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Abstract: This study examines how various actors influence the transition to a renewable-energy
economy. We employ a conceptual framework derived from a literature review and text-mining
analysis and establish a panel data model for an empirical test using unbalanced panel data from
25 member countries of the Organization for Economic Co-operation and Development (OECD), for
the period from 1990 to 2014. We establish a panel vector autoregressive (VAR) model in the first
differences and use a bias-corrected least squares dummy variable (LSDVC) estimator to test complex
dynamic relationships between government, the public, markets, the traditional energy sector (i.e., the
sector that uses nuclear power, oil, coal and natural gas as sources for electricity) and the contribution
of renewables to the total energy supply. We also perform Wald tests on the coefficients of variables
estimated by LSDVC estimator to determine causal relationships between the variables. The results
of this study reveal that government and markets directly promote the transition to renewable energy,
whereas the traditional energy sector negatively and directly affects the transition. By contrast, the
public does not directly influence the transition to a renewable-energy economy. This study also
shows that the government and public have positive indirect effects on the transition, by interacting
with the market. We also find convincing evidence of significant dynamic-path dependence in all
estimations. Finally, we discuss some implications based on the findings of this study.

Keywords: transition to renewable-energy economy; big-data text-mining; LSDVC estimator for
dynamic panel data

1. Introduction

Intensified social and economic problems or issues, such as those relating to economic
development, energy, environment, food, health, security, social services and water and sanitation,
tend to bring about social consensuses on tackling such challenges, which increasingly promote calls
for extensive social change. The depletion of fossil fuels, the risks of nuclear power and climate
change, as formidable challenges facing contemporary modern societies, urge each country to make
fundamental and systemic societal changes by addressing socio-technical transitions, especially energy,
for a shift towards a more environmentally sound and sustainable economy. A socio-technical transition
focused on energy-related issues involves reconfiguring different socio-technical sub-systems or
societal domains [1], which entails interactions between various actors, agents, or stakeholders in
a society [2–4] and which involves various patterns and pathways [5], different phases [6], public
discourse and high levels of co-evolution, complexity and uncertainty [7,8].

In this context, the transition to an economy based on renewable energy requires collective,
complex and long-term processes involving multiple actors to achieve fundamental social innovations
and new solutions to social challenges that have the intent and effect of achieving equality, justice and

Sustainability 2018, 10, 448; doi:10.3390/su10020448 www.mdpi.com/journal/sustainability

http://www.mdpi.com/journal/sustainability
http://www.mdpi.com
http://dx.doi.org/10.3390/su10020448 
http://www.mdpi.com/journal/sustainability


Sustainability 2018, 10, 448 2 of 32

empowerment [9] and which become a general social phenomenon and increasingly affect all walks of
life [10] (p. 91): “social innovation is intentional, meant to change something in what people do alone or
together to better, at least as they perceive it” [10] (p. 3); social innovations move through a ‘4i’ process
consisting of an idea, intervention, implementation and finally impact [11], which a social innovation
can be considered as such when it has reached the final ‘impact’ stage; social innovations should
be good and benefit society [12] by achieving a more equitable, just and empowered society [13–15].
Given such multi-actor dynamics of a sustainable energy transition [1], closer attention to the actors
within a society is necessary in order to better understand energy transition policies, the location of
power, the operations of actors and how the system and structures of the energy transition are created
and changed through interaction between different actors [16]. This implies that the transition to
a renewables-based economy needs to be understood from the perspective of multiple actors [17],
multiple levels [2] and political economy [18–20], with a focus on the roles played by the various facets
of society insofar as they influence social change and societal transformation.

This study investigates how actors in 25 countries—all members of the Organization for Economic
Co-operation and Development (OECD)—affect the transition to a renewable-energy economy, based
on multi-actor perspectives of social innovation. The existing literature, especially on renewable
energy transition (e.g., [21,22]) contributes to the discussion on the roles and interactions of actors
from a social innovation perspective. However, additional exploration can contribute to the existing
literature in two ways. Firstly, although the literature has presented actors in promoting renewable
energy use and the transition to a renewable-energy economy, a systematic review of such studies
does not exist at this time. Therefore, this study reviews and identifies the actors and their roles in
and implications of previous studies, especially in terms of the actors and their roles in promoting the
transition to a renewable-energy economy. To determine the relevant actors, we review the literature
on social innovation, energy transition and renewable energy. Actors within a society communicate
with each other both orally and in writing, which shapes a discourse and can influence an actor’s
responses to societal challenges [23–26]. Therefore, in addition to the literature review, we conduct
text-mining analysis to determine the terminology employed by each actor within the literature. We
then focus on the main actors identified in the literature review and determine the relationships
between these actors and the energy transition. Secondly, despite many studies to confirm various
actors, less attention has been paid to empirical investigation of their influences on the energy transition.
Thus, we empirically evaluate actors’ influences on the transition to a renewables-based economy.
By proposing a systematic panel approach, we identify the importance of each actor and define their
influence according to the extent of the energy transition, measured as the contribution of renewables
to total energy supply. Most panel data are heterogeneous and non-stationary. When employing
a panel approach, it is important to check for multicollinearity, autocorrelation, structural breaks,
cross-sectional for dependence, homoscedasticity within cross-sectional units and unit-roots. Such
issues should be taken into account in establishing an empirical model. Our use of a systematic panel
approach helps explore actors’ influences on the energy transition.

The remainder of this paper is organized as follows. Section 2 provides a literature review and
performs text-mining analysis to confirm the main actors and proposes a conceptual framework
regarding their influences on the energy transition. Section 3 discusses the model specification and
methodology and describes the data. The empirical results are presented and interpreted in Section 4.
Section 5 summarizes the main findings and lists the implications and limitations of the study.

2. Brief Literature Review

The transition to a renewable-energy economy, as part of the energy transition, is a collective,
complex and long-term process comprising multiple actors for social changes (or innovations) [9],
which involves far-reaching societal, technological, organizational, political, economic and
sociocultural changes [16]. Hence, an understanding of such transitions or changes within a society
requires simultaneous consideration of three themes: social change (broad scope), energy transition
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(intermediate scope) and renewable energy (narrow scope). There are differences between the
literature on social change (e.g., [17,22,27–29]), energy transition (e.g., [25,30,31]) and renewable
energy (e.g., [24,32–34]) in terms of their study settings, scope, themes and interests. Nonetheless, they
commonly focus on the transition towards a better society: discussing the requirements of a constantly
evolving and collective process involving multiple actors in society and utilizing social learning to
address societal challenges and/or needs. Therefore, a fundamental task is to identify those actors
who may affect the transition to a renewable-energy economy. Based on the literature, five actors
can be distinguished: government, the public, markets, the ‘third’ sector and the traditional energy
industry (see Table 1). The current study, however, excludes the influence of the ‘third’ sector for
the following reasons: this sector includes various stakeholders that differ substantially across the
literature; even though the ‘third’ sector can be regarded as having specific interests—mainly those of
non-governmental (NGOs) and other non-profit organizations (NPOs) combined in different various
ways—it is problematic to measure the influence of the third sector comprehensively; at the conceptual
level, it is nevertheless feasible to measure the influence of each actor within the ‘third’ sector. Indeed
NGOs, as a representative of the ‘third’ sector, are a prominent actor that substantially affects energy
transition [35,36]. However, measurements of their influence have been inconsistent in the extant
literature (i.e., measurements can be based the number of reports published by NGOs [37], NGO
funding [38], the workforce employed by the NGO, etc.). Moreover, most NGOs are active globally;
their influence is not limited to one country or region. Thus, measuring their influence at a national
level tends to be limited to perceived recognition.

Table 1. Literature review: Major actors and reality-based text-mining analysis.

Scope Theme Study

Actors

Government Public Market Third
Sector

Traditional
Energy Industry

Broad
Social
Change

Avelino and Wittmayer [17] × × × ×
Rana et al. [29] × × × ×
BEPA [27] × × ×
Geels [39], Coenen et al. [40] × × ×
Grin et al. [28] × × ×
Kemp et al. [22] ×

Middle Energy
Transition

Mallett [30] × × × ×
Sarrica et al. [25] ×
Geels [31] × × ×

Narrow
Renewable
Energy

Wüstenhagen et al. [41] × × ×
Hancock [35] × × ×
Betsill and Stevis [24] × × ×
Michalena and Hills [32] × × × ×
Hills and Michalena [33] × ×
Mazzucato and Semieniuk [34] × × ×
Park [42] × × ×

Notes: Government includes states, governments, public agencies, politicians, policy-makers, bureaucrats, local
governments and sub-governmental organizations, etc.; Public includes communities, households, families,
residents, neighbors, civil societies, community groups and academia, etc.; Market includes markets, firms,
businesses, consumers, infrastructure and bank groups; Third sector includes NGOs, non-profit associations,
activists, volunteers, benefactors, researchers and philanthropists, etc.; Traditional energy sector includes energy
companies, coal mining, oil and gas companies, trade associations, etc.

Discourse, meaning written and spoken communications by actors, can promote actors’ efforts
to tackle societal issues that need to be resolved in order to achieve a better society [23–26,30]. The
discovery of actors in the texts is becoming increasingly important to research on social innovation.
Therefore, we use text-mining analysis to determine which keywords are attributed to each actor within
the literature. Using a software module written in Python, we gathered texts on renewable energy
for the period 1991–2016 from Google, which is the most comprehensive search engine worldwide
and the most efficient channel for discourse analysis. The Google search returned 6.8 billion pieces of
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information related to renewable energy; narrowing the range of news and documents returned 265
million hits. From the results, we identified 104,644 words that directly related to renewable energy
after text cleaning. Text mining was then performed, based on the TF–IDF (Term Frequency–Inverse
Document Frequency) and degree centrality value of these words, giving a final list of approximately
140 words (for the formulas and results of text mining, refer to Appendix A and Table A1 of Appendix B,
respectively).

Overall, the results of text mining analysis confirm that various keywords formed by the discourse
can be classified among the four actors distinguished above (see Table 2). In particular, the law can
be regarded as a necessary regulatory system in relation to the phrase “renewable energy.” On the
other hand, the two energy-related departments (“Department of Energy” and “ministry”) with lower
centrality in terms of the TF–IDF are less critical. Regarding market actors: the phrases market, bank
group, energy economy, RE (renewable energy) platform, firm and energy finance appeared to be
relatively significant. In the public actor group: public services, renewable energy communities and
people appeared to be significant. Finally, within the traditional energy sector, the terms fossil fuel,
energy industry and oil and gas are relatively significant. The terms energy companies, natural gas
and nuclear power, were slightly less important compared to their frequency of occurrence.

Table 2. Text-mining analysis using renewable energy as a keyword.

Actors Included Words

Government energy policy (17/15), state (23/19), department of energy (27/63), policy
support (44/37), government (46/29), law (100/89), ministry (137/139)

Market
market (50/44), investment RE (37/48), bank group (77/56), energy economy
(78/73), tax (86/124), RE platform (101/90), firm (104/91), energy incentive
(107/140), price (125/119), energy finance (131/126)

Public
(Civil Society)

job (40/81), institute technology (68/61), public service (89/76), RE community
(95/83), energy coalition (106/103), council RE (120/129), public (136/132),
people (138/109), association (139/137)

Traditional
Energy Industry

fossil fuel (14/12), energy company (30/23), natural gas (32/45), energy industry
(35/28), oil gas (73/68), nuclear power (99/102)

Notes: The numbers in parentheses denote term frequency-inverse document frequency (TF–IDF) and degree
centrality ranks in order.

Taking into account the aforementioned points from the literature review and text-mining analysis,
we identified government, market, public and industry (traditional energy industry) actors as having
important influence on the transition to a renewables-based economy.

Government (governmental agencies), as one of the most potent extrinsic forces [43], initiates
and guides a variety of policies (technology-push and demand-pull) to promote and achieve current
and future deployment goals towards an energy transition [44]. Policies are outcomes of interactions
between government and various interest groups or actors within a society and play an important
role in providing a collective strategic direction (roadmap) in promoting social change. In this
context, policies make contributions to creating and supporting room for niches and experiments
(such as development of infrastructure and provision of locations for experimentation-enabled
innovation) [3,45–47], increasing the attractiveness of the renewables market [48], attracting the private
sector to invest in renewable energy by increasing risk-sharing by the government and changing
the concerns and uncertainties of the risk–return relationship in the field [49,50] and promoting the
collective entrepreneurial efforts of those innovative stakeholders in a society who are unable to exploit
their full innovation potential without public intervention [51,52]. This enhances the shared ‘problem
frame,’ defined as problem-solving activities [6] in social learning—the integration of knowledge,
values and interests from multiple actors that enables joint or collective action to address the challenges
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involved [53,54], such as the depletion of fossil fuels, the risks of nuclear power and climate change
and enabling the transition to a low-carbon, sustainable and renewable-energy economy.

Civil society—a crucial actor in transition [55] processes, comprising the public or citizens—is
potentially implicated in processes of socio-technical change as a network of political actors that
welcomes or resists technological development in general, or in particular places and settings.
Although some scholars consider that the roles and functions of civil society in transition are not
clearly defined [56] or are negative [57], the public can aspire toward green living and sustainability,
which is normally triggered by societal awareness of environmental and sustainability issues.
Such public concerns provide a normative message that the society socially accepts [41,58] and
diffuses [59] renewable energy innovation; supports and encourages the use of energy generated from
renewable sources [60]; demands and pushes for changes in the sensitivity of economic agents toward
environmental solutions [59,61]; and lobbies and protests to unsettle the regime and to influence the
policies and procedures of other players [59,62]. According to Avelino and Wittmayer [63], in doing so,
civil society actors take the initiative in seeking opportunities to support the ongoing transition to a
renewable-energy economy, which in turn tends to boost the formation of public discourse, promote
social consensus (or the formation of social norms) on the issue and promote a variety of efforts
that are required for transitioning toward social betterment. This means that the public is the most
important social force in finding new solutions to issues of social innovation, such as the transition to a
renewable-energy economy.

Market actors consist of firms that seek business opportunities by bringing their new products
and services to the market served and by implementing business strategies to take advantage of
their new development [45,64]; consumers that seek benefit by purchasing satisfactory products
and services [65]; and other stakeholders who are interested in investing in some activities [41].
This implies that such economic benefit-seeking behaviors represent the market attractiveness of
products and services. Market attractiveness, defined as market potential, is a function of the size
and rate of market growth [66], which ensures higher profits [67]. Today, consumers increasingly
have positive attitudes towards and express strong demand for renewable energy, which seems to
be making a long-term impact on energy markets, by promoting the transition to a green energy
market. Furthermore, discerning consumers are finding new means of procuring renewable power
to contribute to sustainability ambitions [68] and acting as co-producers, peers and partners in the
electricity sector [69]. Hence, consumer demand for renewable energy is increasing as consumers
become active so-called ‘prosumers’ who regard electricity as a commodity and both consume and
produce electricity from renewable sources [70]. The increasing market attractiveness of renewable
energy, due to positive signs on the demand side, encourages firms involved in the renewable energy
technology and product sectors to develop strategies for capturing the profit potential. Increased
demand and competition among these firms reinforces the market attractiveness. Such a cycle of
ongoing reinforced market attractiveness, as an economic driver, contributes significantly to promoting
the transition towards a renewable-energy economy.

The traditional energy sector is an important stakeholder and attempts to define the conditions
of its work to legitimize its professional autonomy, involving the professionalization of industry or
sector members. Such professionalization expresses normative pressures to keep societal development
dependent on fossil fuel, such as via massive propaganda campaigns focused on cheaper price of fossil
fuels relative to renewables (that remains relatively immature in that there is significant scope for
further cost reductions through innovation) [71] and civil society’s preference for low-cost electricity
supply [44] generated by fossil fuels such as coal, oil, nuclear, etc. This lobbying effect [72] promotes
higher contribution of traditional energy sources to electricity generation and means that the traditional
energy sector negatively influences the transition to a renewable-energy economy

The aforementioned points inform the following conceptual framework for tackling the
relationships between major actors and the transition to a renewable-energy economy as a social
innovation issue (see Figure 1).
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Figure 1. Conceptual Framework. The social innovation issues were obtained from the Stanford Social
Innovation Review (http://ssir.org) and the authors created a framework based on the literature review
and text mining.

3. Model Specification and Methodology

Taking into account the points derived from the literature review, we employ the following panel
data model to investigate how multiple actors or agents may affect the transition:

RETRAi,t = α + βX′i,t + ηi + εi,t (1)

where i is the country (N = 25 countries, see Table 2), t is the year (between 1990 and 2014), ηi denotes
the country-specific effect for the ith individual in the panel (non-observable specific effects) and εi,t
is the error term assumed to be independently distributed across i and t with a mean of zero and
variance σ2 > 0 distributed independently of the regressors (X′i,t). RETRA is a proxy variable that
represents the degree of transition to a renewable-energy economy in each country, measured as the
contribution of renewables to total energy supply. X′it is a vector of explanatory variables that consists
of EPSi,t, GHCi,t, EOSi,t, ENSi,t, ENGSi,t, ECSi,t, GDPPCi,t and ESECUi,t. EPS is a proxy variable for
government pressure. As one of the strongest extrinsic forces, this can directly facilitate social change.
We use a composite index of economy-wide environmental policy stringency (EPS) developed by Botta
and Kózluk [73] to measure government pressure. The EPS index is based on the taxonomy developed
by De Serres et al. [74], which includes market- and non-market-based components. The market-based
component groups market-based policy instruments that assign an explicit price to environmental
externalities (taxes: CO2, NOX, SOX and diesel; Trading schemes: CO2, renewable energy certificates
and energy efficiency certificates; Feed-in tariffs: solar and wind energy; Deposit and refund schemes),
while the non-market-based component clusters command-and-control instruments (Standards: NOX,
SOX, PMX emission limits and sulfur content limit (diesel); Government research and subsidies
expenditure on renewable energy). GHC is a proxy for informal pressure from the general public,
measured in thousands of kilograms of CO2-equivalent total greenhouse-gas emissions per capita (per
1000 people). Greenhouse gases, mostly comprising water vapor, carbon dioxide, methane, nitrous
dioxide, ozone, chlorofluorocarbons and hydrofluorocarbons, are directly linked to the climate change
phenomenon and global warming. Efforts to tackle global warming and move towards planetary
sustainability are mainly focused on reducing greenhouse-gas emissions. EOS, ENS, ENGS and ECS

http://ssir.org
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refer to trade association pressures, measured as the contributions of oil, nuclear, natural gas and coal
sources to electricity generation. Power exercised by interest groups, including the trade associations
of the traditional and nuclear energy industries, increases the shares of fossil- and nuclear-based
energy, which can inhibit the development and growth of renewable energy technologies. Given this,
we used the contributions of the traditional energy sources (oil, natural gas, coal and nuclear) for
electricity generation as proxies for the power exerted by their respective trade associations within
energy technology industries. GDPPC refers to market attractiveness, derived from both market size
and the rate of market growth of renewable energy technologies, driven by consumption of renewable
energy technologies (measured in GDP per capita) [60,75]. ESECU denotes a country’s dependency
on imported energy, measured as the ratio of imported to total energy supply [60]. Our motivation for
including this factor was to control for the relationships between higher import dependency, inducing
investment in a country’s own renewable sources and increasing the contribution of renewables to
total energy supply (increasing energy security).

Data on RETRA were obtained from the International Energy Agency’s Renewable and Waste
Energy Supply section and the US Energy Information Administration’s International Energy Statistics.
Data on EPS, GHG, EOS, ENS, ENGS, ECS, GDP and ESECU were extracted from the World
Development Indicator database of World Bank. All variables of interest in this study were measured
for the 25 OECD countries from 1990 to 2014. However, incomplete data availability means the data set
is unbalanced (Australia, Canada, France, Italy, Japan, Korea, Turkey, UK and USA: 1990–2014; Austria,
Belgium, Denmark, Finland, Greece, Ireland, Netherland, Norway, Spain, Sweden and Switzerland:
1990–2012; Germany, Hungary and Portugal: 1991–2012; Czech Republic and Slovakia: 1993–2012).
We selected the period and countries based on data availability. All variables are expressed in
logarithmic form. GDP was calculated according to constant 2009 prices and international purchasing
power parity levels.

In the panel context, we conducted the empirical analysis in the following way. We confirmed
the characteristics of the data before establishing the empirical model, by testing the presence of
normality (in each variable), multi-linearity (between independent variables), structural breaks
(in the individual time series), cross-sectional dependence (between cross-sectional units within
the panel), homoscedasticity (within cross-sectional units) and autocorrelation (in the panel). We then
performed panel unit-root tests to check each variable for stationarity, taking into account the results
of structural break and cross-sectional dependence tests. When the series was non-stationary (which
means that panel unit-roots existed in each variable) from panel unit-root tests and the sample size
was sufficiently large, we conducted a panel co-integration test, considering the results of structural
break and cross-sectional tests. In the final phase, we established an empirical to test the relationship
between the variables in question based on the results for various panel framework tests, along with
consideration of the sample size and conducted the empirical tests.

4. Empirical Analysis

4.1. Panel Estimator

The current study carried out Jarque and Bera’s [76] test for normality. The results revealed that,
with some exceptions (Italy, Korea and Norway in RETRAO; Denmark and Greece in EPS; Belgium
and USA in GHG; France, Sweden, Switzerland, Turkey and UK in EOS; Japan and Norway in ENS;
Japan and Sweden in ENGS; Korea, Portugal, Switzerland, Turkey and USA in ECS; Czech Republic,
Germany, Italy and Japan in ESECU), the individual time-series do not deviate significantly from the
normal distribution at 1% or 5% significance levels (the results are available upon request from the
authors). Table 3 presents descriptive statistics of the variables in question.
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Table 3. Descriptive statistics.

Country RETRA EPS GHG EOS ENS ENGS ECS GDPPC ESECU

Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD

Australia 9.750 1.954 1.537 1.098 24.692 0.874 1.482 0.554 0 0 11.730 4.978 77.286 6.195 30,777.290 18,859.340 −122.746 27.254
Austria 70.468 3.674 2.238 0.644 10.302 0.536 3.197 1.209 0 0 16.435 2.283 11.423 2.576 31,881.840 11,871.060 67.297 2.183
Belgium 4.040 3.665 1.449 0.796 13.862 1.337 1.509 0.784 56.721 3.085 20.893 8.220 16.889 7.789 29,892.770 11,340.950 75.508 1.687
Canada 62.159 1.509 1.697 1.298 22.245 1.194 2.250 0.804 15.053 1.778 5.790 2.646 15.798 3.005 30,177.250 13,854.400 −50.139 7.816

Czech Republic 4.578 1.950 1.589 0.916 14.251 0.804 0.509 0.328 26.361 5.926 1.609 0.544 67.202 6.852 11,053.270 7002.182 24.339 3.100
Denmark 18.776 13.774 2.613 0.814 13.666 1.786 6.241 4.073 0 0 15.983 7.803 59.252 18.052 38,892.840 15,209.630 −14.355 33.586
Finland 31.037 4.715 2.088 0.870 14.103 1.086 1.360 0.788 30.753 2.362 12.559 2.631 24.184 4.692 31,637.090 12,440.790 54.586 3.033
France 14.202 1.937 2.021 1.127 8.984 0.805 1.339 0.603 77.135 1.741 2.468 1.454 5.369 1.632 29,637.510 9720.321 48.002 1.633

Germany 11.857 7.552 2.456 0.501 12.641 1.089 1.484 0.498 25.615 4.999 10.392 2.468 50.892 4.693 32,115.320 9336.628 58.776 2.795
Greece 10.233 3.607 1.641 0.460 11.019 0.790 16.867 3.971 0 0 10.205 8.671 63.150 7.520 16,229.570 8598.137 62.784 3.154

Hungary 3.049 3.101 1.514 0.989 7.335 0.614 7.883 6.405 40.322 3.751 24.756 8.858 24.073 4.346 6927.478 4976.804 53.817 5.792
Ireland 8.108 4.992 1.235 0.693 16.187 1.674 12.739 7.225 0 0 41.460 12.890 38.028 11.667 32,590.590 18,426.950 80.400 10.263

Italy 23.147 7.345 1.940 0.710 9.053 0.851 28.142 17.994 0 0 35.552 13.494 14.045 2.802 25,815.260 9032.672 81.626 2.308
Japan 11.196 1.366 1.757 0.673 10.686 0.329 18.733 6.652 22.994 9.411 25.311 6.391 22.873 6.095 37,835.240 5603.120 82.875 4.620
Korea 1.738 0.842 1.799 1.155 10.930 2.010 11.579 8.374 36.673 6.147 15.095 5.035 34.874 9.721 14,203.580 7372.544 81.906 2.396

Netherlands 6.366 3.933 2.141 0.946 13.809 1.190 2.771 1.055 4.178 0.601 57.176 2.763 29.672 4.441 33,199.780 13,810.640 15.037 8.151
Norway 99.446 1.087 1.670 0.833 11.801 0.513 0.013 0.010 0 0 0.698 1.161 0.086 0.017 51,454.190 28,543.370 −666.472 105.870
Portugal 35.213 9.398 1.688 0.658 7.220 0.700 19.219 11.029 0 0 15.670 12.504 31.187 6.392 14,756.230 6232.670 82.073 2.983
Slovakia 17.375 2.358 1.359 0.783 9.443 0.650 2.721 1.324 52.009 5.102 8.255 1.783 20.400 4.255 9324.929 6080.582 66.696 3.573

Spain 20.648 5.641 2.050 0.723 8.603 0.936 7.589 2.056 26.867 6.504 15.579 13.022 29.694 9.779 19,600.900 9086.922 71.984 531
Sweden 51.561 5.374 2.065 0.896 7.659 0.752 1.659 1.087 45.382 4.405 0.530 0.376 1.808 0.609 36,153.390 12,913.790 34.949 2.479

Switzerland 59.135 2.087 2.272 0.503 7.304 0.421 0.451 0.316 40.747 2.114 1.213 0.268 0.004 0.015 50,481.980 17,045.190 53.811 2.236
Turkey 31.350 8.780 0.995 0.630 4.799 0.725 4.954 2.740 0 0 34.824 13.049 29.930 3.874 5398.555 4632.277 64.550 8.080

UK 5.547 4.992 1.781 1.077 11.685 1.647 3.077 2.953 22.034 4.048 30.122 13.825 39.458 11.109 30,333.750 11,431.970 2.239 22.020
USA 10.851 1.519 1.609 0.803 24.148 1.605 2.546 1.123 19.435 0.541 18.194 5.073 49.426 4.617 36,020.280 11,872.710 21.565 5.503

Notes: A mean value of ENS means that the country does not use nuclear power for electricity generation. A negative value of ESECU indicates that the country is a net exporter.
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We then performed Brown et al.’s [77] cumulative sum of recursive residuals (CUSUM) and
cumulative sum of recursive residuals of squares (CUSUMQ) tests to detect whether: (a) the regression
coefficient estimates show systematic variation over the long term; and (b) deviations from the
short-term constancy of regression coefficients are randomized. With the exception of the results
of the CUSUM test for Germany and the CUSUMQ test for Australia, Japan, the Netherlands and
Switzerland, the two tests’ results showed that almost all the series are stable (the results are available
upon request from the authors).

We conducted a multicollinearity test to confirm whether or not independent variables are
correlated. As presented in Table 4, the results confirm that the data do not display multicollinearity,
demonstrating that all independent variables meet the criteria that VIF is < 10 and that the tolerance
value is >0.1 [78,79].

Table 4. Correlation between independent variables.

Panel A: Correlation

EPS GHG EOS ENS NGS ECS GDP ESECU

EPS 1.000
GHG −0.054 1.000
EOS 0.693 0.346 −1.000
ENS −0.234 −0.191 −0.272 1.000
ENGS −0.005 −0.166 −0.019 −0.286 1.000
ECS 0.180 −0.028 0.089 0.127 −0.372 1.000
GDPPC −0.167 0.045 −0.261 0.079 −0.358 0.067 1.000
ESECU 0.029 −0.139 −0.200 0.214 0.241 0.247 0.217 1.000

Panel B: Multicollinearity

VIF 3.010 2.790 1.410 2.130 1.480 2.660 4.270 1.800
Tolerance 0.332 0.358 0.707 0.468 0.676 0.375 0.234 0.556

Notes: VIF = variance inflation factor.

We used Wooldridge’s [80] test for the presence of autocorrelation in the panel data, which
detected signs of autocorrelation of one order (F statistic = 23.305, p < 0.001). We performed a
panel group-wise heteroscedasticity test, which showed that heteroscedasticity within cross-sectional
units exists, rejecting the null hypothesis (at the 1% significance level) of homoscedasticity within
cross-sectional units with a Wald test statistic of 5370 ( p = 0.001).

We tested for cross-sectional dependence (CD) using the method proposed by Pesaran [81].
The CD test for fixed-effects regression residuals in each country rejects the null hypothesis of no
cross-sectional dependence, showing residual mean absolute correlations (0.475, Pesaran CD statistic
2.192 (p = 0.028)) (for correlation matrix of residuals of Pesaran’s [81] test, see Table A2 of Appendix C).
We used Pesaran’s [82] panel unit-root test, which allows for cross-sectional dependence, to investigate
whether the series are stationary. The results in Table 5 indicate that the variables included in the
prediction model must be first-differenced before being used in further statistical analysis, showing
that the series are non-stationary.

Non-stationarity of the series suggests that there might be a long-term equilibrium among
the variables. Hence, we conducted the heterogeneous panel co-integration tests proposed by
Westerlund [83], which allow for cross-sectional dependence. However, it was not possible to conduct
the co-integration tests, due to the large number (>6) of covariates and the small sample size relative to
the number of variables to be tested.
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Table 5. Panel unit-root tests.

Variables
With Trend Without Trend

Statistic p-Value Lag Statistic p-Value Lag

RETRA 1.581 0.943 3 −0.026 0490 2
∆RETRA −3.847 0.000 3 −8.732 0.000 1
EPS −3.272 0.001 2 1.246 0.894 2
∆EPS −3.390 0.000 2 −6.085 0.000 1
GHG 2.653 0.996 2 3.087 0.999 2
∆GHG −9.510 0.000 1 −7.978 0.000 1
EOS −1.300 0.097 3 −1.067 0.143 3
∆EOS −4.259 0.000 3 −2.536 0.006 3
ENS 8.517 1.000 2 8.323 1.000 2
∆ENS −2.273 0.012 1 −3.150 0.001 1
ENGS 0.516 0.697 3 −0.447 0.697 3
∆ENGS −3.726 0.000 2 −4.746 0.000 2
ECS 0.377 0.647 3 3.134 0.999 3
∆ECS −4.148 0.000 2 −7.424 0.000 1
GDPPC 1.211 0.887 3 2.502 0.994 3
∆GDPPC −4.305 0.000 1 −3.559 0.000 1
ESECU 2.095 0.982 3 3.201 0.999 3
∆ESECU −5.628 0.000 1 −5.584 0.000 1

Notes: The numbers denote the Pesaran cross-sectional augmented Dickey-Fuller (CADF) test z [t-bar] statistics. To
remove cross-sectional dependence, the standard DF (or ADF) regressions are augmented with the cross-sectional
average of lagged levels and the first differences of the individual series (CADF statistics). The lag lengths for
the panel test [in square brackets] are based on those employed in the univariate ADF test. The normalized z-test
statistic is calculated using the t-bar statistics.

The presence of first-order autocorrelation in the series indicates that a model that accounts for
autocorrelation—the dynamic model (which specifies the dependent variable based on its values in
the previous period)—should be used. Also, cross-sectional dependence poses another obstacle to
accurate and efficient parameter estimates. Cross-sectional dependence among errors can be eliminated
by including time dummies or by cross-sectionally demeaning the data. We created year-dummy
control variables to prevent cross-individual correlation [84,85], thereby improving the robustness of
our results [86]. It calls for a first-order dynamic panel-data approach to exploring the relationships
between the variable in question.

In addition, the results of the panel unit-root tests suggest that the variables included in the
prediction model must be first-differenced before being used in further statistical analyses. There
can also exist complex dynamic relationships between the variables examined in this study. Almost
all economic and social situations, including the situation where society faces the transition to a
renewable-energy economy, in which multi-actors are interrelated, are closely related to each other
regarding each variable that comprises the system. This implies that all the variables in question,
i.e., RETRA, EPS, GHG, EOS, ENS, ENGS, ECS, GDP and ESECU, capture very complex dynamic
interactions that can drive changes in both directions. The presence of such dynamic and interrelated
relationships seems to yield reverse causality problems in the panel models.

For modeling, this study uses panel vector autoregressive (VAR) model in the firs differences,
allowing us to estimate the underlying dynamic relationships between the variable without applying
any a priori restriction. The panel VAR model in the first difference can be expressed as follows:

∆Yi,t = γ∆Yi,t−1 + β∆X′i,t + ∆εi,t + dt (2)

where ∆ is the first difference operator. Yi,t is a vector of the logs of dependent variables. X′i,t is a vector
of the logs of exogenous control variables. εi,t is a vector of idiosyncratic errors and dt is the time
dummy. The vectors of dependent and exogenous control variables consist of RETRA, EPS, GHG,
EOS, ENS, ENGS, ECS, GDP and ESECU.
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For Equation (2), differencing introduces a simultaneity problem, because the lagged endogenous
variables on the right-hand side correlate with the new differenced error term. Genuine errors across
the industries are characterized by heteroscedasticity. These conditions led us to use the instrumental
variable (IV) [87] or generalized method of moments (GMM) estimators—specifically, the difference
GMM [88] and system GMM [89,90]—to infer a causal relationship among the variable in question.

However, both the IV and GMM estimator techniques suffer from a problem: under certain
conditions, the variance of the estimates might increase asymptotically, generating considerable bias.

This problem occurs if the sample is finite, as in this study [90]. When T (time)→ ∞ , the least
squares dummy variable (LSDV) estimator is consistent and is biased only to a negligible degree [91].
However, when T < 30, Judson and Owen [92] show that the LSDV estimator has a bias of up to 20%
of the time value coefficient of interest. When T < 30, as in this study, a bias-corrected LSDV (LSDVC)
estimator performs well, compared to the IV or GMM estimation techniques by Judson and Owen [92]
for balanced panel and Bruno [93] (for unbalanced panel) in terms of bias and root-mean-square error.
Hence, we applied the LSDVC estimator, including it in Equation (2), causality, complex dynamic
relationships between the variables, is determined by running Wald tests on the coefficients of variables.

4.2. Empirical Results

We obtained the results from the five estimators, difference GMM, system GMM, LSDVC
(Anderson–Hsiao (Initial A), Arellano–Bond (Initial AB) and Blundell–Bond (Initial BB)). The results
from LSDVC estimators are presented in Tables 6, A3 and A4 of the Appendix D and are similar
regarding estimated parameters and corresponding p-values but the AB estimator is more efficient [94]
(for the results from difference and system GMMs, see Tables A5 and A6 of the Appendix D, which is
for comparison with the LSDVC estimation results).

As presented in Table 6, seven variables, including one lagged dependent variable, significantly
affect the transition to a renewable-energy economy. The LSDVC estimation results of Table 6
show evidence of dynamic effects in all bias-corrected LSDV estimations; the dependent variables
(e.g., ∆RETRAit, ∆EPSit) depend on their values in the previous period (e.g., ∆RETRAit−1, ∆EPSit−1)
at 1% significance levels, by demonstrating that a null hypothesis where each coefficient equals
zero can be rejected at 1% significance level and that each coefficient is a positive sign. The results
from panel causality tests presented in Panel B of Table 6 find that EPS and GDPPC have positive
effects on RETRA, that EOS and ENS have negative effects on RETRA, that ENS negatively affect
EPS, that EOS has a positive effect on GDPPC, that ENS and EOS negatively affect and ESECU
positively affects ECS, that ENS and EOS have negative effects on ENGS and that EOS and ESECU
have a positive and a negative effect on GHG, respectively, at 1%, 5% and 10% significance levels.
However, any significant direct relationships between ENS and EOS, EPS and ENGS, EOS or ESECU,
RETRA and GHG or ESECU, GDPPC and ECS, ENGS, ENS or ESECU do not exist (The complex
dynamic casual relationships between the variables are also presented through Casual Loop Diagram
(see Figure 2) drawn based on the results of LSDVC (Initial AB)-based panel causality tests).

The findings suggest that government (positive sign), market (positive sign) and traditional
energy industries (negative sign) are the main factors affecting the transition to a renewable-energy
economy and that persistent commitment to renewables is required to promote this transition.
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Table 6. Panel Vector Auto regression Results (Bias-Corrected LSDV Estimation Initially Utilizing Anderson-Bond Estimator).

Panel A: Bias-Corrected LSDV Estimation

Independent Variables
Dependent Variables

∆RETRAit ∆EPSit ∆GHGit ∆EOSit ∆ENSit ∆ENGSit ∆ECSit ∆GDPPCit ∆ESECUit

∆RETRAit −0.021 −0.003 0.003 −0.002 −0.017 *** −0.016 *** −0.001 0.002
∆EPSit 0.074 *** −0.011 ** 0.001 0.003 0.005 0.000 0.021 * −0.012
∆GHGit −0.170 −0.410 *** 0.006 0.018 0.043 *** 0.064 *** 0.186 *** −0.038
∆EOSit −2.609 *** 0.090 0.396 *** −0.082 −0.145 *** −0.291 *** 0.226 * 0.057
∆ENSit −2.918 *** −0.762 ** 0.019 −0.052 −0.224 *** −0.277 *** 0.190 −0.022
∆ENGSit −2.264 *** 0.005 0.353 *** −0.056 −0.089 −0.312 *** −0.056 0.033
∆ECSit −2.910 *** 0.630 * 0.597 *** −0.051 −0.094 −0.251 *** −0.196 0.083
∆GDPPCit 0.074 * 0.200 *** 0.055 *** −0.007 0.007 −0.007 −0.002 0.023
∆ESECUit 0.009 0.123 −0.034 * 0.006 0.012 0.015 0.022 ** −0.000
Each dependent variable in period, t− 1 0.762 *** 0.812 *** 0.762 *** 1.000 *** 1.078 *** 0.820 *** 0.820 *** 0.919 *** 0.980 ***

Panel B: Statistical Values for Panel Causality Tests

Independent Variables
Dependent Variable

∆RETRA ∆EPS ∆GHG ∆EOS ∆ENS ∆ENGS ∆ECS ∆GDPPC ∆ESECU

∆RETRA 0.530 0.350 0.080 0.010 20.040 *** 18.010 *** 0.020 0.060
∆EPS 6.320 *** 3.870 *** 0.010 0.030 2.380 0.010 2.780 * 2.050
∆GHG 1.650 8.610 *** 0.020 0.030 6.210 *** 15.620 *** 9.610 *** 0.840
∆EOS 112.060 *** 0.100 54.550 *** 0.140 5.650 *** 50.970 *** 3.240 * 0.390
∆ENS 76.880 *** 3.890 ** 0.070 0.190 11.150 *** 42.520 *** 1.220 0.040
∆ENGS 70.600 *** 0.000 37.180 *** 0.170 0.250 55.890 *** 0.170 0.150
∆ECS 85.730 *** 2.950 * 77.840 *** 0.120 0.150 12.120 *** 1.500 0.580
∆GDPPC 2.740 * 19.200 *** 42.590 *** 0.200 0.030 1.570 0.200 2.590
∆ESECU 0.010 1.440 3.090 * 0.160 0.210 2.280 4.910 ** 0.000

Notes: Panel A contains the results of tests based on Bias-corrected LSDV estimates. Time dummies are included in the estimation. Bias is corrected up to the first order, 0 (1/T) and
500 replications are used in the bootstrap procedure to find the asymptotic variance-covariance matrix of estimators. All estimates were controlled to include time effects (not reported in
this study). Panel B reports χ2-statistics. In Panel A and B, ***, ** and * denote the 1%, 5% and 10% significance levels, respectively. Each dependent variable in period, t− 1, denotes
∆RETRAit−1, ∆EPSit−1, ∆GHGit−1, ∆EOSit−1, ∆ENSit−1, ∆ENGSit−1, ∆ECSit−1, ∆GDPPCit−1, ∆ESECUit−1 in order of estimation presented in Panel A.
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5. Discussion and Conclusions

This study investigated how the main actors influence the transition to a renewable-energy-based
economy, using unbalanced panel data for 25 countries spanning the period from 1990 to 2014. We
performed some panel framework analyses to evaluate the data characteristics before establishing
the panel estimator and empirically testing the relationship between the variables of interest. We
used the bias-corrected least squares dummy variables (LSDVC) to control for time dummies in order
to eliminate dynamic panel bias and yield more efficient and consistent parameter estimates. The
LSDVC dynamic estimator proved to be the most appropriate, taking into account the results of panel
framework analyses. We also used other panel estimators, as appropriate, for comparison with the
LSDVC estimation results.

We can draw the following five conclusions based on the LSDVC estimation results from this study.
First, the LSDVC estimation results show which of the actors should be prioritized by policy-makers to
promote the transition to a renewable-energy-based economy. Based on the coefficients, the variables
(most important first) follow the sequence ENS (negative sign) > ECS (negative sign) > EOS (negative
sign) > ENGS (negative sign) > RETRA (continuous commitment to renewables; positive sign) > EPS
(positive sign) > GDPPC (positive sign). Hence, to promote the transition to renewables, priority
should be given to social efforts to decrease the share of traditional energy sources and consumption.
These efforts should be followed by policies that ensure steadfast commitment to renewables; that
induce economy-wide activities to be eco-friendly; and which develop market conditions that can
create massive demand or renewable energy use and renewable energy technologies and products.
Overall, the LSDV estimation results show that governments and markets actually induce social efforts
to promote the transition to renewables; and that the traditional energy slows the transition to a
renewable-based economy.
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Second, the findings from the LSDVC estimation show that the traditional energy industries
negatively affect the transition to renewables, in which a nuclear source for electricity has emerged as
having the most negative influence, followed by coal, oil and natural gas sources for electricity. This
implies that existing energy production, consumption and management systems based on traditional
energy sources can be an encumbrance to the deployment of renewable energy in society. However,
these findings do not necessarily mean that traditional energy sectors represent an obstacle to the
process of transitioning to a renewable-energy economy. Rather, it implies that this sector can be the
largest strategic reference point towards which each government needs to expend a great deal of effort
in promoting social innovation towards renewables. Although modern societies currently face the
depletion of fossil fuels, the risks associated with nuclear power and climate change are formidable
societal challenges. The core infrastructures used by the private and public sectors of society are still
heavily dependent on traditional energy derived from fossil fuels. Achieving a renewable-energy
economy will take a long time. This implies that governments should take a gradual, long-term
approach to creating various socially innovative activities, such as the transformation and downscaling
of reliance on traditional forms of energy, public infrastructure and the energy deployment system
itself. Such efforts require a variety of economy-wide market- and nonmarket-based instruments.
This study also shows that negative bidirectional casual relationships between RETRA and ECS or
ENGS exist. According to Rubio-Maya et al. [95], the high productivity of electricity production from
fossil fuels like coal and natural gas still hinder the utilization of renewable energy technologies. In
this context, the results suggest that the production of electricity through the cheapest fossil fuels
interferes with the production of electricity from renewable energy sources and that the active use of
renewable energy can reduce the use of coal and natural gas. Should this occur, investments made
into developing natural gas could be invested in renewable energy production technology. This study
shows that, predictably, there are positive bidirectional casual relationships between GHG and ECS or
ENGS and that ESECU has a positive influence on ECS and negative effects on GHG. The results imply
that among traditional energy sources, natural gas, nuclear, oil and coal negatively affect the transition
to renewable-energy economy. Coal in particular is directly related to energy security, which delays
the transition. That is because coal is widely used in the industry and is a source that better meets four
important elements considered in energy security: availability (e.g., market liquidity), accessibility
(e.g., supplier diversity), affordability (e.g., economic efficiency) and acceptability (e.g., environmental
and societal acceptability), as compared to oil [96]. Our calculation shows that the ratio of coal source
for electricity generation from traditional energy sources (oil, coal, natural gas and nuclear) on average
in the 25 countries for 1990–2014 is about 41%. This suggests that policy-makers should make efforts
to reduce coal consumption.

Third, the findings of this study demonstrate that markets have a significantly positive
influence in promoting sustainability and the transition to a renewable-energy economy. This
implies that policy-makers should make full use of market functions to encourage the economy
to be renewable-friendly by promoting the renewable energy technology sector. The promotion
of production and consumption of renewable energy are very important for ensuring market
competitiveness and for creating good opportunities and profit structures for potential investors.
This means that, in order to establish sustainable development and renewable energy as the basic
system of national energy management, in the context of Lewis and Wiser [97] and Sawhney and
Kahn [98], each country requires sufficient demand for renewable energy within its domestic markets.
Market conditions that create representative demand for renewable energy, including technologies and
products—i.e., market attractiveness as a function the size and rate of market growth [66]—depend
mainly on sociopolitical and economic contexts, driven by increase in real GDP that allows supporting
regulatory costs to promote the deployment of renewable energy [60]. This support framework
also requires policies that: promote the dual missions of maximizing business profit while also
realizing social justice; create supportive conditions for more local deals in different geographic
locations [47]; and spur collective entrepreneurial efforts by innovative stakeholders, especially
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firms, that would otherwise be unable to exploit their full innovation potential without public
intervention [51,52]. Furthermore, it requires awareness and agreement that all members of society
should have a responsibility to promote renewable energy for present and future generations and that
such investment would stimulate the sustainable economy [99]. In this context, the study findings
suggest that it is necessary for the government to properly utilize a mixed combination of sociopolitical
and economic mechanisms, not only economic considerations, in promoting the transition to a
renewable-energy economy. The results of causality tests also indicate that public and government
actors positively interact with market actors, by showing convincing evidence of bidirectional positive
interaction between GDPPC and EPS or GHG. It suggests that although the market itself may
have a positive impact on the transition to a renewable-energy economy, policy-makers should
bear in mind that creating interaction between the government and the market [100] and the public
discourse network that stimulates the market actors [101] are very crucial to promote the transition to a
renewable-energy society. Based on such interactions, policy-makers should make significant effort to
enhance their potential synergy effects in developing and implementing a variety of policy instruments
for promoting the transition. In the context of Newell et al. [102], this means that policy-makers need
to understand the collaborative process at the level of a multi-actor network that transcends the formal
hierarchy in order to invest in renewable energy.

Fourth, the results of this study show that governmental actors positively influence the transition
to renewables. We used a composite index of economy-wide environmental policy stringency (EPS)
as a proxy variable for governmental pressure, based on the perspective that government’s role
is expressed as various policies—coercive pressure—to which firms attempt to adapt in order to
increase their competitive advantage [43]. The EPS index encompasses a wide range of market- and
non-market-based policy instruments that are necessary to make each economy environmentally sound
and sustainable, such as taxes on pollutants and fuels; trading schemes for carbon dioxide emissions,
renewable energy and energy efficiency; feed-in tariffs for renewables; deposit and refund schemes;
limits on pollutant emissions; R&D and subsides for renewable energy. In this context, the findings
suggest that governments should take into account both sides of a sociopolitical and economic situation,
give consideration to maintaining a balance between the differing interests expressed by actors in
society and develop and implement various market- and non-market-based policy instruments for
deployment of renewable energy. Furthermore, this study demonstrates that there is a dynamic
effect (path dependence), showing that the contribution of renewables to total energy supply in
previous periods has positive effects on that in the present period. This suggests the importance of a
persistent commitment to renewables. Hence, in order to promote the transition to a renewable-energy
economy, various continuous efforts are required across the society. By demonstrating a bidirectional
positive causal relationship between EPS that positively affects RETRA and GDPPC, the results of
causality tests show that environmental policy facilitates the transition to a renewable energy society
by interacting with the market. This suggests that policy-makers should make significant efforts
to develop and implement reliable policy measures that can enhance high and positive elasticities
(elasticity of environmental efforts to market expansion and vice versa) and that synergy effects
between the environment and market expansion policies should be taken into account in developing
and implementing policy instruments to further promote the transition to renewable-energy economy.

Fifth, this study showed convincing evidence of dynamic effects (dynamic-path dependence)
in all LSDVC estimations, by demonstrating that the dependent variables are based on their values
in the previous at 1% significance levels. It suggests that a learning-by-doing effect exists in each
variable, showing that the value of ERETRA, EPS, GHG, DEOS, ENS, ENGS, ECS, CGDPPC and
NESECU in the present period depends on their values in the previous period. Such learning-by-doing
effects refer to a variety of mechanisms that the current level of the contribution of the renewable
energy component to the total energy supply, environmental policy stringency, greenhouse gas
emissions, market growth, power generation from the traditional energy sector, or dependence on
imported energy might be enhanced by its own previous level. The results of this study suggest that
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policy-makers should continuously make significant efforts to use industrial export promotion policy
strategies by continuously creating productivity gain through exporting and promoting industry
expansion as much as possible, implement various policy strategies to promote the transition to
a renewable-energy economy by increasing the contribution of renewables to total energy supply,
implement environmental policies that encourage firms in the industry to be eco-friendly and reduce
the ratio of power generation from traditional sources such as oil, natural gas, nuclear energy and
coal. Especially, considering that there are positive bidirectional dynamic relationships between
GDPPC and EPS or GHG and that GDPPC and EPS have positive effects on RETRA, policy-makers
should make and implement an optimum policy-mix of various policy instruments to promote market
expansion, environmentally sound and sustainable development of society and public awareness
about the environmental sustainability of society and necessity of the transition to renewable-energy
economy. Such various government efforts to develop and implement a variety of policy measure
need to be undertaken by carefully considering the time lag shown as the result of a dynamic
path-dependence process.

Sixth, this study found that public actors do not significantly direct influence the transition
to a renewable-energy economy. This does not necessarily mean that the public is not important
for this purpose. Rather, the results indicate that, despite the importance of public’s central role in
forming discourse regarding the transition, public actors do not exert enough of influence to induce
efforts toward tackling the societal issues and challenges related to the renewables transition. This
interpretation of the results can be supported by the convergence of iterated correlation (CONCOR)
semantic network analysis applied to the text-mining data obtained in Section 2 that we conducted
(for details of the results of the CONCOR semantic network analysis, refer to Appendix E). This
analysis showed that public-related terms, such as Community, Public and Public service, are centered
on “renewable energy,” indicating that public actors appeared to be prominent in forming discourse
regarding the transition to a renewable-energy economy. Hence, the results of the panel data and
CONCOR semantic network analyses suggest that, even though public actors form strong bonds with
each other and a consensus on the transition to a renewable-energy economy, this is still insufficient
to encourage various social innovations that can directly contribute to the deployment of renewable
energy. However, the result of causality tests that there is a bidirectional positive causal relationship
between GHG and GDPPC implies that public actors can indirectly affect interaction between the
government and market actors and transition to renewable-energy economy. This suggests that the
transition cannot—and should not—be radical but should instead be considered as a process of social
innovation that induces gradual change with the participation of various stakeholders and members
of society. In this context, the study findings should be understood as indicating that the public is
still contributing to the transition in terms of generating discourse on this process and that discourse
formed by public actors could mobilize social innovation across society. Taking into account the results
of CONCOR analysis and causality tests, public actor is a very important factor indirectly affecting
the transition to the renewable-energy society. It suggests that policy-makers need to devise and
implement policy strategies to utilize public actors and encourage the market and the government,
which leads to promotion of the transition.

This study contributes to a detailed understanding of the many actors who are likely to
affect the transition to a renewable-energy economy, through a literature review and text-mining
analysis and through empirical examination of the influences of major actors on this transition.
However, the inability of the data to measure the components’ forces (for example NGOs, academic
groups and investor groups) limits our ability to empirically grasp their effects on the transition
to a renewable-energy economy. Hence, further research is required to identify the roles of these
components in promoting a transition to a renewable-energy economy. An analysis of the effects
of major actors on the transition to a renewable-energy economy can be performed taking various
approaches, such as multi-actor, sociopolitical-economy, stakeholder, legitimacy theory. For better
understanding of the influences of the actors in the process of the transition, an integrated approach



Sustainability 2018, 10, 448 17 of 32

should be done in future research. In addition, the results of the data analysis presented in this study
should be viewed with regard to the complexity of the issue, namely, correlations across space, which is
especially true for European OECD countries. In terms of stringent environmental policy; greenhouse
gas emissions; the market; import dependency of energy; and the contribution of the sum of oil,
nuclear, natural gas and coal sources to electricity generation of the sample that consists of European
countries only, this study obtained Pesaran CD statistics of 12.379 (p = 0.000), 24.845 (p = 0.000),
21.063 (p = 0.000), 48.932 (p = 0.000), 3.211 (p = 0.000) and 11.397 (p = 0.000), respectively and the
corresponding averaged absolute correlation coefficients are 0.263, 0.388, 0.771, 0.228 and 0.295. The
test results indicate interactions among European OECD countries for each variable. In particular,
the result of the Pesaran CD test for the market (Pesaran CD statistics of 48.932 and average absolute
correlation coefficient of 0.771) demonstrates that European OECD countries have a highly linked
energy market. If fact, the European energy market is now tightly connected, as a result of three
integration packages [103]; package one (1996–1998) allows for the opening of the energy market,
package two (2003) unbundles the energy market and package three (2009) newly unbundles the
regime and provides clear obligations in terms of national regulations. The consensus on energy issues
has led the European Commission to initiate a joint policy response to three themes: sustainability,
competitiveness and security of supply. This means that the European Union’s energy policy primarily
focuses on the same direction and destination and within this macro framework, each member country
pursues a detailed energy policy. The market is thus moving in close alignment with the EU’s overall
energy policy. This context is a potential cause for cross-sectional dependence between the countries
with regard to the market. However, it is difficult to attribute this highly linked market to only one
cause. According to Vega and Maria [104], addressing the nature of the observed correlation across
European OECD countries in terms of the market, including other variables, is a complex issue, because
potential sources of interactions between countries, space, or regions (namely, spatial autocorrelation)
can be a common factor and/or spatial spillover effects may be caused by various factors. Thus, the
potential causes of spatial autocorrelation need to be explored in future research so as to obtain more
efficient estimates.
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Appendix A

Estimation method of TF–IDF and degree centrality: The TF–IDF and degree centrality are
computed using Python library functions from GitHub. The classification follows Son’s [105] criteria:
importance takes into account frequency and centrality estimation, which depend on the focus of the
relationship between nodes (words or texts) in the semantic network.

In a semantic network, a node in a geodesic path between other pairs of nodes is considered to
occupy a critical location. TF–IDF is a useful algorithm for characterizing the interests of information
seekers. This value is the result of statistical analysis used to evaluate the importance of a word to a
document in a collection or corpus. The TF-IDF value increases proportionally to the frequency of a
word that appears in the document but it is often offset by the frequency of the word in the corpus,
which helps to adjust for the fact that some words appear more frequently in general. As a weighting
factor, the TF-IDF value is often used in information retrieval and text mining and search engines
use it as a central tool to score and rank documents when given a user query. This study uses the
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classic formula of TF–IDF analysis (see Equation (A1)) to measure the importance of words related to
renewable energy [106]:

TF− IDF = TF × IDF = t fx,y × log
(

N
d fx

)
(A1)

Here, x and y are word and document, respectively. t fx,y denotes the frequency of x in y.
d fx denotes the number of y containing x. N indicates the total number of documents.

Depending on the attributes of the connecting relationship, the degree of centrality can be
interpreted as degree, closeness and betweenness [107]. Centrality is based on the Semantic Web
(defined as an extension of the World Wide Web through standards by the World Wide Web Consortium)
and uses graphs that show summary information about words, which is most effective in identifying
nodes that humans consider important [108,109]. The degree of centrality is measured as the extent to
which a node is connected to other nodes in the network. In a binary graph indicating whether a there
is/is not a connection between nodes (with no direction), the centrality of a node is expressed as:

C′D(Ni) =
CD(Ni)

g− 1
(A2)

where C′D(Ni) denotes the standardized degree of centrality of node i, in which the value of CD(Ni)

that tends to be dependent on the size of the network. CD(Ni) denotes the degree of centrality of

node i, calculated by
g
∑

j=1
xij, i 6= j [110].

g
∑

j=1
xij is the number of connections that node i has with other

nodes. g is the number of nodes. xij denotes whether there is a connection between node i and the
remaining other nodes, g− 1 : : xij = 1 when a connection exists, otherwise xij = 0.
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Appendix B

Table A1. Text mining analysis using phrase “renewable energy”.

Words TF–IDF Rank Degree Rank Words TF–IDF Rank Degree Rank

energy source 4826.704 1 0.0643 1 oil gas 1100.959 73 0.0141 68
power 4151.506 2 0.0641 2 system analysis 1087.807 74 0.0169 41
solar energy 3977.971 3 0.0519 3 energy conservation 1083.505 75 0.0133 72
wind energy 3909.333 4 0.0504 4 China RE 1055.453 76 0.0144 64
energy technology 3368.345 5 0.0451 5 bank group 1052.127 77 0.0155 56
energy laboratory 3155.630 6 0.0180 35 energy economy 1038.002 78 0.0133 73
energy system 3106.153 7 0.0404 6 India RE 1031.403 79 0.0143 65
national energy 3103.884 8 0.0313 10 city 1005.992 80 0.0142 67
electricity generated 2798.359 9 0.0366 9 lead RE 994.751 81 0.0126 77
energy development 2765.701 10 0.0386 8 smart grid 986.385 82 0.0107 92
NREL(National RE Lab.) 2691.552 11 0.0283 13 promote RE 982.461 83 0.0117 82
project energy 2625.641 12 0.0392 7 hydrogen fuel 980.416 84 0.0110 86
energy efficiency 2477.865 13 0.0173 39 simulate model 979.693 85 0.0110 87
fossil fuel 2431.560 14 0.0285 12 tax 974.508 86 0.0081 124
green energy 2126.637 15 0.0293 11 impact RE 974.375 87 0.0124 78
RE generate 2121.532 16 0.0238 17 focus RE 974.135 88 0.0104 96
energy policy 2094.337 17 0.0259 15 public service 970.332 89 0.0127 76
world energy 2049.329 18 0.0280 14 nongovernment 957.495 90 0.0099 101
clean energy 1860.807 19 0.0210 24 storage system 954.840 91 0.0098 104
biomass 1855.556 20 0.0201 26 waste management 951.760 92 0.0107 93
environment 1738.192 21 0.0243 16 offshore wind 925.601 93 0.0135 71
heat pump 1646.126 22 0.0173 40 rural area 904.850 94 0.0131 75
state 1639.873 23 0.0234 19 RE community 893.396 95 0.0116 83
sustainability 1639.444 24 0.0178 36 carbon emission 882.985 96 0.0102 98
energy gram 1615.032 25 0.0229 20 rural electrify 874.344 97 0.0077 131
water heat 1583.335 26 0.0194 30 energy cooperative 867.394 98 0.0114 84
department energy 1558.930 27 0.0148 62 nuclear power 864.999 99 0.0098 102
global RE 1552.323 28 0.0200 27 law 864.417 100 0.0108 89
support RE 1532.119 29 0.0236 18 RE platform 863.068 101 0.0108 90
energy company 1488.124 30 0.0216 23 small scale 859.523 102 0.0092 111
development country 1466.006 31 0.0219 22 credit 852.552 103 0.0079 128
natural gas 1458.810 32 0.0161 45 farm 846.779 104 0.0108 91
energy provide 1456.173 33 0.0226 21 gas emission 840.938 105 0.0102 99
energy future 1416.085 34 0.0189 32 energy coalition 836.639 106 0.0098 103
energy industry 1407.017 35 0.0200 28 energy incentive 828.618 107 0.0064 140
fossil energy 1396.691 36 0.0123 79 demand RE 827.617 108 0.0095 106
investment RE 1381.162 37 0.0160 48 develop agency 826.380 109 0.0092 112
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Table A1. Cont.

Words TF–IDF Rank Degree Rank Words TF–IDF Rank Degree Rank

climate change 1375.007 38 0.0166 43 California 801.782 110 0.0106 94
energy production 1361.316 39 0.0156 53 process 799.789 111 0.0132 74
job 1359.979 40 0.0117 81 percent 766.531 112 0.0085 121
energy management 1316.806 41 0.0159 51 sun 761.246 113 0.0076 133
study RE 1293.237 42 0.0206 25 performance 760.283 114 0.0096 105
cost RE 1291.107 43 0.0188 33 capacity 755.914 115 0.0081 125
policy support 1273.155 44 0.0178 37 strategy 742.806 116 0.0093 108
engineer RE 1271.425 45 0.0156 54 America 737.946 117 0.0090 117
government 1257.907 46 0.0198 29 Germany 721.048 118 0.0100 100
home RE 1256.240 47 0.0161 46 Africa 720.373 119 0.0082 123
RE plan 1251.298 48 0.0160 49 council RE 718.964 120 0.0078 129
potential RE 1248.381 49 0.0154 57 large 716.589 121 0.0090 118
market 1233.673 50 0.0162 44 role RE 715.852 122 0.0091 113
RE solute 1229.192 51 0.0151 59 present policy 708.068 123 0.0090 116
energy utility 1229.192 52 0.0167 42 Australia 707.001 124 0.0087 120
University 1224.708 53 0.0194 31 price 705.399 125 0.0089 119
change energy 1224.708 54 0.0146 63 benefit 704.499 126 0.0092 110
Inventive 1217.508 55 0.0159 52 integrate RE 703.053 127 0.0071 134
work assistant 1207.678 56 0.0173 38 division 696.742 128 0.0050 143
alternate energy 1207.345 57 0.0122 80 fund 688.786 129 0.0091 114
RE apply 1199.822 58 0.0160 50 learn 677.060 130 0.0094 107
energy science 1196.054 59 0.0150 60 energy finance 677.057 131 0.0081 126
time RE 1181.016 60 0.0188 34 opportunity 676.077 132 0.0091 115
power plant 1175.392 61 0.0155 55 standard 664.577 133 0.0071 136
geothermal energy 1172.973 62 0.0103 97 battery 662.954 134 0.0070 138
energy use 1150.393 63 0.0004 144 consumption 641.452 135 0.0062 141
formation RE 1149.612 64 0.0139 69 public 629.564 136 0.0076 132
international RE 1139.643 65 0.0160 47 ministry 616.506 137 0.0065 139
energy unit 1138.133 66 0.0135 70 people 616.187 138 0.0093 109
RE grow 1132.121 67 0.0153 58 association 613.195 139 0.0071 137
institute technology 1130.578 68 0.0149 61 Europe 595.801 140 0.0061 142
sector 1120.393 69 0.0142 66 professional 590.137 141 0.0077 130
gas turbine 1116.638 70 0.0112 85 challenge 586.399 142 0.0082 122
target RE 1104.440 71 0.0109 88 control 585.936 143 0.0080 127
natural source 1103.190 72 0.0106 95 conference 576.741 144 0.0071 135
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Appendix C

Table A2. Correlation matrix of residuals of Pesaran’s (2004) test.

AUS AUT BEL CAN CZE DEN FIN FRA GER GRE HUN IEL ITA JPN KOR NED NOR POR SVK ESP SUI SWI TUR USA UK

AUS 1.00
AUT 0.04 1.00
BEL −0.65 −0.41 1.00
CAN 0.32 0.48 −0.84 1.00
CZE −0.10 −0.54 0.74 −0.77 1.00
DEN −0.51 0.17 −0.04 0.35 −0.67 1.00
FIN 0.23 0.28 −0.45 0.57 −0.55 0.49 1.00
FRA 0.72 0.04 −0.78 0.66 −0.42 −0.35 0.18 1.00
GER −0.73 0.01 0.79 −0.61 0.37 0.34 −0.20 −0.90 1.000
GRE −0.40 0.15 0.25 −0.27 0.11 0.36 −0.01 −0.49 0.33 1.00
HUN −0.75 −0.13 0.83 −0.82 0.52 −0.08 −0.55 −0.81 0.73 0.43 1.00
IEL 0.57 −0.27 −0.38 0.21 0.04 −0.57 −0.21 0.67 −0.72 −0.54 −0.41 1.00
ITA 0.28 0.61 −0.72 0.87 −0.55 0.07 0.24 0.61 −0.51 −0.21 −0.69 0.18 1.00
JPN −0.52 0.51 −0.12 0.40 −0.60 0.79 0.30 −0.25 0.26 0.38 0.04 −0.58 0.33 1.00
KOR 0.42 −0.03 −0.15 −0.21 0.03 −0.32 −0.34 0.07 0.02 −0.16 −0.17 0.06 −0.09 −0.24 1.00
NED −0.83 −0.06 0.69 −0.44 0.36 0.55 −0.14 −0.88 0.88 0.62 0.66 −0.69 −0.42 0.47 −0.27 1.00
NOR 0.69 0.32 −0.83 0.73 −0.48 0.02 0.52 0.72 −0.66 −0.27 −0.81 0.24 0.63 −0.04 0.23 −0.60 1.00
POR 0.27 0.24 −0.72 0.83 −0.64 0.35 0.36 0.48 −0.45 −0.24 −0.68 0.33 0.75 0.38 −0.08 −0.32 0.47 1.00
SVK 0.75 −0.05 −0.80 0.64 −0.38 −0.01 0.56 0.90 −0.93 −0.36 −0.79 0.58 0.38 −0.17 −0.01 −0.86 0.80 0.55 1.00
ESP 0.65 0.34 −0.84 0.91 −0.64 0.09 0.48 0.71 −0.64 −0.36 −0.91 0.39 0.81 0.13 0.12 −0.55 0.73 0.85 0.72 1.00
SUI 0.66 0.45 −0.85 0.80 −0.60 −0.00 0.66 0.72 −0.69 −0.23 −0.81 0.33 0.64 0.01 −0.07 −0.64 0.80 0.58 0.81 0.81 1.00
SWI 0.43 0.59 −0.76 0.66 −0.68 −0.04 0.34 0.62 −0.59 −0.22 −0.57 0.32 0.64 0.19 −0.02 −0.59 0.60 0.52 0.57 0.62 0.74 1.00
TUR 0.65 −0.27 −0.35 0.15 0.20 −0.45 −0.16 0.60 −0.66 −0.26 −0.45 0.66 0.12 −0.61 0.14 −0.51 0.42 0.12 0.51 0.35 0.26 0.15 1.00
USA 0.75 0.18 −0.87 0.67 −0.42 −0.28 0.32 0.86 −0.95 −0.31 −0.79 0.59 0.58 −0.20 0.03 −0.82 0.80 0.49 0.93 0.72 0.82 0.72 0.57 1.00
UK −0.23 −0.26 0.80 −0.82 0.63 −0.37 −0.59 −0.61 0.65 0.07 0.74 −0.04 −0.70 −0.29 0.26 0.39 −0.78 −0.54 −0.72 −0.65 −0.71 −0.59 −0.22 −0.71 1.00

Notes: The correlation matrix of residuals between countries is based on the model using a fixed effect estimator. The country codes represent Australia (AUS), Austria (AUT),
Belgium (BEL), Canada (CAN), Czech Republic (CZE), Denmark (DEN), Finland (FIN), France (FRA), Germany (GER), Greece (GRE), Hungary (HUN), Ireland (IEL), Italy (ITA), Japan (JPN),
Korea (KOR), Netherlands (NED), Norway (NOR), Portugal (POR), Slovakia (SVK), Spain (ESP), Sweden (SUI), Switzerland (SWI), Turkey (TUR), United States of America (USA) and
the United Kingdom (UK).
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Appendix D

Table A3. Panel Vector Auto regression Results (Bias-Corrected LSDV Estimation Initially Utilizing the Anderson–Hsiao Estimator).

Panel A: Bias-Corrected LSDV Estimation

Independent Variables Dependent Variables

∆RETRAit ∆EPSit ∆GHGit ∆EOSit ∆ENSit ∆ENGSit ∆ECSit ∆GDPPCit ∆ESECUit

∆RETRAit −0.034 −0.002 0.000 0.012 −0.022 −0.015 ** −0.002 0.001
∆EPSit 0.075 * −0.010 0.002 0.002 0.006 0.002 0.028 −0.002
∆GHGit −0.120 −0.464 *** 0.012 0.051 0.077 0.064 * 0.172 −0.064
∆EOSit −2.509 *** 0.159 0.380 ** −0.122 −0.258 −0.294 *** 0.240 0.106
∆ENSit −2.808 *** −0.612 0.034 −0.134 −0.336 −0.294 *** 0.230 0.013
∆ENGSit −2.101 *** 0.010 0.370 *** 0.201 −0.110 −0.344 *** −0.024 0.052
∆ECSit −2.928 *** 0.700 * 0.609 *** −0.143 −0.141 −0.419 −0.165 0.175
∆GDPPCit 0.085 0.231 *** 0.057 * −0.010 0.019 −0.001 −0.006 0.025
∆ESECUit −0.001 0.156 −0.037 0.003 0.009 0.018 0.002 0.003
Each dependent variable in period t− 1 0.761 *** 0.809 *** 0.775 *** 0.824 1.036 0.610*** 0.537 *** 0.909 *** 0.917 ***

Panel B: Statistical Values for Panel Causality Tests

Independent Variables Dependent Variable

∆RETRA ∆EPS ∆GHG ∆EOS ∆ENS ∆ENGS ∆ECS ∆GDPPC ∆ESECU

∆RETRA 1.020 0.010 0.000 0.020 0.290 5.770 ** 0.010 0.000
∆EPS 3.450* 0.560 0.020 0.000 0.020 0.170 2.340 0.020
∆GHG 0.380 7.570 *** 0.000 0.010 0.140 2.930 * 1.670 0.180
∆EOS 51.820 *** 0.230 4.950 ** 0.020 0.620 19.410 *** 1.740 0.140
∆ENS 35.790 *** 1.950 0.030 0.200 0.510 17.940 *** 0.660 0.000
∆ENGS 31.360 *** 0.000 7.100 *** 0.360 0.030 29.490 *** 0.020 0.080
∆ECS 45.760 *** 2.840 * 17.430 *** 0.130 0.040 1.480 0.610 0.450
∆GDPPC 1.770 18.900 *** 3.720 * 0.040 0.010 0.000 0.350 0.330
∆ESECU 0.000 1.840 1.020 0.010 0.010 0.010 2.420 0.000

Notes: Panel A contains the results of tests based on the bias-corrected LSDV estimates initialized by the Anderson–Hsiao estimator. The bias is corrected up to the first order, 0 (1/T)
and 500 replications are used in the bootstrap procedure to identify the asymptotic variance–covariance matrix of the estimators. All estimates were controlled to include time effects
(not reported in this study). Panel B reports the χ2-statistics. In Panels A and B, ***, ** and * denote the 1%, 5% and 10% significance levels, respectively. Each dependent variable in period
t− 1 denotes ∆RETRAit−1, ∆EPSit−1, ∆GHGit−1, ∆EOSit−1, ∆ENSit−1, ∆ENGSit−1, ∆ECSit−1, ∆GDPPCit−1 and ∆ESECUit−1 in order of the estimation presented in Panel A.
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Table A4. Panel Vector Auto regression Results (Bias-Corrected LSDV Estimation Initially Utilizing the Blundell–Bond Estimator).

Panel A: Bias-Corrected LSDV Estimation

Independent Variables Dependent Variables

∆RETRAit ∆EPSit ∆GHGit ∆EOSit ∆ENSit ∆ENGSit ∆ECSit ∆GDPPCit ∆ESECUit

∆RETRAit −0.016 0.053 *** 0.057 *** 0.130 0.009 *** 0.050 *** −0.016 −0.013
∆EPSit 0.078 ** −0.010 −0.036 *** −0.036 −0.010 *** −0.022 *** 0.003 −0.016 ***
∆GHGit −0.013 −0.411 *** −0.084 *** 0.804 −0.035 ** −0.120 *** 0.113 * −0.116 ***
∆EOSit −2.533 *** 0.154 0.538 *** 0.173 0.623 *** 0.081 0.215 0.220 ***
∆ENSit −2.878 *** −0.772 * 0.389 *** 0.975 *** 0.571 *** 0.072 −0.005 −0.003
∆ENGSit −2.258 *** 0.012 0.207 *** 1.228 *** 0.328 0.054 −0.083 −0.039
∆ECSit −2.780 *** 0.652 * 0.409 *** 1.388 *** 0.474 0.661 *** −0.227 0.247 **
∆GDPPCit 0.077 0.223 *** −0.011 −0.069 *** −0.231 −0.022 *** 0.042 *** 0.052 ***
∆ESECUit −0.010 0.112 −0.020 −0.027 ** 0.059 −0.063 *** 0.007 −0.001
Each dependent variable in period t− 1 0.825 *** 0.846 *** 1.327 *** 3.956 *** 7.971 *** 2.669 *** 1.749 *** 0.992 *** 1.960 ***

Panel B: Statistical Values for Panel Causality Tests

Independent Variables Dependent Variable

∆RETRA ∆EPS ∆GHG ∆EOS ∆ENS ∆ENGS ∆ECS ∆GDPPC ∆ESECU

∆RETRA 0.290 68.520 *** 448.750 *** 0.000 10.450 *** 112.150 *** 1.430 2.380
∆EPS 5.860 ** 2.280 117.980 *** 0.000 9.620 *** 22.070 *** 0.050 3.090 *
∆GHG 0.460 7.010 *** 30.101 *** 0.000 5.360 ** 26.330 *** 3.360 * 8.230 ***
∆EOS 85.700 *** 0.260 70.080 *** 0.000 772.530 *** 2.270 2.640 6.720 ***
∆ENS 59.620 *** 3.480 * 21.280 *** 714.230 *** 267.950 *** 0.890 0.000 0.000
∆ENGS 54.310 *** 0.000 9.750 *** 2,872.430 *** 0.000 2.150 0.340 0.190
∆ECS 63.140 *** 2.740 * 28.560 *** 2,275.330 *** 0.000 682.080 *** 1.850 5.150 **
∆GDPPC 2.350 21.550 *** 1.730 189.720 *** 0.000 17.530 *** 38.990 *** 14.870 ***
∆ESECU 0.010 1.230 0.790 6.020 ** 0.000 27.620 *** 0.160 0.000

Notes: Panel A contains the results of tests based on the bias-corrected LSDV estimates initialized by the Blundell–Bond estimator. The bias is corrected up to the first order, 0 (1/T) and
500 replications are used in the bootstrap procedure to find the asymptotic variance–covariance matrix of the estimators. All estimates were controlled to include time effects (not reported
in this study). Panel B reports the χ2-statistics. In Panels A and B, ***, ** and * denote the 1%, 5% and 10% significance levels, respectively. Each dependent variable in period t− 1 denotes
∆RETRAit−1, ∆EPSit−1, ∆GHGit−1, ∆EOSit−1, ∆ENSit−1, ∆ENGSit−1, ∆ECSit−1, ∆GDPPCit−1 and ∆ESECUit−1 in order of the estimation presented in Panel A.
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Table A5. Panel Vector Auto regression Results (System GMM Estimator).

Panel A: System GMM Estimation

Independent Variables Dependent Variables

∆RETRAit ∆EPSit ∆GHGit ∆EOSit ∆ENSit ∆ENGSit ∆ECSit ∆GDPPCit ∆ESECUit

∆RETRAit −0.028 −0.002 −0.030 *** −0.020 *** −0.031 *** −0.038 *** −0.015 0.013
∆EPSit 0.094 *** 0.011 0.005 −0.006 * 0.013 *** 0.007 * 0.041 *** −0.011
∆GHGit −0.495 *** −0.175 * 0.015 −0.023 ** −0.018 * 0.045 *** 0.346 *** −0.112 ***
∆EOSit −2.200 *** 0.463 0.145 ** −0.253 *** −0.101 *** −0.214 *** 0.179 0.500 ***
∆ENSit −2.852 *** −0.025 0.066 −0.322 *** −0.350 *** −0.417 *** 0.184 0.476 ***
∆ENGSit −1.585 *** −0.030 0.124 * −0.271 *** −0.170 *** −0.336 *** −0.194 0.364 ***
∆ECSit −2.929 *** 0.213 0.474 *** −0.343 *** −0.163 *** −0.218 *** −0.673 *** 0.784 ***
∆GDPPCit 0.074 0.157 *** 0.057 *** 0.001 0.004 0.013 *** −0.034 *** −0.002
∆ESECUit 0.014 0.036 −0.131 *** 0.024 0.017 0.027 0.035** 0.048
Each dependent variable in period t− 1 0.671 *** 0.739 *** 0.831 *** 0.722 *** 0.758 *** 0.691 *** 0.479 *** 0.833 *** 0.721 ***
Wald

(
χ2) 5188 6692 6193 6505 4906 9314 5521 5121 14,538

Sargan
(
χ2) 480.249 238.430 399.402 460.528 499.014 503.231 571.945 389.202 781.034

Panel B: Statistical Values for Panel Causality Tests

Independent Variables Dependent Variable

∆RETRA ∆EPS ∆GHG ∆EOS ∆ENS ∆ENGS ∆ECS ∆GDPPC ∆ESECU

∆RETRA 0.490 0.030 5.580 ** 5.670 ** 11.900 *** 25.170 *** 0.740 1.490
∆EPS 4.590 ** 0.440 1.240 2.090 3.590 * 0.550 4.120 ** 1.830
∆GHG 5.130 ** 3.660 * 0.580 1.570 0.570 2.100 15.050 *** 2.450
∆EOS 25.800 *** 1.200 1.380 14.910 *** 1.430 5.660 *** 0.640 1.960
∆ENS 22.340 *** 0.010 0.420 13.210 *** 17.710 *** 17.480 *** 0.400 1.600
∆ENGS 5.640 ** 0.020 1.810 13.440 *** 17.590 *** 17.370 *** 3.050 * 2.030
∆ECS 17.700 *** 0.350 10.010 *** 8.170 *** 6.520 *** 6.570 *** 9.620 *** 1.800
∆GDPPC 0.570 13.120 *** 13.810 *** 0.010 0.240 1.710 5.860 1.780
∆ESECU 0.010 0.100 1.700 1.400 1.630 0.980 1.880 0.060

Notes: Panel A contains the results of tests based on the system GMM estimator. The Sargan test of over-identifying restrictions tests H0 for instrument validity. m1 tests for the first-order
autocorrelation of residuals and H0 for no first-order autocorrelation. m2 tests for the second-order autocorrelation of residuals and H0 for no second-order autocorrelation. All estimates
were controlled to include time effects (not reported in this study). One-step estimations were applied to test the relationship. Panel B reports the χ2-statistics. In Panels A and B, ***, **
and * denote the 1%, 5% and 10% significance levels, respectively. Each dependent variable in period t− 1 denotes ∆RETRAit−1, ∆EPSit−1, ∆GHGit−1, ∆EOSit−1, ∆ENSit−1, ∆ENGSit−1,
∆ECSit−1, ∆GDPPCit−1 and ∆ESECUit−1 in order of the estimation presented in Panel A.
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Table A6. Panel Vector Auto regression Results (Difference GMM Estimator).

Panel A: Difference GMM Estimation

Independent Variables Dependent Variables

∆RETRAit ∆EPSit ∆GHGit ∆EOSit ∆ENSit ∆ENGSit ∆ECSit ∆GDPPCit ∆ESECUit

∆RETRAit −0.032 −0.010 −0.028 ** −0.019 ** −0.026 *** −0.027 *** −0.005 −0.004
∆EPSit 0.045 0.001 0.005 −0.009 0.012 ** 0.008 0.021 −0.009
∆GHGit 0.168 0.333 0.073 * 0.003 0.101 * 0.195 *** 0.573 *** −0.120
∆EOSit −3.819 *** 0.301 0.292 *** −0.357 ** −0.289 *** −0.382 *** 0.154 0.216
∆ENSit −3.242 *** −0.555 −0.216 −0.227 *** −0.434 *** −0.432 *** 0.463 * −0.003
∆ENGSit −3.178 *** −0.305 0.387 *** −0.326 *** −0.366 *** −0.601 *** −0.301 0.051
∆ECSit −4.141 *** 0.284 0.886 *** −0.347 *** −0.408 *** −0.522 *** −0.846 ** 0.360
∆GDPPCit 0.103 0.354 *** 0.128 *** −0.006 0.013 * 0.017 −0.053 *** 0.026
∆ESECUit 0.072 −0.067 −0.018 0.005 0.001 −0.014 0.001 −0.026
Each dependent variable in period t− 1 0.659 *** 0.688 *** 0.610 *** 0.585 *** 0.544 *** 0.416 *** 0.178 * 0.759 *** 0.679 ***
Wald

(
χ2) 6,918 2,050 4,835 4,268 9,600 18,697 6,017 7,703 3,540

Sargan
(
χ2) 331.300 214.390 463.430 438.170 416.280 466.300 606.290 341.780 491.290

m1(N(0, 1)) −3.360 *** −3.530 *** −3.530 *** −2.390 ** −2.700 *** −2.870 *** −2.550 *** −2.160 ** −1.060
m2(N(0, 1)) −1.260 0.350 0.550 −1.370 0.080 −0.780 −1.240 −0.310 1.050

Panel B: Statistical Values for Panel Causality Tests

Independent Variables Dependent Variable

∆RETRA ∆EPS ∆GHG ∆EOS ∆ENS ∆ENGS ∆ECS ∆GDPPC ∆ESECU

∆RETRA 0.320 0.550 4.320 ** 5.630 ** 11.750 *** 7.140 *** 0.090 0.450
∆EPS 0.520 0.010 1.170 2.600 5.300 ** 1.700 0.980 1.090
∆GHG 0.270 1.500 3.720 * 0.020 3.380 * 22.600 *** 21.410 *** 1.400
∆EOS 21.400 *** 0.500 9.240 *** 6.040 ** 7.290 *** 12.670 *** 0.380 0.950
∆ENS 25.180 *** 1.230 1.460 7.650 *** 36.620 *** 23.940 *** 3.510 * 0.000
∆ENGS 22.780 *** 0.390 8.690 *** 17.400 *** 12.550 *** 53.720 *** 2.690 0.250
∆ECS 42.000 *** 0.330 32.580 *** 12.240 *** 11.730 *** 31.340 *** 3.940 ** 1.740
∆GDPPC 0.820 17.270 *** 24.240 *** 0.360 3.010 * 1.400 8.360 *** 1.030
∆ESECU 0.240 0.520 0.650 0.160 0.070 0.660 0.020 0.170

Notes: Panel A contains the results of tests based on the difference GMM estimator. The Sargan test of over-identifying restrictions tests H0 for instrument validity. m1 tests for the
first-order autocorrelation of residuals and H0 of no first-order autocorrelation. m2 tests for the second-order autocorrelation of residuals and H0 of no second-order autocorrelation. All
estimates were controlled to include time effects (not reported in this study). One-step estimations were applied to test the relationship. Panel B reports the χ2-statistics. In Panels A and
B, ***, ** and * denote the 1%, 5% and 10% significance levels, respectively. Each dependent variable in period t− 1 denotes ∆RETRAit−1, ∆EPSit−1, ∆GHGit−1, ∆EOSit−1, ∆ENSit−1,
∆ENGSit−1, ∆ECSit−1, ∆GDPPCit−1 and ∆ESECUit−1 in order of the estimation presented in Panel A.
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Appendix E

CONCOR semantic network analysis: CONvergence of iterated CORrelations (CONCOR)
semantic network analysis is helpful for exploring and interpreting the structural features of contexts,
in which the keyword is discussed and understood in discourses on social innovation issues, such as
energy transition, environmental protection, safety, etc. Socio-technical transition focused on energy
involves interaction and interplay between actors [2–4], which produces discourse [7,8]—a variety
of written and spoken communication. Such discourse reaches a social consensus about proactively
coping with societal issues and challenges [23–26,30] by gaining more prominent status in the national
energy and industrial system and consistently expands the discourse related to renewable energy [93].
In the context of a discourse on the transition to a renewable-energy-based economy, we explore and
interpret the structural features of the contexts, in which the keyword is discussed and understood
in discourses [111]. As one method for analyzing ‘big data,’ we employ semantic network analysis,
which identifies patterns in a discourse based on the meaning of the text that is communicated to
various actors [112,113]. Semantic network analysis recognizes words as nodes in the network frame
and considers semantic relations (regarding coincidence) between words as social relations connecting
words [114].

Semantic network analysis was applied to the text-mining data obtained in Section 2. First,
WORDij was used to construct a word–word co-occurrence matrix for semantic network analysis.
WORDij (http://wordij.net) is a computer program used not only to create matrices but also to
combine various analysis techniques such as content analysis, computational linguistics and network
visualization [105]. We then applied the word matrix to analyze the semantic network connection
and identify the overall network structure. Finally, we constructed a CONCOR matrix using UCINET
software and applied it to the network to confirm clusters between words. We conducted CONCOR
semantic network analysis to identify semantic clustering, discover hidden subgroups and explore
relationships among each group [115].

The results of the CONCOR semantic network analysis of this study in Figure A1 shows that
discourse as a keyword of renewable energy was classified into seven clusters. Of these, the results
for three comparatively large clusters are as follows. First, the most prominent cluster surrounds
energy, in which environment-related words (e.g., Carbon emission, Climate change and Green energy)
and government-related words (e.g., Government, State and Council) appear to be relatively important.
Second, the cluster centering on “renewable energy” emerges, consisting of public-related words (e.g.,
Community, Public and Public service) and market-related words (e.g., Bank group, Fund, Energy economy,
Benefit, Energy Finance and Credit). Third, terms related to the traditional energy sector and technology
form a cluster. Terms associated with the traditional energy sector (e.g., Fossil fuel, Natural gas, Fossil
energy and Oil gas) are highly dense. Many words also emerge that are related to energy technology
(e.g., Storage system, Energy science, RE platform, Institute technology, Energy utility, Energy system and
Energy technology).

http://wordij.net
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