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Abstract: The present paper investigates the impact of pollution information transparency index
(PITI) on eco-efficiency using a novel panel dataset covering 109 key environmental protection
prefecture-level cities in China over the period 2008–2015. We apply an extended data envelopment
analysis (DEA) model, simultaneously incorporating metafrontier, undesirable outputs and super
efficiency into slack-based measure (Meta-US-SBM) to estimate eco-efficiency. Then, the bootstrap
Granger causality approach is utilized to test the unidirectional Granger causal relationship running
from PITI to eco-efficiency. Results of DEA model show that there exist significant spatiotemporal
disparities of eco-efficiency, on average, the eco-efficiency in eastern region is relative higher than
those of central/western region. Estimates of ordinary least square (OLS) method, quantile regression,
and spatial Durbin model document that the evidence of an inverted-U-shaped relation between
PITI and eco-efficiency is supported, and the turning points vary from 0.3370 to 0.4540 with different
model specifications. Finally, supplementary analysis of panel threshold model also supports the
robust findings. Policy implications are presented based on the empirical results.

Keywords: environmental information disclosure; eco-efficiency; Meta-US-SBM; quantile regression;
spatial Durbin model

1. Introduction

In this study, we investigate how environmental information disclosure of Chinese prefecture-level
cities relates to eco-efficiency [1]. More specifically, we examine the association between the pollution
information transparency index (henceforth PITI, maximum value is 100) and eco-efficiency measured
by an extended DEA model [2], simultaneously incorporating the presence of metafrontier technique,
undesirable outputs, and super efficiency into slacks-based measure (henceforth Meta-US-SBM). (The
World Business Council for Sustainable Development (WBCSD) defines eco-efficiency as the reducing
environmental impact and resource intensity in the process of satisfying human needs and bringing
quality of life [3]. Up to date, eco-efficiency has been widely utilized to measure sustainability for
varied levels in existing literature [4–11]) We focus on the impact PITI exerts on eco-efficiency from
both non-spatial and spatial model specifications.

Extensive studies have been devoted to studying environmental disclosure, which will impose
either positive effect on sustainability performance [12,13], or negative effect on sustainability
performance [14,15]. From the micro-level (e.g., enterprises, companies, and institutions), however, a
multitude of studies on analyzing the environmental information disclosure has been conducted in the
academic community [16–19]. If government information were more transparent, it would be more
beneficial to the improvement of eco-efficiency [20]. Prior research has not yet established a consistent
understanding regarding the relationship between environmental disclosure and eco-efficiency; rare
studies have shown whether there exists unidirectional or bidirectional relation between environmental
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information disclosure and eco-efficiency [21]. On the one hand, following the voluntary disclosure
theory [22], a region/city with incentive to disclose information is conducive to reduce pollutant
emissions, thus leading to promoting eco-efficiency. On the other hand, a region/city without incentive
to disclose information is reluctant to reduce pollutant emissions, consequently resulting in lower
eco-efficiency, as predicted by legitimacy theory [23,24]. However, the two theories are not necessarily
contradictory but are instead two sides of the same coin [25]. Thus, we suppose that there may exist a
tradeoff between PITI and eco-efficiency of prefecture-level cities in China. Specifically, environmental
information disclosure has been advocated by the government; managers/policymakers believe that
disclosing more environmental information can be fully detected by government, enabling them to
access more such resource elements as technology and labor force, leading to improve eco-efficiency
overall. With this scenario, the PITI is positively associated with eco-efficiency before the PITI reaches
the threshold value. Otherwise, the PITI is negatively associated with eco-efficiency after the threshold
value, which resulted from regulators having limited supervision of the vast amount of information
with the increase of environmental information disclosure, along with the increase potential costs of
litigation risk caused by environmental information disclosure.

The main contributions of this article are as follows. First, we use Meta-US-SBM model to evaluate
eco-efficiency of prefecture-level cities in China. The strengths of Meta-US-SBM are its comparable
treatment of efficiency of the same DMU in different years due to technological progress to consider
the metafrontier [26]; its identifiable treatment of DMUs located on efficient frontier to consider super
efficiency [27]; and its similar to the real production process when considering undesirable outputs.
Second, we explore the impacts of PITI on eco-efficiency based on non-spatial and spatial econometric
methods. Policy implications are provided based on the empirical results.

The remainder of this paper proceeds as follows. Section 2 outlines methodology and empirical
strategy. Data sources and variable definitions are described in Section 3. Section 4 reports empirical
results. Finally, Section 5 summarizes and concludes.

2. Methodology and Empirical Strategy

2.1. Measuring Environmental Information Disclosure in China

The major breakthroughs in Chinese environmental information disclosure occurred after 2007,
but the first formal government initiatives on environmental information disclosure date to 1999–2000.
Then, environmental information disclosure gradually expanded. The concepts of disclosure and
public participation are included in the 2003 Environmental Impact Assessment (EIA) Law and the
2004 Administrative Licensing Law (ALL). Environmental regulators were the first to promulgate
implementing rules pursuant to the State Council Regulation on Open Government Information, a
signal of support for disclosure. In recent years, China has adopted several measures for information
disclosure; more details can be found in the latest work of [28], which examines the emergence of
environmental information disclosure in China. Since 2008, the Institute of Public & Environmental
Affairs and Natural Resource Defense Council evaluate PITI for the periods of 2008–2016, providing
the details of evaluation method and criteria, and alleviating the difficulties of measuring information
disclosure in China. Figure 1 illustrates the total amount of pollution monitoring records during
2006–2016, indicating that the geometrical growth rate of pollution monitoring records is approximately
43%. Theoretically, for a region/city, more environmental information disclosure leads to desire to
reduce pollutant emissions, thus improving eco-efficiency. Empirically, however, it is worth studying
whether there exists a nonlinear relation between PITI and eco-efficiency; as a result, the impact PITI
exerts on eco-efficiency may show a threshold effect or interval effect. In econometric models, the key
explanation variable (PITI) is directly collected from Institute of Public & Environmental Affairs (IPE)
and Natural Resource Defense Council (NRDC) and converted to the proportion form (maximum
value is 1).
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Figure 1. Total amount of pollution monitoring records, 2006–2016. Sources: Institute of Public &
Environmental Affairs and Natural Resource Defense Council (2016–2017).

2.2. Measuring Eco-Efficiency with Meta-US-SBM Model

If there are N DMUs (prefecture-level cities in this study), H technology-heterogeneous groups
(in China, we considered three regions: eastern, central and western) and Nh DMUs in Group h, we
have ∑H

h=1 Nh = N. Each DMU uses inputs x = [x1, x2, . . . , xM] ∈ RM
+ to produce desirable (good)

outputs y = [y1, y2, . . . , yR] ∈ RR
+ and undesirable (bad) outputs b =

[
b1, b2, . . . , bJ

]
∈ RJ

+. The
frontier production technology of Group h can be expressed as follows:
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where λh
n is a weighting vector of nth DMU in Group h with reference to the corresponding group

frontier. By enveloping all group frontier technologies [26], we can also express the metafrontier
production technology as follows:
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where Pmeta =
{

P1 ∪ P2 ∪ . . . ∪ PH} and ξh
n is a weighting vector of the nth DMU in Group h with

reference to the metafrontier. With group frontier and metafrontier defined, we can now define
non-oriented super efficiency SBMs for both frontiers. Assuming constant returns to scale (CRS), the
optimal objective value for the oth DMU in Group k (o = 1, 2, · · · , Nk; k = 1, 2, · · · , H) with reference
to the group frontier is estimated as:
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λk
n, sx

mko, sy
rko, sb

jko ≥ 0; m = 1, 2, . . . , M; r = 1, 2, . . . , R; j = 1, 2, . . . , J (3)

and the same for the oth DMU in Group k (o = 1, 2, · · · , Nk; k = 1, 2, · · · , H) with reference to the
metafrontier is estimated as:

ρmeta∗
ko = min

 1+ 1
M ∑M

m=1
sx
mko

xmko

1− 1
R+J

(
∑R

r=1
sy
rko

yrko
+∑J

j=1

sb
jko

bjko

)


s.t. xmko −
H
∑

h=1

Nk
∑

n = 1, 6= o
i f h = k

ξh
nxmhn + sx

mko ≥ 0;
H
∑

h=1

Nk
∑

n = 1, 6= o
i f h = k

ξh
nyrhn − yrko + sy

rko ≥ 0;

bjko −
H
∑

h=1

Nk
∑

n = 1, 6= o
i f h = k

ξh
nbjhn + sb

jko ≥ 0; 1− 1
R+J

(
∑R

r=1
sy

rko
yrko

+ ∑J
j=1

sb
jko

bjko

)
≥ ε;

ξh
n, sx

mko, sy
rko, sb

jko ≥ 0; m = 1, 2, . . . , M; r = 1, 2, . . . , R; j = 1, 2, . . . , J (4)

where λ in Model (3) and ξ in Model (4) are nonnegative weights, and sx
mko, sy

rko, and sb
jko represent,

respectively, the input, desirable output, and undesirable output slacks. The difference between
the super efficiency model and the standard model is that DMUko in the reference set in the super
efficiency model is excluded [27], which is denoted by n 6= o. Adding the constraints ∑Nk

n=1, 6=o λk
n = 1

to Equation (3) and ∑H
h=1 ∑Nk

n=1, 6=o i f h=k ξk
n = 1 to Equation (4) will impose the variable returns to scale

(VRS) assumption. The term ε is non-Archimedean infinitely small and the corresponding constraint
ensuring the denominator in objective function greater than zero.

2.3. Empirical Strategy

Empirical approaches such as ordinary least square (OLS) regression, quantile regression, and
spatial econometric model are used throughout this paper. Firstly, for the sake of simplicity, to
investigate the nonlinear relationship between PITI and eco-efficiency, we introduce the quadratic
term of PITI into the baseline model, which is formally specified as follows:

EEit = α + β1PITIit + β2PITI2
it + γxit + µt + δi + uit (5)

where EEit represents eco-efficiency for city i at year t; PITIit is our explanatory variable of main
interest and its quadratic term denoted as PITI2

it; and β1 and β2 are the corresponding parameter
vectors. xit is the vector of control variables including scale effect, composition effect, and technique
effect and γ represents the parameter vector. µt represents year fixed effects, δi captures unobserved
heterogeneity and uit is the normal distributed error term.

Secondly, to analyze the relationship between PITI and eco-efficiency in the presence of different
eco-efficiency levels, we further adopt quantile regression as the empirical model [29]. With the
advantages of being free from the strict assumptions for the data distribution hypothesis, along with
effectively eliminating the interference of outliers and heavy-tailed distributions, quantile regression
method is widely used in the existing literature [30–34]. A quantile regression approach may be more
efficient than the OLS method when the residual series is non-normal [32]. Consequently, we also
estimate a fixed effects version of the conditional quantile regression model with the nonlinear term
as follows:

QEEit(τ|xit, δi) = α + β1τ PITIit + β2τ PITI2
it + γτxit + δi (6)

where all variables are similar to the variables used in Equation (5), and τ is a parameter (0 < τ < 1)
which represents quantile level.
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Finally, to ascertain the impacts of PITI on eco-efficiency when the spatial effects are considered,
we estimate the empirical Model (5) with a spatial Durbin model (SDM) [35–37] specification as follows:

EEit = ρ ∑N
j=1 wijEEjt + θ1PITIit + ϕ1 ∑N

j=1 wijPITIjt + θ2PITI2
it+

ϕ2 ∑N
j=1 wijPITI2

jt + θ3xit + ϕ3 ∑N
j=1 wijxjt + µt + δi + uit

(7)

where j represents the neighbor cities (j 6= i); ρ is the spatial autocorrelation coefficient; θ and ϕ are
coefficients to be estimated; and uit is the error term. wij are the elements in an n× n spatial weight
matrix W describing the spatial arrangement of the prefecture-level cities. In this study, we construct
four major types of spatial weights matrices, i.e., inverse distance matrix (W1), economic-based matrix
(W2), inverse distance and economic-based matrix (W3), and population-distance-based matrix (W4),
which defined as follows.

w1
ij=
{

0, if i=j
1

dij
, if i 6=j ; w2

ij=
{ 0, if i=j

1
|GDPi−GDPj|

, if i 6=j ;

w3
ij=w1

ij×w2
ij; w4

ij=
{ 0, if i=j

popj/dij

∑j∈Ji

(
popj/dij)

, if i 6=j .

where dij measures the distance between city i and j; GDPi and GDPj present, respectively, the average
GDP of city i and j during the study periods; popj denotes the average population of city j during the
study periods; and j ∈ Ji denotes all the cities adjacent to city i.

Indeed, the general form of W1 is the “distance decay” function specified as w1
ij = 1/dκ

ij, where
κ is some positive parameter [38]. Our inverse distance matrix assumes that κ = 1. Following [39],
we construct W2 with w2

ij = 1/
∣∣Πi −Πj

∣∣, where Π is a relevant socioeconomic variable. We utilize
the average GDP of each observation during the study period for Π. Considering both geographical
and economic factors, we generate W3 by combining W1 and W2. Following [40], we also use a
population-distance-based matrix through adding distance terms and defined as W4. We normalize the
spatial weights matrices such that the elements of each row sum to unity. Other types of spatial weights
will be investigated and compared in the future research, such as parameterize and time-varying
spatial weights matrices, etc.

Because the spillover effects of the spatial error model are zero by construction, and the spatial
autoregressive model and spatial autoregressive combined model suffer from the problem that the ratio
between the spillover effect and the direct effect is the same for every explanatory variable, the general
nesting spatial model is overparameterized, as a result of which the t-values of the coefficient estimates
and the effects estimates have the tendency to go down, or its parameters cannot be reproduced using
Monte Carlo simulation experiments. In sum, the SDM model produces acceptable results.

If the coefficient of PITIit is strictly greater than zero while the coefficient of PITI2
it is strictly

smaller than zero, and the evidence of the inverted-U-shaped relationship between PITI and
eco-efficiency is supported, then the turning point level of PITI is calculated as follows [41]:

PITI∗OLS = − β1

2β2
; PITI∗τ = − β1τ

2β2τ
; PITI∗SDM = − θ1

2θ2
.

From the abovementioned methods, we use a flowchart diagram to explain all the methodological
steps performed in the empirical analysis in a graphical way (Figure 2).
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3. Data Sources and Variable Definitions

Our sample consists of panel 109 key environmental protection (KEP) prefecture-level cities in
China over the period of 2008–2015. From the 113 and 120 cities listed as KEP during periods of
2008–2012 and 2013–2015, we select 109 of them as the research subject to conduct feasible comparison
(see Appendix A). Taiwan, Hong Kong and Macau are excluded temporally due to unavailability of
data. We collect data from many official sources, including China Environment Yearbook [42], China
Energy Statistical Yearbook [43], China City Statistical Yearbook [44], etc.

To measure eco-efficiency comprehensively and accurately, all input and output variables relevant
to economics, the environment, and resources should be considered as much as possible to the extent
that the data are available. The input and output variables for measuring eco-efficiency are described
as follows:

(1) Desirable output: The real gross domestic product (GDP) is chosen as good output with the data
at constant 2008 prices, wherever applicable throughout this paper.

(2) Undesirable outputs: Like most existing literature, environmental pollutants are treated as the
bad outputs. In this study, four variables are selected according to data availability, namely,
carbon dioxide emission which is estimated using the procedure suggested by Huang et al. [45],
volume of industrial waste water discharged, volume of sulfur dioxide emission, and volume
of industrial soot-dust removed. A potentially unfortunate consequence of the conventional
DEA is that extreme values of inputs or outputs result in extreme weights such that some DMUs
become “efficient by default” [46]. A widely applied approach to address this issue is generate an
entropy-weighted index of multiple factors [47,48]. Thus, to alleviate the influence of extreme
value, we employed the entropy weight method to generate a composite environmental pollution
index (EPI) of these pollutants. The calculation process is provided in Appendix B.

(3) Labor force: According to data availability, the total number of employees is used as proxy here.
(4) Capital input: The method used frequently to estimate capital input is the perpetual inventory

method [49,50]. The capital stock can be calculated as Ki,t = Ii,t + (1− σi,t)Ki,t−1, where Ki,t is
the capital stock of city i in year t, and σi,t is the depreciation rate of fixed assets of city i in year t.
We estimate capital stock based on the procedure provided by Ke and Xiang [51].
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(5) Land input: This paper adopts the construction land area as the proxy for land-use due to the
accessibility of data [7].

(6) Energy input: The primary energy consumption of 2008–2013 is extracted from Huang et al. [45],
the primary energy consumption of the following two years is estimated using the same method
they provided. Primary energy consumption is converted to standard coal equivalent (SCE)
units—the standard energy metric used in Chinese energy statistics.

Key variables and controls used in econometric models are presented as follows. To control for the
characteristics of each KEP prefecture-level cities, five control variables are included in the econometric
estimation: (1) population density (POPD), the ratios of total population in construction land area;
(2) FDI (SFDI), the shares of foreign direct investment (FDI) in GDP; (3) industrial structure (SIND),
the shares of total output of the secondary industry in GDP; (4) wage level of employees (WAGE),
which calculated by the logarithm form of the average wage of employed staff and workers; and
(5) technology level (TECH), we use the shares of employees associated with scientific and technical
sector (scientific research, technical service and geologic prospecting) in the total number of employees
as the proxy due to the accessibility of data. Table 1 reports descriptive statistics of the variables for
both DEA and econometric models. Appendix C reports the data sources of relevant variables used in
this paper.

Table 1. Descriptive statistics.

Variable Obs. Unit Mean Std. Dev. Min Max

DEA model Labor 872 10,000 persons 88.9464 107.8553 6.7070 986.8700
Capital 872 100 million RMB 2660.0000 2740.0000 63.6000 22,000.0000
Land 872 km2 13,820.4800 13,256.3700 1573.0000 90,659.0000

Energy 872 Tons of SCE 2561.7100 1978.5020 147.6930 11,719.5000
GDP 872 100 million RMB 3180.0000 3350.0000 130.0000 25,000.0000
EPI 872 - 1.1468 1.0351 0.0993 16.8606

Econometric model EE 872 - 0.4834 0.1999 0.2210 1.1630
PITI 872 - 0.3680 0.1553 0.0830 0.8530

PITI2 872 - 0.1595 0.1309 0.0069 0.7276
POPD 872 1000 persons/km2 0.5456 0.3919 0.0388 2.6481
SFDI 872 - 0.2002 0.2302 0.0000 1.4432
SIND 872 - 0.5183 0.1012 0.1974 0.9097

WAGE 872 - 10.6216 0.3189 9.6542 11.6358
TECH 872 - 0.0202 0.0159 0.0016 0.0986

The correlation coefficients presented in Table 2 suggest positive and significant correlation
between PITI and EE, indicating the benefit of PITI in promoting eco-efficiency.

Table 2. Correlation coefficients for regression variables.

EE PITI PITI2 POPD SFDI SIND WAGE TECH

EE 1.0000
PITI 0.0760 ** 1.0000
PITI2 0.0530 0.9770 *** 1.0000
POPD 0.3380 *** 0.0320 0.035 1.0000
SFDI 0.3480 *** 0.0200 0.035 0.4620 *** 1.0000
SIND 0.0240 0.0330 0.033 −0.1450 *** −0.0760 ** 1.0000
WAGE 0.1250 *** −0.0440 −0.042 0.2060 *** 0.2620 *** −0.1550 *** 1.0000
TECH −0.1320 *** −0.0780 ** −0.081 ** −0.0310 −0.0650 * −0.2740 *** 0.2420 *** 1.0000

Note: ***, **, and * denote statistical significance at the 1%, 5%, and 10% significance levels, respectively.
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4. Empirical Results

4.1. Measuring Eco-Efficiency

Incorporating metafrontier technique, undesirable outputs and super efficiency into SBM
simultaneously, the eco-efficiency is evaluated across each prefecture-level city in China and for
each year. We calculate the average change rates of eco-efficiency and PITI over the analyzed period
using the geometrical mean, as depicted in Figure 3, indicating that higher growth rate of PITI is not
always accompany with higher growth rate of eco-efficiency. On average, the eco-efficiency of the
eastern region is the highest (0.5178), followed by western (0.4617) and that of the central is the lowest
(0.4491). One possible explanation is that, the industrial structure in central/western region is mainly
based on heavy industry; along with the large consumption of coal, energy and other resources, more
industrial pollutants will also be produced, resulting in lower eco-efficiency in central/western region.
Consequently, the efficiency gap between the eastern and central regions is far greater than that of the
central and western regions.
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The time evolution of eco-efficiency scores in different regions are illustrated in Figure 4. As shown
in the graph, we can conclude that the distribution layout of eco-efficiency for three regions is similar
to that of national level, following left skewed distributions as well as having a cluster around 0.4. The
vertical lines in Figure 4 show the average eco-efficiency in the corresponding years, indicating that
the mean of eco-efficiency for western region decreased significantly from 2008 to 2015. Moreover,
the kernel density curves have obviously moved upward over time; as a result, the eco-efficiency gap
among eastern region, central region, and western region has decreased. Besides, the kernel density
of eco-efficiency scores has two peaks, located at around 0.4 and 1, respectively. It should be noted
that the eco-efficiency of prefecture-level cities in China was relatively high but deteriorated slightly
from 2008 to 2015 derived from the kernel density curve shifts from right to left. Despite the similar
distribution shapes, eco-efficiency scores of different regions are mainly distributed in [0.2, 1.0] in the
selected year.

The non-parametric analysis of convergence shows the evolution over time (from time t to
time t + k) of eco-efficiency distribution. Figure 5 reports the evolution of eco-efficiency dynamics
from 2008 to 2015. The stochastic kernels are calculated by means of a Matlab routine developed by
Magrini [52]. The surface plot shows a clear tendency towards a single ridge; moreover, a prominent
peak at approximately 1.0577, which lies on the 45◦ line, can be detected around the middle of the
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distribution. The stochastic kernel referring to the whole period 2008–2015 shows a strong persistence
of eco-efficiency because the kernel is significantly concentrated along the main diagonal, as shown in
Figure 5b.Sustainability 2018, 10, x FOR PEER REVIEW  9 of 20 
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final period.

The above findings show that there exist significant regional differences of eco-efficiency in
China; exploring the driving forces that impact on eco-efficiency is of importance for policymakers to
implement pollution control polices and resource allocation from both theoretical and practical aspects.
Thus, it is necessary to investigate the influence factors exert on eco-efficiency using the econometric
tools discussed in Section 2.3, and the estimation results are presented in next subsection.
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4.2. Estimation Results

4.2.1. Statistical Tests of Unit Root and Granger Causality

To examine the stationarity of the panel data and avoid spurious regressions, along with ensuring
the effectiveness of the estimated results, we conduct the panel unit root test on each variable with the
Levin–Lin–Chiu (LLC) approach [53]. Table 3 presents the LLC statistics for all the variables at levels.
Two model specifications, one with only the intercept and the other with both the intercept and trend,
are considered. Results show that all the variables are found to be stationary at levels. Additionally,
results of both panel Granger causality [54] and bootstrap Granger causality [55,56] implied that
Granger causal relationships run from PITI and PITI2 to EE rather than bi-directionally among PITI,
PITI2 and EE in China. Thus, it is rational to further investigate the impact of PITI on eco-efficiency.

Table 3. Panel unit root test results.

Level

Intercept Intercept and Trend

EE −0.6969 *** (−14.2660) −1.5904 *** (−59.1930)
PITI −1.1365 *** (−25.8790) −1.7020 *** (−42.6810)

PITI2 −1.1487 *** (−25.3460) −1.8994 *** (−45.2540)
POPD −0.2337 *** (−13.0780) −1.3823 *** (−39.5360)
SFDI −0.3729 *** (−10.7740) −1.4691 *** (−65.3220)
SIND −0.4174 *** (−22.7920) −0.6354 *** (−28.7230)
TECH −0.7564 *** (−18.9200) −1.4770 *** (−38.8110)

Notes: The maximum lag length to be included in the model is set to 1; *** denotes statistical significance at the 1%
significance level; t-statistics are given in the parentheses.

4.2.2. Estimation Results of OLS and Quantile Regression

In this section, we investigate the relationship between PITI and eco-efficiency and discuss the
estimation results of the present study. First, Figure 6 shows the scatter plot of PITI and eco-efficiency
during 2008–2015, along with the nonlinear fitted curve and the confidence interval with confidence
level at 95%, illustrating the significant inverted-U-shaped relationship between PITI and eco-efficiency.
Then, before the empirical estimates, we perform the Hausman test to select between fixed and random
effects models. The significant test statistics and small p-value suggest that fixed effects are more
suitable for our empirical models.

Estimation results of OLS and quantile regression in Table 4 show that PITI is significantly and
positively associated with eco-efficiency, while PITI2 is significantly and negatively associated with
eco-efficiency. In line with our theoretical predictions, there exist an inverted-U-shaped relation
between PITI and eco-efficiency. Furthermore, we found that POPD exerts significant and positive
impact on eco-efficiency, e.g., a unit increase in POPD would results in an increase in eco-efficiency
score by 0.4364 for FE model, reducing to 0.1129 in pool OLS model, ceteris paribus. As suggested by
Ciccone and Hall [57], compared to market scale and urban size, population density is more suitable for
measuring regional economic agglomeration. That is, the improvement of eco-efficiency benefits from
the promotion of economic agglomeration. Both the linear and quadratic terms of PITI are significant
at the 10th, 75th, and 90th quantiles, implying that the inverted-U relationship is only significant
around the low and high level of the distribution. Further insights into this result can be obtained
by calculating the turning points. In Table 5, we find that the turning points obtained from quantile
regression are generally greater than those obtained from FE model which shows that the eco-efficiency
will continually increase until PITI reaches its scale of 0.3505.
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Table 4. OLS and quantile regression results of model (dependent variable: EE).

(1) (2) (3) (4) (5) (6) (7)

Variable Pool OLS FE
Quantile Regression

10th 25th 50th 75th 90th

PITI 0.7895 *** 0.1974 ** 0.1975 *** 0.0624 0.1320 0.1915 *** 1.3186 ***
(4.8492) (2.0427) (4.7273) (1.5918) (1.1037) (6.7093) (2.9324)

PITI2 −0.8701 *** −0.2816 ** −0.2633 *** −0.0937 ** −0.1389 −0.2109 *** −1.6194 ***
(−4.5736) (−2.3647) (−3.1906) (−2.0697) (−0.9986) (−5.8970) (−3.0553)

POPD 0.1129 *** 0.4364 *** 0.0776 *** 0.0526 *** 0.1500 *** 0.0719 *** 0.1049 ***
(5.5408) (2.7121) (9.3876) (4.4373) (5.7884) (13.3616) (3.3808)

SFDI 0.2051 *** −0.1866 ** 0.0625 *** 0.1769 *** 0.1330 *** 0.3902 *** −0.0867
(5.3410) (−2.2589) (3.3452) (23.1193) (4.2489) (55.3353) (−0.6546)

SIND 0.1025 −0.1461 −0.0323 ** 0.1634 *** 0.1303 *** 0.2738 *** −0.2644
(1.0763) (−1.0325) (−2.1717) (10.0562) (8.8133) (11.3106) (−1.4661)

WAGE 0.0347 0.1563 ** −0.0016 −0.0421 *** 0.0713 *** 0.0583 *** 0.3859 **
(1.5854) (2.5749) (−0.2175) (−4.7291) (3.6603) (17.6245) (2.3921)

TECH −1.3456 *** 0.8168 −0.7918 *** −0.0686 −0.9622 *** −1.3632 *** −4.6986 ***
(−3.1873) (0.6997) (−4.2873) (−1.0968) (−19.6825) (−19.6231) (−5.7829)

Notes: Robust t-statistics are in parentheses; ***, **, and * denote statistical significance at the 1%, 5%, and 10%
significance levels, respectively.

Table 5. Turning points.

(1) (2) (3) (4) (5) (6) (7)

Variable Pool OLS FE
Quantile Regression

10th 25th 50th 75th 90th

PITI * 0.4537 0.3505 0.3750 NA NA 0.4540 0.4071

Note: NA denotes that the results are not available. Superscript * denotes the interested independent variable:
pollution information transparency index

Figure 7 illustrates the coefficients and bootstrap confidence intervals (draws = 2000) of quantile
regression model, indicating that the key interest explanatory variables PITI and PITI2 are positively
and negatively associated with eco-efficiency across different quantiles we considered, respectively.
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4.2.3. Estimation Results of Spatial Durbin Model

Besides the non-spatial econometric evidence, we investigate the spatial dependence of the
regression variables with two standard spatial autocorrelation tests of Moran’s I [58] and Geary’s
C [59]. Regarding the ID-EB (inverse distance and economic-based) matrix, for example, the Moran’s
I statistic shows that, except for SIND, all variables are spatially autocorrelated at 5% significance
while Geary’s C rejects the null hypothesis of spatial independence for most variables, indicating the
necessity to use spatial econometric models for further analysis. We then use Lagrange multiplier (LM)
tests and their robust versions [37] to choose the most proper spatial econometric model to describe
the quantitative relationship among data, along with the SDM generalizes both the spatial lag and the
spatial error model, we estimate the SDM finally.

As can be seen in Table 6, with different spatial weight matrix, the coefficients of PITI and PITI2
are significantly positively and negatively associated with eco-efficiency, respectively. Hence, we can
argue that there is strong evidence of inverted-U relation between PITI and eco-efficiency of study
sample in China. In addition, the spatial coefficients (ρ) are also highly significant, which indicates a
strong evidence of spatiality. In Table 6, we use Akaike Information Criterion and Bayesian Information
Criterion (AIC and BIC, respectively) to compare goodness of fit for the models, although criteria are
mainly aimed at selecting a parsimonious model rather than the model with the most support from the
data [60]. Moreover, the coefficients of POPD and WAGE in spatial models are also significantly and
positively associated with eco-efficiency, while the coefficients of SFDI are significantly and negatively
associated with eco-efficiency. Our results are consistent with [61] and indicate the specification of the
spatial weights matrices should have no effect on the estimation results.

Table 7 reports the direct, indirect, and total effects of corresponding models estimated in Table 6.
The direct effects of PITI and PITI2 are significantly positive and negative, indicating the beneficial
effects of PITI to promote eco-efficiency of host region. In terms of magnitude, a 1% increase in PITI
results in an approximate 0.2% increase in eco-efficiency, while a 1% increase in PITI2 results in an
approximate 0.3% decrease in eco-efficiency. The indirect effects of PITI and PITI2 are negative and
positive, implying the increase in PITI of adjacent cities will lead to reduce eco-efficiency of local
city. Among all control variables, POPD and WAGE have significantly positive direct effects on
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eco-efficiency, hinting that a higher population density and wage level may result in high eco-efficiency
to local cities, implying the existence of agglomeration effect and technique effect. In contrast, SFDI and
SIND generate negative direct effects on eco-efficiency, implying the existence of composition effect.
In Table 8, we find that the turning points obtained from the SDM are generally smaller than those
obtained from FE and quantile regression models, showing that the eco-efficiency will continually
increase till PITI approximately reaches its scale of 0.34.

Table 6. Estimation results of Spatial Durbin Model (dependent variable: EE).

(1) (2) (3) (4)

Variable Inverse Distance Matrix
W1

Economic-Based Matrix
W2

Inverse Distance and
Economic-Based Matrix

W3

Population-Distance-Based
Matrix

W4

PITI 0.1685 * (1.9046) 0.2108 ** (2.4150) 0.1915 ** (2.1882) 0.1691 * (1.9040)
PITI2 −0.2500 ** (−2.4171) −0.2976 *** (−2.9256) −0.2748 *** (−2.6943) −0.2491 ** (−2.3989)
POPD 0.4658 *** (5.5019) 0.3797 *** (4.5812) 0.4106 *** (4.7467) 0.4798 *** (5.6465)
SFDI −0.1813 *** (−3.2755) −0.1582 *** (−2.8477) −0.1473 *** (−2.6019) −0.1818 *** (−3.2685)
SIND −0.0553 (−0.4570) −0.0884 (−0.8185) −0.0193 (−0.1712) −0.0516 (−0.4259)

WAGE 0.1757 *** (4.1175) 0.1572 *** (3.7600) 0.1671 *** (3.9253) 0.1753 *** (4.0813)
TECH 1.4093 * (1.9363) 0.6506 (0.9260) 0.8236 (1.1602) 1.4065* (1.9320)

W*PITI −1.0690 (−1.3788) −0.2906 (−1.0696) −0.2466 (−1.0178) −1.0073 (−1.2991)
W*PITI2 1.2897 (1.3785) 0.3217 (0.9725) 0.2850 (0.9861) 1.2622 (1.3485)
W*POPD −1.8345 *** (−3.5051) 0.9066 *** (2.8570) 0.1937 (0.7843) −1.6461 *** (−3.2014)
W*SFDI −1.1522 *** (−3.0795) −0.1416 (−1.1196) −0.0606 (−0.4617) −1.0277 *** (−2.8493)
W*SIND −0.4715 (−0.6836) −0.4337 (−1.4829) −0.7373 *** (−2.7542) −0.6766 (−0.9785)
W*WAGE −0.0255 (−0.0793) −0.0056 (−0.0385) 0.0480 (0.3938) 0.1046 (0.3300)
W*TECH 5.1552 (0.8568) 3.1770 (1.2561) −1.9314 (−0.9205) 4.5939 (0.7712)

ρ −0.3483 * (−1.9563) 0.1666 ** (2.2582) 0.1375 ** (2.1791) −0.2645 (−1.5302)
R-squared 0.0191 0.0423 0.0869 0.0099
Log L 1033.5962 1033.4107 1029.4746 1031.9667
AIC −2035.1920 −2034.8210 −2026.9490 −2031.9330
BIC −1958.8600 −1958.4890 −1950.6170 −1955.6010

Notes: The z-statistics are given in the parentheses; ***, **, and * denote statistical significance at the 1%, 5%, and 10%
significance levels, respectively; Log L: Log likelihood; individual and time fixed effects are included in every model.

Table 7. Direct, indirect, and total effects of SDM estimation (dependent variable: EE).

(1) (2) (3) (4)

Inverse Distance Matrix W1 Economic-Based Matrix W2 Inverse Distance and
Economic-Based Matrix W3

Population-Distance-Based
Matrix W4

Panel A: Direct effect

PITI 0.1800 ** (1.9871) 0.2082 ** (2.3097) 0.1899 ** (2.1024) 0.1783 ** (1.9622)
PITI2 −0.2649 ** (−2.5028) −0.2959 *** (−2.8088) −0.2741 *** (−2.5963) −0.2616 ** (−2.4611)
POPD 0.4883 *** (5.9892) 0.4090 *** (5.1280) 0.4239 *** (5.1619) 0.4980 *** (6.0934)
SFDI −0.1730 *** (−3.1495) −0.1614 *** (−2.9429) −0.1488 *** (−2.6799) −0.1758 *** (−3.1944)
SIND −0.0507 (−0.4244) −0.0969 (−0.9266) −0.0335 (−0.3095) −0.0465 (−0.3910)

WAGE 0.1786 *** (4.2069) 0.1596 *** (3.8088) 0.1704 *** (4.0470) 0.1771 *** (4.1551)
TECH 1.3781* (1.8308) 0.7295 (0.9827) 0.7914 (1.0570) 1.3854 * (1.8366)

Panel B: Indirect effect

PITI −0.8717 (−1.5727) −0.3108 (−1.0134) −0.2591 (−0.9751) −0.8677 (−1.4686)
PITI2 1.0767 (1.5856) 0.3398 (0.9003) 0.2974 (0.9307) 1.1072 (1.5275)
POPD −1.4978 *** (−3.4695) 1.1562 *** (3.0592) 0.2873 (1.0544) −1.4168 *** (−3.1491)
SFDI −0.8237 *** (−2.8677) −0.2014 (−1.4019) −0.0942 (−0.6542) −0.7901 *** (−2.6734)
SIND −0.3080 (−0.5611) −0.4978 (−1.3436) −0.8190 ** (−2.5141) −0.4961 (−0.8515)

WAGE −0.0809 (−0.3491) 0.0109 (0.0652) 0.0703 (0.5358) 0.0307 (0.1265)
TECH 3.5203 (0.8003) 4.0135 (1.3125) −2.0145 (−0.8245) 3.4081 (0.7318)

Panel C: Total effect

PITI −0.6918 (−1.2231) −0.1026 (−0.3102) −0.0693 (−0.2376) −0.6894 (−1.1409)
PITI2 0.8118 (1.1691) 0.0439 (0.1080) 0.0234 (0.0666) 0.8456 (1.1385)
POPD −1.0095 ** (−2.4073) 1.5652 *** (4.0387) 0.7112 *** (2.6432) −0.9189 ** (−2.1030)
SFDI −0.9967 *** (−3.5217) −0.3628 ** (−2.3770) −0.2429 (−1.6374) −0.9659 *** (−3.2980)
SIND −0.3588 (−0.7073) −0.5947 (−1.5275) −0.8525 *** (−2.6199) −0.5426 (−1.0005)

WAGE 0.0977 (0.4248) 0.1705 (0.9478) 0.2407 * (1.7108) 0.2079 (0.8618)
TECH 4.8984 (1.0756) 4.7430 (1.4442) −1.2231 (−0.4537) 4.7935 (0.9945)

Notes: The z-statistics are given in the parentheses; ***, **, and * denote statistical significance at the 1%, 5%, and
10% significance levels, respectively.
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Table 8. Estimation results of Spatial Durbin Model (dependent variable: EE).

(1) (2) (3) (4)

Variable
Inverse Distance

Matrix
W1

Economic-Based
Matrix

W2

Inverse Distance and
Economic-Based Matrix

W3

Population-Distance-Based
Matrix

W4

PITI * 0.3370 0.3542 0.3484 0.3394

Note: Superscript * represents the interested independent variable: pollution information transparency index

4.2.4. Supplementary Analysis: Panel Threshold Model

Given the presumed thresholds in a nonlinear relation, the pollution information transparency
index (PITI) for a city may have different influences on eco-efficiency in that city above and below
those thresholds. For supplementary analysis, we built a threshold model [62] as follows:

EEit = α + β′PITIit I(PITIit ≤ σ) + β′′ PITIit I(PITIit > σ) + γxit + δi + uit (8)

where σ is the assumed specific threshold value and I(·) is defined as an indicator function.
Table 9 reports the testing for both single and double threshold effects. The F-statistics and

p-values tested indicated an extremely insignificant relation between the two threshold values assumed,
indicating the 100% rejection of the hypothesis that there are no two-threshold values. Figure 8
illustrates the LR statistics for testing single threshold effects. According to the threshold test results,
there is a nonlinear relation between PITI and eco-efficiency, instead of a linear and positive assumption
between PITI and eco-efficiency; particularly, the eco-efficiency will continually increase until PITI
reaches its scale of 0.5850.
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Table 9. Testing for the threshold effect of PITI on eco-efficiency.

Test for Single Threshold Effects Test for Double Threshold Effects

Threshold Values F p-Value Double Threshold Values F p-Value

0.5850 12.8600 0.0495 0.5710 0.6030 0.2200 1.0000

Note: The F-statistics and p-value have generated from bootstrap method using 2000 replications.

5. Conclusions

We explore empirically the effect of environmental disclosure measured by pollution information
transparency index (PITI) on eco-efficiency using a dataset for 109 key environmental protection (KEP)
prefecture-level cities in China during 2008–2015. Meta-US-SBM model, quantile regression, and the
SDM are applied throughout the paper. The main conclusions and corresponding policy implications
are summarized as follows:

(1) Results of DEA model shows that there exist significant spatiotemporal disparities of
eco-efficiency; on average, the eco-efficiency in eastern region is relatively higher than central/western
region. To reduce the efficiency gap, the links between different regions should be strengthened so
the eco-efficiency can be promoted in a coordinated way by improving industrial agglomeration and
optimizing the resources allocation.

(2) Bootstrap Granger causality test implied that there exist unidirectional Granger causal
relationships running from PITI and PITI2 to EE rather than bidirectional relationships among PITI,
PITI2 and EE in China. Thus, it is of importance to pay high attention to environmental information
disclosure in the process of ecological civilization in China.

(3) Both OLS and quantile regression show that the evidence of an inverted-U-shaped relation
between PITI and eco-efficiency is supported, and the turning points range from 0.3505 to 0.4540.
Estimation results of the SDM also support this finding, and the turning points become relatively
smaller after considering spatial effects, varying from 0.3370 to 0.3542 based on different specifications
of spatial weights matrices. Furthermore, improving and upgrading the levels of agglomeration, wages
and technology will contribute to the promotion of eco-efficiency, while the industrial structure should
be readjusted and optimized energetically.

(4) Panel threshold model also shows that the existence threshold effect between PITI and
eco-efficiency, providing evidence that the eco-efficiency will continually increase until PITI reaches its
threshold value.

Due to data restrictions, the period covered in this study was only eight years. Therefore, future
studies can be conducted from three aspects. First, the time span can be increased to cover a longer
period, and more information and data can be used to analyze the eco-efficiency of China, such
as convergence analysis. Second, more precise measurement of environmental disclosure can be
aggregated by micro-level datum. Third, the proposed DEA model can be extended to measure and
compare productivity changes for prefecture-level cities in different groups under the framework of
the Malmquist–Luenberger productivity indicator. With the same metafrontier, these indicators are
comparable and can provide insightful information. Furthermore, to relax the assumption of a linear
relationship on both sides of the threshold, panel smooth transition regression (PSTR) model should
be adopted to empirically study the nonlinear relationship between PITI and eco-efficiency.
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Appendix A. List of 109 KEP Cities Included into the Sample

Table A1. The 109 KEP cities.

Region City Region City Region City

Eastern (49) Jining Changsha
Beijing

Municipality Tai’an Zhuzhou

Tianjin
Municipality Rizhao Xiangtan

Shijiazhuang Guangzhou Yueyang
Tangshan Shaoguan Changde

Qinhuangdao Shenzhen Zhangjiajie
Handan Zhuhai Western (29)
Baoding Shantou Hohhot

Shenyang Foshan Baotou
Dalian Zhanjiang Chifeng

Anshan Dongguan Nanning
Fushun Zhongshan Liuzhou
Benxi Central (31) Guilin

Shanghai
Municipality Taiyuan Beihai

Nanjing Datong Chongqing
Municipality

Wuxi Yangquan Chengdu
Xuzhou Changzhi Panzhihua

Changzhou Linfen Luzhou
Suzhou Changchun Mianyang

Nantong Jilin Yibin
Lianyungang Harbin Guiyang

Yangzhou Qiqihar Zunyi
Hangzhou Daqing Kunming

Ningbo Mudanjiang Qujing
Wenzhou Hefei Xi’an

Jiaxing Wuhu Tongchuan
Huzhou Maanshan Baoji
Shaoxing Nanchang Xianyang
Taizhou Jiujiang Yan’an
Fuzhou Zhengzhou Lanzhou
Xiamen Kaifeng Jinchang

Quanzhou Luoyang Xi’ning
Jinan Pingdingshan Yichuan

Qingdao Anyang Shizuishan
Zibo Jiaozuo Urumqi

Zaozhuang Wuhan Karamay
Yantai Yichang

Weifang Jingzhou

Appendix B. Computation of Environmental Pollution Index

Following Bian and Yang [47] and Ludovisi [48], we construct a composite environmental
pollution index (EPI) using the entropy to measure the weights of each pollutants, which helps
to alleviate the influence of extreme values of individual factors. The calculation process involves
four steps.
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Let Viqt denote the emission volume of pollutant q(q = 1, 2, · · · , Q) at region i(i = 1, 2, · · · , K) in
year t(i = 1, 2, · · · , T). This is first normalized over entire sample:

Piqt =
Viqt

∑K
i=1 ∑T

t=1 Viqt
(A1)

The entropy of pollutant q at region i is defined as:

eiqt = −
1

LN(K× T)

T

∑
t=1

(
Piqt × LN(Piqt

)
) (A2)

Next, we calculate the weight of pollutant q at region i as:

wiqt =
1− eiqt

∑Q
q=1
(
1− eiqt

) (A3)

The composite environmental pollution index (EPI) covering four pollutants of region i in year t
is given by:

EPIit =
Q

∑
q=1

(
Piqt × wiqt

)
(A4)

Higher EPI indicates higher level of environmental pollution.

Appendix C. Data Sources

Table A2. Data sources of DEA model and econometric model.

Variable Sources

DEA model Labor China City Statistical Yearbook
Capital China City Statistical Yearbook and China Statistical Yearbook
Land China City Statistical Yearbook

Energy GDP energy intensity (manually collected from various official documents)
multiplied by GDP, China Energy Statistical Yearbook

GDP China City Statistical Yearbook
EPI China City Statistical Yearbook and China Environment Yearbook

Econometric model EE Measured by Model (4)

PITI Institute of Public & Environmental Affairs and Natural Resource Defense
Council (2008–2016)

PITI2 Quadratic term of PITI
POPD China City Statistical Yearbook
SFDI China City Statistical Yearbook
SIND China City Statistical Yearbook

WAGE China City Statistical Yearbook
TECH China City Statistical Yearbook
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