applications in 2050 equates to
a projected log volume of 6.80 million m3/year. It would be possible to increase domestic wood
use in civil engineering while increasing Japan’s forest resources in the future.

2. The maximum projected nationwide potential for carbon storage in wood used in civil engineering
represents an increase in carbon storage of 4.36 million t-CO2eq/year in 2050. As the most
significant contribution comes from the increased use of log piles. When assuming reforestation
after harvesting, the maximum nationwide potential for carbon storage in forest harvested wood
used in civil engineering would be an increase of 2.70 million t-CO2eq/year in 2050.

3. The maximum projected nationwide material substitution effect would equate to an avoided
1.80 million t-CO2eq/year of life-cycle GHG emissions in 2050. We emphasize the significance
of avoided emissions that are attributable to the substitution of log piles for cement piles and
wooden guardrails for steel guardrails.

4. The maximum projected nationwide energy substitution effect would equate to an avoided
0.78 million t-CO2eq/year of life-cycle GHG emissions in 2050. Using processing residue and
waste wood generated from both wooden guardrails and woodchip-paved walkways would
make significant inroads to avoiding emissions.

5. Altogether, the projected carbon storage, material substitution, and energy substitution effects add
up to a maximum nationwide climate change mitigation potential of 9.63 million t-CO2eq/year
in 2050, which is equivalent to 0.7% of Japan’s total GHG emissions in 2015. This amounts
to an average avoided GHG emission per unit wood use volume of 1.41 t-CO2eq/m3 over all
three effects.

A primary avenue of future research will be the examination of climate change mitigation potential
from wood use in other civil engineering applications, such as wooden bridges and marine reefs.
In addition, LCA should be conducted to consider environmental impacts other than climate change
to more fully clarify the environmental impacts and benefits of wood use and investigate effective
strategies for sustainable wood use.
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