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Abstract: We are now living in the big data era, where firms can improve their decision makings
by adopting big data technology to utilize mass information. To explore the effects of the big data
technology, we build an analytical model to study the sustainable investment in a supply chain,
consisting of one manufacturer and one retailer, by using Bayesian information updating approach.
We derive the optimal sustainable investment level for the manufacturer and the optimal order
quantity for the retailer. Comparing the results with and without the big data technology, we find
that whether the manufacturer should make more sustainable investment when the retailer adopts
the big data technology depends on the service level at the retailer side. Interestingly, it is not always
optimal for the retailer to adopt the big data technology. We identify the conditions under which the
manufacturer and retailer are better off with the big data technology. In addition, we investigate the
impact of the number of observations regarding the market information and find that the optimal
decisions and profits increase in the number of the observations, if and only if the service level is low.

Keywords: sustainable investment; information updating; big data; supply chain management

1. Introduction

With the development of information technology, firms are able to access, store and process
massive amount of data. It means that we are now in the big data era, where the data is generated in
huge volume with high velocity and variety [1]. New technologies and business modes have emerged
with the utilization of the big data. For example, in the big data era, retailers are possible to access
the real-time sales data and thus improve their decision makings by using the big data technology [2].
Although the firms may benefit from using the big data technology, the cost of adopting the big data
technology is substantial, which cannot be neglected [3]. Thus, it is important to investigate whether
the firm can be better off by adopting the big data technology.

On the other hand, environmental issues, such as carbon emission, have received increasing
concerns both in academia and industry. Many countries, such as USA, have designed carbon emission
regulations to deal with the environmental issues [4]. Environmental tax is one of the carbon emission
regulations used to reduce the carbon emission. Firms need to pay for carbon emission under the
environmental tax regulation. For example, carbon tax has been legislated by Australian government
in 2011 and the carbon is priced at AU$23 per ton in 2012 [5]. Facing the environmental tax, firms have
incentive to do the sustainable investment, such as adopting the cleaner technology, to reduce the
carbon emission. Many firms, such as H&M and Marks & Spencer, have made substantial investment in
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their sustainable projects. For example, Marks & Spencer’s sustainable investment excesses 200 million
pounds in 2007 [6].

In a supply chain, the sustainable investment benefits not only the manufacturer by reducing
the carbon emission but also the retailer. This is because, as shown in both research papers and
industry reports, the sustainable investment in the products has positive effects on the demands [7].
In other words, some consumers are environmental awareness and they prefer the products with
high sustainable level. Here, high sustainable level refers to less carbon or pollutant emissions in the
manufacturing process. Meanwhile, in the framework of the supply chain, adoption of the big data
technology by the retailer may affect the sustainable investment for the manufacturer. For example,
the retailer can get more accurate demand information by the big data technology, which directly
affects the order quantity of the products. And the order quantity further affects the sustainable
investment decisions by the manufacturer. Thus, both the impacts of the sustainable investment and
big data technology cannot be neglected in managing the supply chain.

Motivated by the above real industry practices, in this paper, we consider the sustainable
investment in a supply chain in the big data era. Here, the term of the big data era represents that in
this era the retailer is able to collect the data in huge volume with high velocity and variety, which can
be used to improve the demand forecast by adopting some big data technologies [8]. For the big data
technologies, we focus on the forecasting techniques and consider that the retailer can use the big data
technology to improve the demand forecast. This is because forecasting technique is one of important
big data technologies, which has played increasingly significant roles in supply chain management [2,9].
Note that in this paper we would not discuss how to implement the big data technologies. Instead,
we aim to answer the fundamental research question that whether the retailer should adopt the big
data technology in the presence of sustainable investment by the manufacturer. This is important
because the effect of the big data technology using by the retailer is rather unclear, especially when the
sustainable investment, which is one of the keys to achieve the environmental sustainability, is taken
into consideration [3,4,8]. To answer the above research question, we consider a supply chain consisting
of one manufacturer and one retailer. The manufacturer will invest in the sustainable effort to reduce
the carbon emission. Consumers are environmental awareness, which means that the demands of
the products are positively affected by the sustainable effort. The manufacturer and the retailer play
a Stackelberg game, where the manufacturer acts as a leader deciding the sustainable investment effort
and the retailer acts as a follower deciding the order quantity. We focus on exploring the effects of the
information updating on the sustainable investment, order quantity and the performances of both the
retailer and manufacturer. We construct the mathematical model to study the problem. Especially,
to investigate the effects of the big data technology, we build a Bayesian information updating model
that captures the key feature of improving the demand forecast with big data.

To the best of our knowledge, this is the first paper studying the sustainable investment with
the consideration of consumer environmental awareness and information updating in the big data
era. We derive the optimal sustainable investment level for the manufacturer and the optimal order
quantity for the retailer with the big data technology. Comparing the results with and without the big
data technologies, we find that whether the manufacturer should make more sustainable investment
with the big data technology than that without the big data technology depends on the service level
at the retailer side. Specifically, the manufacturer is expected to invest less sustainable effort with
the big data technology if and only if the service level is high. Similar results hold for the order
quantity of the retailer. Interestingly, we find that it is not always optimal for the retailer to adopt
the big data technology. We identify the conditions, associated with the sustainable investment cost
and fixed cost of adopting the big data technology, under which the retailer is better off with the big
data technology. Similarly, the manufacturer may be better or worse off with the big data technology.
We identify the thresholds associated with the unit production cost and the service level, under which
the manufacturer is better off when the retailer adopts the big data technology.
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The rest of the paper is organized as follows. In Section 2, we show the literature related to
our paper. In Section 3, we introduce the basic modeling framework and the Bayesian information
updating model. In Section 4, we analyze a benchmark case where big data technology is not adopted
by the retailer. In Section 5, we analyze the case with big data technology. In Section 6, we compare the
results with and without big data technologies. In Section 7, we examine the impacts of the number of
the observations regarding the market information. All proofs are provided in the Appendix A.

2. Literature Review

Our work is related to three streams of research in the literature, i.e., sustainability issues, supply
chain management in the big date era and Bayesian information updating.

(1) Sustainability Issues

Researches have shown that the sustainability issues should be integrated into the operational
decisions to achieve the sustainability of the supply chain [10,11]. Next, we review the related
literature on the sustainability issues with respects to carbon emission, sustainable investment and
consumer environmental awareness, as which are three key features of our research problem regarding
the sustainability.

(a) Carbon Emission

Some papers investigate the procurement/production/inventory decisions with the consideration
of carbon emission. For example, Letmathe and Balakrishnan [12] is an early paper that incorporates the
environment issues into the production decisions. In their paper, they develop two models to determine
the production decisions in the presence of environmental constraints. Focusing on the inventory
models, Bouchery et al. [13] revisit the classical economic order quantity model with the consideration
of sustainability concerns. Zhang and Xu [14] study a production planning problem with carbon
cap-and-trade regulation, where both the optimal production quantities and the corresponding carbon
trading quantity are determined. Chen and Wang [15] study the effects of carbon emission regulations
on the optimal ordering and the transportation mode selection. They find that there are some thresholds
for the transportation modes under different carbon emission regulations. There are papers investigate
the carbon emission considering other supply chain aspects, e.g., dual sourcing problem, return
policies, supplier evaluation and transportation scheduling. For example, Rosič and Jammernegg [16]
investigate the effects of the environmental regulations on the dual sourcing problem, in which the
retailer uses both the offshore and onshore suppliers. Shen and Li [17] investigate the effects of the
return policies on the sustainability of fashion supply chain, where the sustainability factors include
expected amount leftover, the ration of expected sales over expected leftover, etc. Guo et al. [18]
use a fuzzy multi-criteria decision-making approach to evaluate the green supplier. He et al. [19]
discuss the development of low-carbon logistics by a case study in China. Guo et al. [20] study the
green transportation scheduling problem with the consideration of pickup time and transport mode
selections. One of the key elements for integrating the sustainability issues into operation decisions is
sustainable investment, which, however, is not considered by the majority of the above papers.

(b) Sustainable Investment

Considering the sustainable investment, some papers also investigate the procurement/production/
inventory policies. For example, Benjaafar et al. [21] study how to integrate carbon emission concerns
into the procurement/production and inventory decisions. Toptal et al. [22] study the joint decisions
of replenishment and sustainable investment under carbon cap, tax and cap-and-trade policies.
They find that sustainable investment can reduce both the carbon emission and cost. Some papers
examine different emission regulations with the consideration of sustainable investment. For example,
Drake et al. [23] compare the impacts of emission tax and emission cap-and-trade regulations on firm’s



Sustainability 2018, 10, 403 4 of 18

sustainable investment. However, all these three papers consider that the product demand is not
affected by the carbon emission/sustainable investment.

(c) Consumer Environmental Awareness

Yalabik and Fairchild [24] and Liu et al. [25] are two early papers that consider the consumer
environmental awareness, such that the demand will be affected by the carbon emission/sustainable
investment. Procurement/production/inventory are also main decisions investigated in the literature
when considering the consumer environmental awareness. For example, Nouira et al. [26] study
the selection of production processes and the choice of input products with the consideration
of greenness-dependent demand. Dong et al. [4] consider retailer’s procurement policy with
environmental awareness consumers when the manufacturer is under the carbon cap-and-trade
regulation. There are other papers that consider the consumer environmental awareness from other
supply chain aspects, e.g., power structure, supply chain performance and business modes selection.
Specifically, Shi et al. [11] study the joint effect of power structure and sustainable investment on
the economic and environmental performance of supply chain. They show that the supply chain
member with less power has more incentive to make the sustainable investment to achieve a high
profit. Du et al. [27] investigate the impacts of consumer environmental awareness on the performance
of the emission-concerned supply chain. They show that both the channel profit and the emission
reduction are increasing in the consumers’ preference for low-carbon consumption. Li and Shen [28]
study the sustainable investment with the consideration of the consumer environmental awareness by
developing two business modes for the manufacturer, namely, the non-profit manufacturer model and
for-profit manufacturer model. Our work is different from the above papers. Although we consider
the sustainable investment and environmental awareness consumers, we focus on the effects of the big
data technology and consider that the demand information can be updated by this technology. Please
refer to conception and review papers, such as Maletič et al. [29], Centobelli et al. [30], Kohtala [31]
and the references therein for other related researches about the environmental sustainability.

(2) Supply Chain Management in the Big Date Era

The literature on big data usually focuses on the data-driven decision-making, where the data can
be used to create values for the organizations and societies [32]. From this perspective, some papers
argue that the big data may be a contributor to and/or an element of knowledge management [32,33].
Regarding the knowledge management, various methods and technologies are used to support the
organizational processes of knowledge creation, storage and transfer [34,35]. With the big data
technology, useful predictive knowledge can be generated to help organizations improve the capability
of the knowledge management [9,36].

Meanwhile, big data has dramatically changed the operations in supply chain and the big data
research in supply chain has generated increasing attention in recent years [2]. See-To and Ngai [37]
investigate the effects of information of big data streams of customer review on sales nowcasting. Liu
and Yi [3] examine the effects of the big data information investment on the performance of supply
chain and the supply chain coordination. They show that under some conditions associated with the
investment cost, the manufacturer and retailer are better off by the big data information investment
and the supply chain can be coordinated under revenue sharing contract. Considering the adoption of
the big data technology, our paper, however, is fundamentally different from their work as we study
the sustainable investment with Bayesian information updating model. Other related researches can
be found in the review papers or essay papers, such as Feng and Shanthikumar [1], Shen and Chan [2],
Choi et al. [8], Arunachalam et al. [38] and Guha and Kumar [39] and the references therein.

(3) Bayesian Information Updating

In the big data era, firms can collect the big data and utilize the data to improve the demand
forecast by information updating approach. The Bayesian information updating is wildly used in
researches considering the operational strategies. For example, Iyer and Bergen [40] adopt the Bayesian
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information updating approach to study the effect of quick response strategy on the performance
of supply chain. They show that service level plays an important role under the quick response
strategy. Under some conditions associated with the service level, both the manufacturer and the
retailer are better off by the quick response strategy. Choi et al. [41] study the optimal two-stage
ordering policy with the consideration of Bayesian information updating and discuss the service level
and profit uncertainty under the optimal policy. Wu [42] considers the quantity flexibility contracts
with Bayesian information updating and shows that more flexibility always benefits the retailer rather
than the manufacturer. Choi and Chow [43] study the quick response strategy by a mean-variance and
Bayesian information updating approach with the consideration of risk. Yang et al. [44] examine the
supply chain coordination for a supply chain consisting two suppliers and one retailer with Bayesian
information updating. They show that the supply chain coordination is independent of the information
updating process. Chan et al. [45] also consider the supply chain coordination with the Bayesian
information updating, while focus on examining the value of RFID.

All the above papers about the Bayesian information updating do not consider sustainability
issues. Choi [46], Chan et al. [47] and Shen et al. [48] are three exceptions that consider the sustainability
issues with Bayesian information updating. Specifically, Choi [46] studies a quick response strategy
with the consideration of carbon footprint tax and Bayesian information updating. Shen et al. [48]
investigate the selling sequence of the green and non-green products by using the Bayesian information
updating approach. Both Choi [46] and Shen et al. [48] do not consider the sustainable investment and
consumer environmental awareness, which are salient features of our study. Chan et al. [47] investigate
the supply chain coordination by Bayesian information updating approach with the consideration
of sustainable investment. However, unlike ours, they do not consider the consumer environmental
awareness which significantly affects the operational decisions. Besides, in our paper we study the
business modes in the big data era and examine the effects of the number of observations regarding
the demand information, which is not considered in their paper.

Table 1 shows the positioning of this paper in the literature.

Table 1. Positioning of this paper in the literature.

Papers

Sustainability Issues
Big Data

Applications

Bayesian
Information

Updating
Carbon

Emission
Sustainable
Investment

Consumer
Environment

Awareness

Letmathe and Balakrishnan [12],
Bouchery et al. [13], Rosič and
Jammernegg [16], Zhang and Xu [14],
Shen and Li [17], Chen and Wang [15]

√

Benjaafar et al. [21], Toptal et al. [22],
Drake et al. [23]

√ √

Yalabik and Fairchild [24], Liu et al. [25],
Nouira et al. [26], Du et al. [27],
Li and Shen [28], Dong et al. [4],
Shi et al. [11]

√ √ √

Feng and Shanthikumar [1], Liu and Yi [3],
See-To and Ngai [37]

√

Iyer and Bergen [40], Choi et al. [41],
Wu [42], Choi and Chow [43],
Yang et al. [44], Chan et al. [45]

√

Choi [46]
√ √

Chan et al. [47]
√ √ √

Shen et al. [48]
√ √ √

This paper
√ √ √ √ √
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3. Modelling

3.1. Basic Modelling Framework

We consider a supply chain which consists of one manufacturer and one retailer. The retailer
purchases a single type of sustainable products at a unit wholesale price w from the manufacturer and
sells to customers at a unit retail price p. Let c denote the unit production cost of the products. Clearly,
we have p > w > c. We consider that the demand is stochastic. Hence, there may exist some leftover
products at the end of the selling season. Let v denote the unit salvage price of the unsold products.

Facing the environmental taxation, the manufacturer has the incentive to invest in the sustainable
effort. Let s denote the sustainable level of the products. Following Shi et al. [11], we assume that the
sustainable effort reduces the manufacturer’s environmental tax. The reduction of the environmental
tax by the sustainable investment can be denoted as

T(s) = es,

where e > 0 is the sensitivity parameter of the environmental tax reduction by the sustainable
investment, which is related to the per unit pollutant emission equivalent and tax rate. Investing in
the sustainable effort will incur the investment cost to the manufacturer. Following the settings in the
literature (see e.g., Savaskan and Van Wassenhove [49] and Shi et al. [11]), we consider the following
cost function:

I(s) =
cI
2

s2.

It indicates that the investment cost is convex increasing in the sustainable level. cI > 0 is the
coefficient of investment cost. To avoid the trivial outcomes, we assume that cI > 2βe, implying that
the sustainable investment cost is usually substantial [4].

In addition, following the literature and industry practice, we assume that the consumers are
environmental awareness, such that the sustainable level has a positive effect on the demand of the
products [28]. Let D denote the demand of the products. Consistent with the existing literature (see e.g.,
Dong et al. [4]), we consider the following stochastic demand function:

D = x + βs,

where β > 0 is the sensitivity parameter of the sustainable level, and x ≥ 0 is the base demand which
is stochastic and irrelevant to the sustainable level. Let q denote the order quantity of the products by
the retailer. In order to avoid the trivial outcomes, we assume that q ≥ βs. This is reasonable because
given that the base demand x is non-negative, the number of products that the retailer should order
exceeds the deterministic part of the demand i.e., βs.

3.2. Bayesian Information Updating

We assume that in the big data era, the retailer can easily and conveniently access to massive
amount of data, such as the sales data. These data can be used to improve the performance of the
business operations, by adopting the big data technology. A typical approach of the adoption of big
data technology is to utilize the data to improve the demand forecast [8]. In order to capture the
characteristics of demand forecast, we consider a Bayesian information updating model. Similar to
Chan et al. [47] and Shen et al. [48], we consider the forecasted base demand of the products in two
stages. Let x0 denote the forecasted base demand of the products at Stage 0. Following the Bayesian
information updating model as in Iyer and Bergen [40] and Choi [50], we assume that x0 is normally
distributed with mean θ and variance σ2, i.e.,

x0|θ ∼ N
(

θ, σ2
)

.
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Consider that θ is also a random variable which is normally distributed with mean µ0 and variance
τ2, i.e.,

θ ∼ N
(

µ0, τ2
)

.

Note that σ represents the inherent uncertainty of the demand which cannot be reduced by the
big data technology. In other words, it implies that the demand at Stage 0 is still a random variable
even if we have perfect information about σ [43].

Then, we can derive the unconditional distribution of x0 at Stage 0, which is normally distributed
with mean µ0 and variance σ2 + τ2, i.e.,

x0 ∼ N
(

µ0, σ2
0

)
,

where σ2
0 = σ2 + τ2.

Let x1 denote the forecasted base demand of the products at Stage 1. We assume that up to Stage 1,
the retailer can obtain sufficient amount of data from the market to improve the demand forecast.
Following Choi [50] and Shen et al. [48], we define n as the number of market observations, which
represents the market information that the retailer can use to improve the demand forecast. In the big
data era, n could be very large and it tends to infinity when the market observation is real-time [48].
Using the Bayesian theory (see, e.g., Pratt et al. [51]), we can obtain the distribution of x1, which can be
presented as follows:

x1 ∼ N
(

µ1, σ2
1

)
,

where

µ1 =
σ2µ0 + nτ2d0

σ2 + nτ2 ,

σ2
1 = σ2 +

τ2σ2

σ2 + nτ2 ,

and d0 is the mean of the n observations.
Note that the above model is a stand result and has been used to study the impact of big data in

the literature (see e.g., Shen et al. [48] and Choi [50]). To this end, we let Φ(·) denote the cumulative
distribution function of the standard normal distribution and let Φ−1(·) be the inverse function of Φ(·).

3.3. Objective Functions

We consider a Stackelberg game, where the manufacturer acting as the leader determines the
sustainable investment level and the retailer acting as the follower determines the order quantity of
the products.

The retailer’s objective is to maximize her expected profit by setting the optimal order quantity
of the products. Given the mean of the observations d0, the retailer’s optimal expected profit can be
expressed as:

Πr|d0 = max
q

Ex|d0

[
p min{D, q} − wq + v(q− D)+

]
− CB, (1)

where CB is the fixed cost due to the adoption of big data technology. Without loss of generality, we
assume that the shortage cost is zero. Therefore, in the above expected profit function, the first term is
the revenue from selling the products to the customers, the second term denotes the cost of ordering
the products from the manufacturer, and the third term captures the salvage value when the demand
is less than the order quantity.

We consider a make-to-order production system for the manufacturer. The manufacturer’s
optimal profit function, denoted by Πm, can be expressed as:

Πm = max
s
{wq− cq + T(s)q− cI

2
s2}. (2)
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In the above profit function, the first term is the revenue of selling the products to the retailer, the
second term denotes the production cost, the third term is the gain of reducing the environmental tax,
and the last term is the sustainable investment cost. Note that following the literature, we consider that
the sustainable investment cost is a convex function, which is wildly used in the literature (see e.g.,
Dong et al. [4], Shi et al. [11], Chan et al. [47] and Savaskan and Van Wassenhove [49]). On the other
hand, if the sustainable investment cost is linear or concave function, it can be easily shown that
the manufacturer’s objective function is convex in the sustainable effort, so the optimal sustainable
effort is either the lower bound (i.e., zero) or the upper bound (i.e., the ideal level that eliminates all
the emissions).

We let r = (p− w)/(p− v), which represents to the service level at the order quantity in types of
the newsvendor problems [43].

Table 2 shows the major notations used in this paper.

Table 2. Notations.

Notation Meaning

p Unit retail price of the products
w Unit wholesale price of the products
c Unit production cost of the products
v Unit salvage price of the unsold products
r Service level, i.e., r = (p− w)/(p− v)
s Sustainable level of the products
e Sensitivity parameter of environmental tax reduction by the sustainable investment
cI Coefficient of investment cost
β Sensitivity parameter of the effect of the sustainable level on the demand
D Demand function of the products
x0 Forecasted base demand of the product at Stage 0, a random variable ∼N

(
µ0, σ2

0
)

x1 Forecasted base demand of the product at Stage 1, a random variable ∼N
(
µ1, σ2

1
)

n Number of the market observation
d0 Mean of market observation
q Order quantity of the products

CB Fixed cost of using the big data technology
Πr Retailer’s expected profit
Πm Manufacturer’s profit

4. A Benchmark

We first consider a benchmark case in which no big data technology is used, so that there is no
information updating approach to improve the demand forecast. As a result, the forecasted base
demand at Stage 1 is still x0, and there is no fixed cost for big data technology, i.e., CB = 0. Then we
can obtain the optimal order quantity for the retailer.

Proposition 1. Without the big data technology, the retailer’s optimal order quantity, denoted by qN , for a given
s is as follows:

qN = βs + µ0 + kσ0, (3)

where k = Φ−1(r).

Proposition 1 shows that the best response of the order quantity for the retailer for a given
sustainable level, when the big data technology is not used. It is straightforward to see that the
optimal order quantity is increasing in the sustainable level. Substituting the optimal response into the
manufacturer’s profit function, i.e., Equation (2), we can obtain the following results:
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Proposition 2. Without the big data technology, the manufacturer’s optimal sustainable investment level sN is
as follows:

sN =
(µ0 + kσ0)e + β(w− c)

cI − 2βe
. (4)

Then, substituting sN into Equation (3), we obtain that

qN =
1

cI − 2βe
{(µ0 + kσ0)(cI − βe) + β2(w− c)}. (5)

Substituting the optimal solutions into Equations (1) and (2) and rearranging the results, then the
retailer’s and manufacturer’s optimal expected profits without big data technology, denoted by ΠN

r
and ΠN

m respectively, can be expressed as follows:

ΠN
r = (p− w)

(
µ0 + βsN

)
− (p− v)φ(k)σ0 (6)

ΠN
m =

(
w− c + esN

)
qN − cI

2
(sN)

2
. (7)

5. With Bayesian Information Updating

In this section, we consider that the retailer can use the big data technology to improve the demand
forecast by Bayesian information updating approach. Similar to the benchmark case, by solving the
retailer’s problem, we can obtain the following results:

Proposition 3. With the big data technology, given the mean of the observations d0, the retailer’s optimal order
quantity at Stage 1, denoted by qW and manufacturer’s optimal sustainable level, denoted by sW , are as follows:

qW |d0 =
1

cI − 2βe
{(µ1 + kσ1)(cI − βe) + β2(w− c)},

sW |d0 =
(µ1 + kσ1)e + β(w− c)

cI − 2βe
.

Substituting the above optimal solutions into Equation (1) and rearranging the result, then the
retailer’s optimal expected profit with information updating, denoted by ΠW

r , can be expressed
as follows:

ΠW
r

∣∣∣d0 = (p− w)
(

µ1

∣∣∣d0 + βsW
∣∣∣d0

)
− (p− v)φ(k)σ0 − CB

At Stage 0, the expected qW and sW are given by

qW =
1

cI − 2βe
{(µ0 + kσ1)(cI − βe) + β2(w− c)}, (8)

sW =
(µ0 + kσ1)e + β(w− c)

cI − 2βe
. (9)

It is straightforward to see that the optimal expected order quantity is increasing in the salvage
value and the mean of the forecasted base demand at Stage 0, and decreasing in the unit production
cost. The optimal sustainable level is decreasing in the investment cost and the unit production cost,
and increasing in the salvage value and the mean of the forecasted base demand at Stage 0.

Un-conditioning ΠW
r

∣∣∣d0 with respected to d0 yields

ΠW
r = (p− w)

(
µ0 + βsW

)
− (p− v)φ(k)σ0 − CB. (10)
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The manufacturer’s optimal profit with Bayesian information updating can be expressed as follows:

ΠW
m =

(
w− c + esW

)
qw − cI

2
(sW)

2
. (11)

6. Comparison

In this section, we compare the model with Bayesian information updating and the benchmark.
Comparing the retailer’s and manufacturer’s optimal decisions with and without the big data

technologies, respectively, yields

qW − qN = − CI − βe
CI − 2βe

(σ0 − σ1)k (12)

sW − sN = − e
CI − 2βe

(σ0 − σ1)k (13)

Note that k = Φ−1(r). Here, Φ−1(·) is the inverse cumulative distribution function of the standard
normal distribution. Therefore, if r > 0.5, then k > 0; otherwise, k ≤ 0. Then we can obtain the
following results:

Proposition 4. If r > 0.5, then qW < qN and sW < sN ; otherwise, qW ≥ qN and sW ≥ sN .

Proposition 4 provides the conditions under which the optimal solutions with the big data
technology are larger than those without the big data technology. Specifically, it shows that when the
service level is large, i.e., r > 0.5, with the big data technology, the retailer is expected to order less
products from the manufacturer than that without the big data technology. Otherwise, the retailer
is expected to order more with the big data technology. It implies that although using the big data
technology can improve the demand forecast, whether the retailer can order less products depends on
the service level. Similarly, with the big data technology, the manufacturer is also expected to invest
a lower sustainable level in the products, than that without the big data technology, if and only if the
service level is high.

Comparing the retailer’s and manufacturer’s optimal profits with and without the big data
technologies yields

ΠW
r −ΠN

r =

{
(p− v)φ(k)− (p− w)

βe
cI − 2βe

k
}
(σ0 − σ1)− CB, (14)

ΠW
m −ΠN

m = − e(σ0 − σ1)

CI − 2βe
{(w− c)

cI − βe
e

+ e(µ0 + kσ1) +
1
2
(cI − βe)

e(σ0 − σ1)

CI − 2βe
k}k. (15)

To simplify the exposition, we define the term ĉI and ĈB as

ĈB = (σ0 − σ1)(p− v)φ(k),

ĉI = 2βe +
(p− w)(σ0 − σ1)βek

ĈB − CB
.

Proposition 5. When r ≤ 0.5, if CB < ĈB, then ΠW
r > ΠN

r ; if CB ≥ ĈB, then the relationship of ΠW
r and

ΠN
r depends on cI and ĉI : if cI < ĉI , then ΠW

r > ΠN
r , otherwise ΠW

r ≤ ΠN
r . When r > 0.5, if CB ≥ ĈB,

then ΠW
r ≤ ΠN

r ; if CB < ĈB, then the relationship of ΠW
r and ΠN

r depends on cI and ĉI : if cI > ĉI ,
then ΠW

r > ΠN
r , otherwise ΠW

r ≤ ΠN
r .
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Proposition 5 shows the relationships of ΠW
r and ΠN

r . It indicates that the relationships depend
on the values of service level, fixed cost of using the big data technology and the coefficient of the
sustainable investment cost.

Figure 1 depicts the results in Proposition 5.Sustainability 2018, 10, x FOR PEER REVIEW  11 of 17 
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The relationships of ΠW
r and ΠN

r can be presented in two cases. The first case is shown in
Figure 1a, where the service level is low, i.e., r ≤ 0.5. We can see that if the fixed cost of using the
big data technology is low, i.e., CB < ĈB, the retailer is better off by using the big data technology
to improve the demand forecast. It is intuitive. However, it can be seen that the retailer can also be
better off with the big data technology, even the fixed cost of using the big data technology is large, i.e.,
CB ≥ ĈB. We can see that when the fixed cost is high, whether the retailer is better off with the big
data technology depends on the coefficient of the investment cost. Specifically, the retailer is still better
off with the big data technology if and only if the investment cost is low, i.e., cI < ĉI . The second case
is shown in Figure 1b, where the service level is large, i.e., r > 0.5. Contrary to the first case, when the
service level is high, the retailer is better off with the big data technology if and only if the investment
cost is high, i.e., cI > ĉI . These results imply that the strategy of using the big data technology should
be tailored to fit each type of retailers, with the consideration of both the retailer’s fixed cost of using
the big data technology and service level and the manufacturer’s sustainable investment cost.

Before presenting the comparisons of the manufacturer’s optimal profits, we define the term ĉ to
simplify the exposition. Let

ĉ = w +
(cI − βe)(σ0 − σ1)k + 2(cI − 2βe)(µ0 + kσ1)

2(cI − βe)(cI − 2βe)
e2.

Note that it may be less than w when k < 0.

Proposition 6. When r ≤ 0.5, if c < ĉ, then ΠW
m > ΠN

m ; otherwise ΠW
m ≤ ΠN

m . When r > 0.5, ΠW
m ≤ ΠN

m .

Proposition 6 shows the relationships between ΠW
m and ΠN

m , which are depicted in Figure 2.
Figure 2 shows that the relationship between ΠW

m and ΠN
m depends on the service level and the

unit production cost. If the service level is high, i.e., r > 0.5, then the manufacturer is worse off when
the retailer uses the big data technology to improve the demand forecast. If the service level is low,
i.e., r ≤ 0.5, then whether the manufacturer will be worse off depends on the unit production cost.
Specifically, if the unit production cost is large, then the manufacturer will also be worse off; otherwise,
the manufacturer will be better off when the retailer uses the big data technology.
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Note that we consider the wholesale price contract and the retailer can be better off either the
service level is large or small, whereas the manufacturer can be only better off with the big data
technology if the service level is small. Above analysis implies that under the wholesale price contract,
we are possible to achieve the Parato improvement by using the big data technology only when the
service level is small. However, in practice such small service level is unlikely to be observed in most
cases [40,43]. Therefore, from the perspective of the whole supply chain, the manufacturer and retailer
are suggested to sign some other contracts, under which the retailer may pay some subsidies to the
manufacturer, so that both of them can be better off with the big data technology.

7. Impact of the Number of the Observations

In this section, we study the impact of the number of the observations n. Notice that the
observations represent the market information that can be used by the retailer to improve the demand
forecast. If there is no market observation, then n = 0 and σ1 = σ0. In this case, the optimal decisions in
the Bayesian information updating model are the same with those in the benchmark case. If the market
observation is real-time, then n tends to infinity [48,50]. And we can derive that σ1 = σ. It implies
that there is only the inherent uncertainty in the demand, when the observation is real-time. Then the
optimal solutions in the Bayesian information updating model can be represented as follows:

qW |n→∞ =
1

cI − 2βe
{(µ0 + kσ)(cI − βe) + β2(w− c)},

sW |n→∞ =
(µ0 + kσ)e + β(w− c)

cI − 2βe
,

ΠW
r |n→∞ = (p− w)(µ0 + βsW

∣∣∣
n→∞

)− (p− v)φ(k)σ0 − CB,

ΠW
m |n→∞ = (w− c + esW

∣∣∣
n→∞

)qW |n→∞ −
cI
2
( sW

∣∣∣
n→∞

)
2
.

The above equations indicate that in the big data era, the optimal decisions and profits of the
retailer and manufacturer will be converged at certain levels, when we can use infinite observations to
update the demand information.

Next, we show the results that how the optimal solutions in the Bayesian information updating
model change along with the number of observations n.

Proposition 7. If r < 0.5, then dqW/dn > 0, dsW/dn > 0, dΠW
r /dn > 0 and dΠW

m /dn > 0; otherwise
dqW/dn ≤ 0, dsW/dn ≤ 0, dΠW

r /dn ≤ 0 and dΠW
m /dn ≤ 0.
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Proposition 7 shows the impacts of the number of observations on the optimal decisions and
profits of the retailer and manufacturer. It indicates that there is a threshold for the service level, above
which all the optimal decisions and profits decrease in the number of observations. Specifically, if the
service level is low, i.e., r < 0.5, then the retailer should order more products and the manufacturer
should invest more sustainable effort in the products and both the retailer and manufacturer will
gain more profits, when the number of observations increases. However, if the service level is high,
i.e., r ≥ 0.5, then the retailer should order less products and the manufacturer should invest less
sustainable effort in the products and both the retailer and manufacturer will get less profits, when the
number of observations increases. These results imply that it may not be better for both the retailer
and manufacturer to obtain more data in the big data era. More number of observations from the data
may cause a decrease in the profits.

8. Conclusions

In this paper, we study the sustainable investment for a single manufacturer and single retailer
supply chain in the big data era. Facing the environmental tax, the manufacturer will make the
sustainable investment to reduce the carbon emission. Facing the uncertain demand, the retailer will
consider using the big data technology to improve the demand forecast. Consumers are environmental
awareness, so that the manufacturer’s sustainable investment has positive effect on the demand.
We consider a Stackelberg game, where the manufacturer is the leader determining the sustainable
investment level and the retailer is the follower determining the order quantity of the products.
Both the manufacturer’s and retailer’s objectives are to maximize their own profits.

To explore the effects of the big data technology on the sustainable investment strategies and
the performance of supply chain, we construct a Bayesian information updating model to study
the problem. We first derive the optimal investment level for the manufacturer and the optimal
order quantity for the retailer under two cases, i.e., with and without the big data technologies.
By comparing the optimal solutions and performance of the manufacturer and retailer under these
two cases, we identify the effects of the big data technology. Besides, we also investigate the impact of
the number of observations regarding the market information.

In summary, the managerial insights and implication of the main results derived in this paper are
as follows:

(1) Service level plays an important role in the impacts of adopting the big data technology.
We show that with the big data technology, the manufacturer and retailer should invest a lower
sustainable effort and order less products, respectively, than those without the big data technology,
if and only if the service level is large, i.e., larger than 0.5. Meanwhile, the service level also affects
the manufacturer’s and retailer’s profits when adopting the big data technology. We show that under
some conditions the retailer can be better off by using the big data technology no matter the service
level is large or small, whereas the manufacturer can be better off with the big data technology only
if the service level is small, i.e., smaller than 0.5. It implies that using the big data technology can
achieve the Parato improvement when the service level is small. However, in practice such small
service level is unlikely to be observed in most cases [40,43]. Therefore, from the perspective of the
whole supply chain, the manufacturer and retailer are suggested to sign some contracts, under which
the retailer may pay some subsidies to the manufacturer, so that both of them can be better off with the
big data technology.

(2) The impacts of the cost parameters on the adoption of big data technology are significant.
We show that not only the fixed cost of using the big data technology but also the manufacturer’s
sustainable investment cost significantly affects the retailer’s profit of using the big data technology.
We identify the conditions, associated with the sustainable investment cost and fixed cost of using the
big data technology, under which the retailer is better off by using the big data technology. It implies
that the strategy of using the big data technology should be tailored to fit each type of retailers, with the
consideration of both the retailer’s fixed cost of using the big data technology and the manufacturer’s
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sustainable investment cost. We also identify the condition, associated with the unit production
cost, under which the manufacturer is better off with the big data technology. The condition for the
manufacturer being better off is strict, as the manufacturer can be better off only if the retailer’s service
level and the manufacturer’s unit production cost are low enough.

(3) The number of the observations may have positive or negative effects on the optimal decisions
and performance of the manufacturer and retailer. In the big data era, by using the big data technology,
the retailer can update the demand information very frequently. We show that whether the optimal
decisions and performance of the manufacturer and retailer increase or decrease in the number of the
observations depends on the value of the service level. The optimal decisions and profits increase in
the number of the observations if and only if the service level is low. This result implies that it may not
be better for both the retailer and manufacturer to obtain more data in the big data era.

Note that in this paper, we study the problem by considering a general analytical model.
For example, we consider a stochastic demand rather than the deterministic demand. And we
use a standard approach to build the Bayesian information updating model, which has been used
to study the impact of big data in the literature (see e.g., Shen et al. [48] and Choi [50]). Under these
general settings, we derive the analytical results. It indicates that the results are robust and may be
potentially applied to the similar problems. It is worth noting that for the sustainable investment,
we consider a convex investment cost, which is wildly used in the literature (see e.g., Dong et al. [4],
Shi et al. [11], Chan et al. [47] and Savaskan and Van Wassenhove [49]). Under this setting, we show
that the optimal sustainable effort is determined by the first-order condition of the manufacturer’s
objective function. All the comparisons regarding the big data technology are based on this result.
Nevertheless, if the sustainable investment cost is linear or concave function, we can show that
the manufacturer’s objective function is convex in the sustainable effort, so the optimal sustainable
effort is either the lower bound (i.e., zero) or the upper bound (i.e., the ideal level that eliminates all
the emissions).

Our study is subject to several limitations which also provide fruitful directions for future research.
First, we focus on the theoretical analysis of the research problem by constructing the mathematical
model. In future research, we may consider to empirically test the research problem by using some
real data. Second, we consider that the wholesale contract is used between the manufacturer and
retailer and the wholesale price is pre-determined in the paper. In future research, we may consider
the wholesale price as a decision variable in the model, or we may consider that the other contracts,
such as revenue sharing and buy-back contracts, are used between two supply chain members. Third,
we consider in this paper that only the manufacturer has incentive to invest in the sustainable effort.
However, the retailer may also have incentive to do the sustainable investment due to the consumer
environmental awareness. It would be interesting to incorporate the retailer’s investment incentive
into our model, as a future research direction. Fourth, we consider a manufacturer consisting of
one manufacturer and one retailer. In future research, we may investigate the effects of the big data
technology in a supply chain with multiple manufacturers or/and multiple retailers. Fifth, we consider
in this paper that there is a single type of sustainable products. In future research, we may extend our
model to consider multiple types of sustainable products. Finally, we assume that the supply chain
members are risk neutral. In future research, it may be interesting to extend our model to consider the
effect of the risk attitude on the sustainable investment and the performance of the supply chain.
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Appendix A

Proof of Proposition 1.

Note that given s, the retailer’s problem is a newsvendor problem. Thus, we can obtain the
optimal order quantity by the first-order condition of Equation (1). �

Proof of Proposition 2.

Substituting the optimal response of the order quantity into the Equation (2) and taking the first
and second derivatives of ΠN

m with respect to s, respectively, we have

dΠN
m

ds
= e(µ0 + kσo) + β(w− c) + (2βe− cI)s,

d2ΠN
m

ds2 = −(cI − 2βe) < 0,

indicating that ΠN
m is concave in s, then we can obtain the optimal s by the first-order condition, i.e.,

dN
m

ds = 0. �

Proof of Proposition 3.

Similar to the proof of Proposition 1, we can obtain the optimal response of the order quantity.
Similar to the proof of Proposition 2, we can obtain the optimal sustainable level. Then by substituting
the optimal sustainable level into the optimal response of the order quantity, we have the optimal
value of the order quantity. �

Proof of Proposition 4.

To prove the results, we first derive that

σ0 − σ1 =
√

σ2 + τ2 −

√
σ2 +

σ2τ2

σ2 + nτ2 > 0.

Then, we find from Equations (12) and (13) that whether qW < qN and/or sW < sN depends
on the value of k. In addition, we have that if r > 0.5, then k > 0; otherwise, k ≤ 0. This completes
the proof. �

Proof of Proposition 5.

Note that if r > 0.5, then k > 0; otherwise, k ≤ 0. Then the results can be derived by directly
comparing ΠW

r and ΠN
r through Equation (14). �

Proof of Proposition 6.

We can obtain the results by directly comparing ΠW
m and ΠN

m through Equation (15). �

Proof of Proposition 7.

Before showing the effects of n on the optimal solutions, we show the effect of n on σ1.
By observing the expression of σ1, we can easily find that σ1 is decreasing in n, implying that dσ1

dn < 0.
Then, by taking the first derivative of the optimal decisions and profits with respect to n, we can
obtain that

dqW

dn
= k

cI − βe
cI − 2βe

dσ1

dn
,

dsW

dn
= k

e
cI − 2βe

dσ1

dn
,
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dΠW
r

dn
= k

(p− w)βe
cI − 2βe

dσ1

dn
,

dΠW
m

dn
= k

(w− c)(cI − βe) + e2(qW − βsW)
cI − 2βe

dσ1

dn
.

Because cI ≥ 2βe, p > w > c, qW ≥ βsW and dσ1
dn < 0, then we obtain that whether the above

equations are larger than zero depends on the value of k: if r < 0.5 (i.e., k < 0), then dqW

dn > 0, dsW

dn > 0,
dΠW

r
dn > 0 and dΠW

m
dn > 0; if r ≥ 0.5 (i.e., k ≥ 0), then dqW

dn ≤ 0, dsW

dn ≤ 0, dΠW
r

dn ≤ 0 and dΠW
m

dn ≤ 0. �
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